

From centralized to decentralized power systems:

Some stochastic optimization problems in energy management.

Clémence Alasseur, Riadh Zorgati EDF R&D, Paris-Saclay Lab, Palaiseau, France Department **O**ptimisation, **SI**mulation, **RI**sks and **S**tatistics for energy markets

Winter School on Stochastic Programming in Energy

Geilo, February 2018

Some Stochastic Optimization Problems in Energy Management

EDF : A WORLD LEADER IN ENERGY IN A CHANGING WORLD

Changing world :

- Big cities : 50 % of population live in towns, 70 % in 2050
- Emerging Countries : China, Brazil, India...
- Finite ressources and need to « de-carbon » energy
- New ways to generate, to manage, to use electricity → Local setting with raise of :
 - new and numerous producers (regions, towns, industries, individuals) operating decentralized means of renewable production (wind/solar)
 - new uses of electricity : electrical vehicles, green transportation, data centers, ...
 - new management techniques for an optimal use of electricity (demand response, ...) based on technologies of information and communication (smart grids) and on mathematics

1/3 of energetical needs are covered by electricity

40% of electricity in the world comes from **coal**, 20% from natural **gas**, 16% from hydro,15% from nuclear, 7% from oil and 2% from renewable energy

Some Stochastic Optimization Problems in Energy Management

MAIN OBJECTIVES OF THE TALK

- 1) To provide a brief introduction to energy management and its evolution
- 2) To present (not to solve) some stochastic optimization problems in energy management
 - a) In the historical centralized framework
 - b) In the decentralized framework induced by the evolution of electrical systems
- 3) To highlight the needs in stochastic optimization from the utility point of view
- 4) To open the discussion on the different paths for developments in this field

OUTLINE

Part I The framework : electrical systems and energy management

Part II Some energy management Problems in a centralized setting

Part III Which energy management problems in a decentralized setting ?

Conclusions, perspectives

The framework :

electrical systems and energy management

AN ELECTRICAL SYSTEM

A set of three components electrically connected to each other on a given territory

- electrical expression of the rotating speed of the alternator (common parameter to all the components of a system : 50-60 Hz)
- indicator of the gap between supply and demand :
- If demand is higher than supply, the frequency decreases.
- if supply is higher than demand, the frequency increases

local parameter of the electrical network: on a given point of the network, the voltage is a function of

- injection (production) : voltage increases
- withdrawal (consumption) : voltages decreases

1. THE LOAD : USES AND USERS OF ELECTRICITY

Electricity consumption depends on customers profiles (demography, economic activity, sectors), networks losses, sale contracts

Specific uses (only by electricity).

- freezer, dryer, dishwasher, microwave
- audiovisual TV, DVD player, computer
- Lighting

Competitive uses (substitutions

possible). The electricity demand depends on the market shares

- Mainly thermal : heating, domestic hot water, cooking
- Transportation : train vs coach / tram vs bus / electric vs gasoline vehicle

2. THE SUPPLY : THREE CHARACTERISTICS

Capacity Factor % of production hours expected per year on average over the life of the installation	Min	Max
Coal	0.5	0.85
IGCC	0.5	0.85
Combustion Turbine	0.88	0.92
Combined Cycle	0.8	0.87
Nuclear	0.70	0.9
Biomass	0.8	0.85
Geothermal (hydrothermal)	0.87	0.95
Wind (onshore)	0.15	0.44
Wind (offshore)	0.30	0.45
Solar Thermal	0.22	0.42
PV	0.10	0.26
Hydro (lake)	0.30	0.50
Hydro (fil de l'eau)	0.80	1.00

Total emissions of CO2

Nucl	10 gCO ₂ /kWh		
Renewables	Hydro	6 gCO ₂ /kWh	
	Wind	7 gCO ₂ /kWh	
	Photovoltaic	55 gCO ₂ /kWh	
Fossil fuel based	Coal	1038 gCO ₂ /kWh	
	Fuel	704 gCO ₂ /kWh	
	Gas	406 gCO ₂ /kWh	
	Cogeneration	400 gCO ₂ /kWh	

Electricity is very difficult to store

Storage : possible for small amounts of electricity and at very high costs. Three techniques :

