Recent years have seen an increase of textual data that is accessible in electronic form. Examples are annual reports, company releases, and newspaper articles, or user generated content on social media such as blogs, forums and tweets. All of this textual data is generated by humans and may thus contain information about the author`s opinions and preferences. Textual data analysis is the process of deriving high-quality information from text, which can subsequently be used for economic decision making. Employing computers to process textual data allows for (1) analysing digital information more quickly than what is possible for the human mind, (2) detecting high dimensional patterns, and (3) conducting structural analyses on textual data.
While this course primarily looks into applications for finance, textual data analysis can be applied to other fields as well.
In this course the following topics are covered:
BAN432 and BAN443 are complementary courses with different focus. In BAN432 we approach textual analysis bottom up: how to obtain data, clean it, and different applications. We implement these steps with code that we develop in class. BAN443 focuses on the application of LLMs in a business context.