Wickham, H., Cetinkaya-Rundel, M., & Grolemund, G. (2023). R for data science: Import, tidy, transform, visualize, and model data (2nd ed.) . O'Reilly Media. Retrieved from https://eur02.safelinks.protection.outlook.com/?url=https://r4ds.hadley.nz/&data=05|02|Jun.Nguyen@nhh.no|957c181dde7e4b2a1d0908dd5b008c13|33a15b2f849941998d56f20b5aa91af2|0|0|638766780079349900|Unknown|TWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ==|0|||&sdata=gagVf0DZUEXy2FpeABcLLo31Ck66CnLPFtGedho8FCE=&reserved=0https://r4ds.hadley.nz/
Peng, R., & Matsui, E. (2016). The art of data science . Retrieved from https://bookdown.org/rdpeng/artofdatascience/https://bookdown.org/rdpeng/artofdatascience/
Knaflic, CN (2015). Storytelling with data: A data visualization guide for business professionals (1st ed.) . Wiley.
BENOIT, Kenneth. (2020). Text as data: An overview . In SAGE Handbook of Research Methods in Political Science and International Relations (pp. 1-55). London: SAGE.
Gow, ID, & Ding, T. (2025). Empirical research in accounting: Tools and methods. CRC Press. Retrieved from https://iangow.github.io/far_book/https://iangow.github.io/far_book/