- Hydro storage : pumping power station
- Economical incentive «storage» : shedding contracts
- Battery

2. THE SUPPLY : OPERATING A PLANT

Starts the plant

- start curves: vary depending on the previous stop time
- Minimal duration of operation
- Maximum number of start-up per day

Produces

- Levels of production : Pmin, P1, P2, ..., Pmax
- Minimum duration in a given level of production
- Maximum number of modulations per day
- Increases the production (Gradient of power variation upward)
- Decreases the production (Gradient of power variation downward)
- Stops the plant
 - stop curves: vary depending on the previous stop time
 - Minimal duration of stop

4. UNCERTAINTIES ON ELECTRICAL SYSTEMS

5. ENERGY MANAGEMENT : AT A GLANCE

Energy Management = optimal management of the three components of the electrical system objective: Efficiency & Cost effectiveness

Management = Software (physical management is excluded)

Some Stochastic Optimization Problems in Energy Management

5. ENERGY MANAGEMENT : OPTIMIZE DECISIONS

Find the best decisions in view to operate the system at short/mid/long termes and at minimal cost

5. ENERGY MANAGEMENT : OPTIMIZATION PROBLEM

Some stochastic optimization problems In energy management

Centralized setting

THE CENTRALIZED SETTING

Legislator (regulatory rules, constraints)

THE UNIT COMMITMENT PROBLEM

The historical short-term problem

The data of the problem

You have a set of power plants in order to satisfy a given demand on the next 24 hours.

Each power plant is characterized by :

- Costs : generation, starting, ...
- Operation constraints

The problem to solve

ST1- Forecast at D-1 the demand for the next 24h of day D

ST2 - Determine at D-1 the best generation planning for the next 24h of day D:

- minimal global cost
- satisfaction of demand
- feasible planning : respects all the operation constraints

ST3 - Adjust at each half an hour of D-Day the initial generation schedule estimated at D-1 with the specific constraint : changes in the planning must only concern a limited number of power plants (typically 30 over 250 power plants)

Forecast of the demand on the next 24h

THE UNIT COMMITMENT PROBLEM : RESOLUTION SCHEME

Detailled description of constraints on power plants – Deterministic setting

Big valley (La Durance) Medium valley (l'Arc) Small valley (la Romanche)

: 13000 constraints, 18000 variables (5000 binaries)

: 12000 constraints, 15000 variables (4000 binaries)

: 10000 constraintes, 13000 variables (3000 binaries)

HOW THE ELECTRICAL SYSTEM CAN FACE UNCERTAINTIES ?

The Primary Reserve (Frequency-Power)

- Automated system
- 3000 MW at european level (simultaneous loss of 2 biggest power plants 2x1500 MW)
- Reaction time : few seconds
- In France: from 600 to 800 MW
- 50 % available in 15 s, 100 % in 30 s

The Secondary Reserve (Frequency-Power)

- Automated system
- In France: de 500 à 1000 MW
- Released from 100 to 200 s
- End of mobilization < 15 mn</p>

The Tertiary Reserve

- Human decision
- Fast reserve (hydro) <13 mn : 1000 MW
- Additional reserve (hydro, turbine)
 <30 mn) : 500 MW

Thermal plants do not operate at maximal capacity !

The setpoint power of a thermal group is between its technical minimum (TM) and its maximum available power (MAP)

THE UCP : COMPUTING THE RESERVES

Probabilistic Approach

$$IP\left[\sum_{j=1}^{N} a_{ij}\left(\xi_{\theta}\right) x_{ij} \ge d_{i}\left(\xi_{\delta}\right)\right] \ge 1-p, \quad i=1,...,m \qquad \begin{array}{c} a_{ij} \quad \text{Availability coefficient} \\ d \quad \text{Demand} \end{array}$$

Gaussian setting :

$$\sum_{j=1}^{N} IE\left[a_{ij}x_{ij}\right] + \Phi^{-1}\left(1-p\right)\sqrt{\sum_{j=1}^{N}\sigma_{ij}^{2}x_{ij}^{2} + \sigma_{d_{i}}^{2}} \ge IE\left[d_{ij}\right]$$

Mean production $R_{1\%}$ Reserve for the risk 1%

Hoeffding setting (no hypothesis on laws) :

