Customer Analytics in a Digital World

MBM433 Customer Analytics in a Digital World

Autumn 2022

Spring 2023
  • Topics

    Many firms collect massive amounts of data about the digital behavior of customers in addition to targeted marketing research on perceptions and evaluations of products and services. The question is how to use these individual-level data to produce valuable customer insights and use them to acquire, retain, and satisfy customers? These are core elements of customer analytics. In this course, students will learn how to find answers to important questions asked by managers, such as:·

    • Which customers should we target?·
    • Why do customers choose one brand over another?·
    • How likely is it that a customer will drop out?·
    • Which customers should we try to keep/let go?·
    • What is the "life-time" value of a customer?

    The taught topics include:

    1. Introduction to Customer Analytics and Model Building Process
    2. Recency-Frequency-Monetary (RFM) analysis
    3. Logistic Regression
    4. Decision Trees
    5. Multinomial and Ordered Logit
    6. Conjoint Analysis
    7. Introduction to Advanced Topics in Customer Analytics
    8. Introduction to Web and Social Media Analytics

  • Learning outcome

    This course will cover the basic knowledge about customer analytics and the relevant concepts, as well as some of the most commonly used types of model to analyze customer behavior. After completing the course, students will be able to:


    • understand the basics of customer analytics and relevant concepts such as customer lifetime value and customer heterogeneity·
    • understand important customer behaviors and know how to collect data to analyze them·
    • understand when a given type of customer model should be used and why is that


    • perform some commonly used customer models using R·
    • interpret and give intuitive explanation for the results of different customer models·
    • perform model evaluation and model selection·
    • adjust the specification of different models to fit real-world data

    General Competence: ·

    • use analytical thinking to solve real-world business problems·
    • differentiate between different types of customer models and know when and how to use them properly·
    • communicate key results/insights from customer models to general audience·
    • make informed decision based on customer analytics

  • Teaching

    The course format: Lectures and lab sessions/tutorials where students work on group-based exercises/assignments.

    In case on-campus teaching is not possible , all lectures will be conducted online (with no in-classroom teaching and with no on-campus activities). All necessary information will be provided on Canvas and it is assumed that students are aware of all course-related information posted in Canvas. Lab sessions/tutorials will also be conducted digitally.

    Lectures provide students with theoretical knowledge about customer analytics concepts and a basic understanding of different customer models. Practical/modeling skills will be gained through a set of group-based hands-on exercises and assignments. Students are required to work in groups in this course and it is students' responsibility to find and join a group of 2-4 persons. Students can search for group members through Canvas or using their own ways.

  • Credit reduction due to overlap


  • Compulsory Activity

    Group based written term paper. Group size 2-4 students. (Approved / not approved)

    Compulsory activities (work requirements) only valid in the semester the student attends the lectures. Studenst will need to write the mid-term paper again to re-take the exam.

  • Assessment

    The course assessment will be a final group-based term paper (group size 2-4). One final grade will be given. The term paper must be written in English.

  • Grading Scale


  • Computer tools

    R (and RStudio), a working laptop for lab sessions.

  • Literature

    Leeflang, P., Wieringa, JE, Bijmolt, THA, Pauwels, KH (2015). Modeling Markets: Analyzing Marketing Phenomena and Improving Marketing Decision Making

    And a list of selected journal articles.


ECTS Credits
Teaching language

Spring. Offered spring 2022.

Course responsible

Assistant Professor Nhat Quang Le, Department of Strategy and Management.