ECN402 Econometrics

Autumn 2020

Spring 2021
  • Topics

    The course introduces regression analysis applied to cross-sectional data, panel data and time-series data. Instrumental variables and differences-in-differences techniques to solve potential endogeneity problems will also be taught. The course will focus on applications of the econometric techniques and on practical and empirical examples.

    • the simple regression model, and regression with multiple regressors
    • potential outcomes, causality and correlations
    • panel data techniques and differences-in-differences
    • time-series analysis
    • instrumental variable techniques

  • Learning outcome

    Upon completion of the course, students will


    • understand what assumptions econometric models are based on
    • understand the necessary assumptions to interpret our estimates as effects relevant for policy and decision making
    • know the central concepts and terminology of econometrics


    • be able to interpret the results of empirical analyses
    • be able to choose between regression models, appropriate control variables and potentially important non-linearities and functional forms
    • be able to assess the validity of causal claims, and to disentangle correlations and causality
    • be able to conduct quantitative analysis where several factors can affect an outcome variable simultaneously
    • be able to use STATA for doing econometric analysis, produce do-files and log-files, import data in different formats, and produce tables and figures
    • be able to choose and apply an appropriate scientific method for analysing the research question

    General competences

    • be able to interpret and critically assess empirical work in applied econometrics
    • know the structure and requirements for a master thesis, and be able to develop a research question
    • understand the ethical issues in collecting, storing and using data
    • have a good background for more advanced econometric courses

  • Teaching

    The course consists of 15 lectures/classes and 5 practical computer sessions where the students learn the use of the econometric software STATA. The first computer session introduces STATA, and in the 4 remaining sessions the students will receive assistance in solving assignments. Students need to bring their own computer. Two of the four assignments must be submitted in order to get course approval. Assignments may be submitted in groups, and some feedback on the assignments will be given. Assignments must be written in English.

    We follow NHH guidelines related to the COVID 19 health crisis regarding teaching during autumn 2020.

    Lectures will be held in the auditorium and will be filmed or supplemented by videos. If teaching in the auditorium is not possible then we move to zoom or alternative platforms.

    The 5 practical computer sessions will be offered in the auditorium or smaller group rooms. They are supervised by teaching assistants as well as the Professors. Depending on capacity (number of computer session slots) we offer in addition computer sessions on zoom and use break out rooms in order to allow for questions in smaller groups. Some of the computer sessions are supplemented by videos, or filmed introductions.  

    As a novelty, we offer this semester a tutor system. This means that students are allocated to a tutor throughout the whole semester. The pool of tutors are the teaching assistants in ECN402 (5-7). The tutor is responsible for following up to some degree on the progression of the students in the course and assists in solving individual questions. Given the special challenges that students and teachers face during the COVID19 crises we want to offer tutors to encourage active participation which may be more difficult if we can have less personal contact in the auditorium.

  • Recommended prerequisites

    Basic knowledge in statistics.

  • Credit reduction due to overlap

    ECN402 is a renaming of the previous ECO402, and students cannot get credit for both courses.

    ECN402 can not be combined with BUS444, BUS444E, BAN431, FIE401/FIE401A/FIE401B or FIE449, due to similarities - and students will not get credit for both courses.

  • Requirements for course approval

    Two of four assignments must be submitted and approved in order to get course approval. Assignments may be submitted in groups, and some feedback on the assignments will be given. Assignments must be written in English.

  • Assessment

    The final grade is based on the grade of one group assignment, the specifics will be announced at the beginning of the course, and a final written school exam of four (4) hours*. The assignment and the exam answer must be in English.

    Expected release of the compulsory assignment will be at the beginning of October. The handing-in deadline is 7 days after release.

    Weighting of grades: Assignment (25%) and written school exam (75%)


    *While the primary form of assessment in this course includes a school exam, digital assessment is available for students who are unable to get into Norway due to official travel restrictions under the Covid-19 pandemic.

    If this relates to your situation, and you are restricted from attending physical assessment in the course, please send a short application to be enrolled in digital assessment to by September 15th at the latest.


    UPDATED 12 October 2020:
    In the autumn of 2020, the school exam will be converted to a: 4-hour individual home exam at the same time as the originally planned exam.


    Grading Scale: A-F

  • Grading Scale

    Grading scale A - F.

  • Computer tools

    Econometric software package STATA.

  • Literature

    Jeffrey M. Wooldridge (2019): Introductory Econometrics: A Modern Approach, 7th edition

    Joshua D. Angrist and Jörn-Steffen Pischke (2014): Mastering ’Metrics: The Path from Cause to Effect.

    Some additional material will be distributed on the learning platform


ECTS Credits
Teaching language

Autumn and spring.  Offered Autumn 2020.


UPDATED 12 October 2020:
The assessment form was revised due to the ongoing corona pandemic. See assessment section for details.

Course responsible

Professor Astrid Kunze, Department of Economics

Professor Øivind Anti Nilsen, Department of Economics