Lemma 1 : Any Individual Chance Constraint

 $\mathbb{P}[\langle A_i(\xi), x \rangle \ge b_i(\xi_{\delta})] \ge \alpha_i, \ \forall i \in I$

is approximated by the 2 (convex) conic quadratic inequalities :

$$\langle \mathbb{E}[A_i(\xi)], x) \rangle - \sqrt{(1/2) |\ln(1-\alpha_i)|} ||\Delta_i x + \delta_{bi}||_2 \geq \mathbb{E}(b_i)$$

 $\langle \mathbb{E}[A_i(\xi)], x) \rangle \geq \mathbb{E}(b_i)$

$$\delta_{b_i} = (b_i^{max} - b_i^{min})$$

$$\Delta_j = \left(egin{array}{cccc} a_{1j}^{max} - a_{1j}^{min} & ... & 0 \ dots & a_{ij}^{max} - a_{ij}^{min} & dots \ 0 & ... & a_{mj}^{max} - a_{mj}^{min} \end{array}
ight)$$

DEALING WITH UNCERTAINTY

Which methods for energy management ?

Investigations : probabilistic models

Applications : integration of renewables, statistics, portfolio, inverse problems, ...

To determine the production of a valley associated to a price signal

- Cost function : water values (pre-computed)
- Constraints (simplified situation):
 - Flow constraints
 - Production level bounds
 - Reservoir bounds (exploitation policy, security)
- Random Inflows: we assume that they follow some causal time series model with Gaussian innovations (correlated between reservoirs)

Probabilistic/Robust Approaches

F1 : Deterministic

F2 : Joint Chance Constraint $\min_{x \ge 0}$ $c^{\mathsf{T}}x$ s.t. $Ax \le b$ $p \le \mathbb{P}[a^r + A^r x \le \eta \le b^r + B^r x].$

F3 : Individual Chance Constraints

F4 : Robust

F5: Max-p
$$\max_{x \ge 0} \varphi(x) := \mathbb{P}[a^r + A^r x \le \eta \le b^r + A^r x]$$

s.t. $Ax \le b$

Numerical results

- The deterministic average-solution leads to almost sure violation of bounds
- JCCP gives a good trade-off between cost and robustness
- The Max-p solution is very robust, but very expensive

Which energy management problems

in a decentralized setting ?

THE DECENTRALIZED SETTING

Legislator (regulatory rules, constraints)

Some Stochastic Optimization Problems in Energy Management

RELATIONSHIPS BETWEEN WHOLESALE PRODUCER AND ACTORS

THE WHOLESALE PRODUCER MANAGES FLEXIBILITIES/BATTERY

Joint optimization of production portfolio and flexibilities on demand

Shedding on 24 h

Shift of EVC and HDW consumptions while respecting some constraints : 1) Respect of the maximal peak and 2) Energy conservation

2 slots : 09-17h et 18-06h

THE WHOLESALE PRODUCER MANAGES FLEXIBILITIES/BATTERY

Results (obtained with fictitious data unrelated with EDF)

Mix	Nuclear	Coal	Fuel	Gas	Hydro	Wind	PV
2015	49.1 %	21.4 %	12.7 %	4.2 %	8.4 %	3.2 %	1.1 %
2030	28.2 %	15.7 %	11.2 %	5.6 %	12.8 %	16 %	10.6 %

Flexibilities

Flexibility optimized	Saving on global cost (%)	
	2015	2030
Electrical Vehicles	0.26 %	0.24 %
Hot Domestic Water	0.62 %	2.59 %
Sheddings	0.04 %	0. %
The three	0.84 %	2.66 %

Simplified deterministic model

Battery management

We compare the 2 following situations :

- Situation 1 : The big producer manages the battery
- Situation 2 : The local player manages the battery

	Earning Situation 1	Earning Situation 2
For the big producer	1.45 %	0.72 %
For the Local Actor	0 %	4.09 %
For the both	1.41 %	0.82 %

It is generally more cost-effective to manage the battery by the big producer and give financial compensation to the local player... but

... the local player has personal interest in managing himself his battery.

SELF-CONSUMPTION

A new french 2016 law allows self-consumption

Problems

- Building A : each company who invested in the PV +battery aims at maximizing its profit
- Building B : each shop have to decide : buy electricity to the building A or not ?
- DSO : tarification for using the network
- Wholesale producer : estimating the residual demand induced by the self-consumption

TYPES OF PROBLEMS

Classical problems in a decentralized setting

→ stochastic optimization

Competition :

 \rightarrow game theory, equilibriums

Relationships with customers :

→ Tarification

- → Residual demands of prosumers
- \rightarrow stochastic bi-level optimization

CONCLUSIONS AND PERSPECTIVES

1) Even in "historical" situation of a centralized management, energy management optimization poses problems of extreme difficulty (large, uncertainty, continuous / discrete variables, big size)

2) The need to adapt to the new context of energy leads to new challenging optimization problems in interaction with economy and game theory. \rightarrow Significant strengthening of the research effort.

EDF has a broad research program with the support of many academic institutions. Cooperation on these problems is possible via the two associated labs :

Some Stochastic Optimization Problems in Energy Management

THANK YOU

APPENDIX

EDF R&D : Créer de la valeur et préparer l'avenir

General Probabilistic Model

Theoretical Extension to Closed Loop Setting :

Based on exploiting the link between Joint and Individual Chance Constraints

Denote $\mathcal{E}_i = \{\xi : \langle A_i(\xi), x \rangle \ge b_i \}$

$$\mathbb{P}[A(\xi)x \ge b] = \mathbb{P}[\mathcal{E}_i] \prod_{k=1, k \ne i}^m \mathbb{P}[\mathcal{E}_k | \mathcal{E}_i \cap \bigcap_{j=1}^{k-1} \mathcal{E}_j]$$

Start with time step i = 1, sequential decision using conditional probabilities.

Probabilistic Model : Individual Chance Constraint

$$\begin{split} \min_{x} c^{t}x \\ s.t. \quad \mathbb{P}[\langle A_{i}(\xi^{\theta}), x \rangle \geq b_{i}(\xi^{\delta})] \geq \alpha_{i}, \forall i \\ \quad \mathbb{P}[\langle H_{i}, x^{\eta} \rangle \leq h_{i}^{min}(\xi^{\eta})] \geq \beta_{i}, \forall i \\ \quad \mathbb{P}[\langle H_{i}, x^{\eta} \rangle \geq h_{i}^{max}(\xi^{\eta})] \geq \beta_{i}, \forall i \\ \langle P_{i}, x \rangle \leq h_{i}, i = 1, ..., m \\ x \geq 0 \end{split}$$
$$h_{i}^{min}(\xi^{\eta}) = v_{0} + \sum_{i0=1}^{i} f_{i0}(\xi^{\eta}) - v_{i}^{min} \\ h_{i}^{max}(\xi^{\eta}) = v_{0} + \sum_{i0=1}^{i} f_{i0}(\xi^{\eta}) - v_{i}^{max} \\ H_{ij} = 1 I_{j \leq i} \end{split}$$

Available Information

historical data

 $a_{ij}(\xi_{\alpha}) \in [a_{ij}(\xi_{\alpha})_{min}, a_{ij}(\xi_{\alpha})_{max}]$ $b_{i}(\xi_{\delta}) \in [b_{i}(\xi_{\delta})_{min}, b_{i}(\xi_{\delta})_{max}]$

Exploiting minimal information on random processes :

$$a_{ij}(\xi)_{min}, \ a_{ij}(\xi)_{mean}, \ a_{ij}(\xi)_{max}$$

Hypothesis : Independence of

 $a_{ij}(\xi_{\alpha}), \ b_i(\xi_{\delta})$

Convex Approximation

Proof : Based on Hoeffding's Theorem : for independent and bounded random variables $X_1, ..., X_m$, noting $S = \sum_{i=1}^m X_i$, the individual chance constraint is bounded as follows:

$$\forall \tau \ge 0, \ \mathbb{P}\left[S \ge \mathbb{E}[S] + \tau\right] \le \exp\left(\frac{-2\tau^2}{\sum_{i=1}^m (\overline{X}_{ij} - \underline{X}_{ij})^2}\right).$$

We define a matrix A' = (A - b) of dimension (m, n+1) and the vector $x' = (x x_{n+1})$ with $x_{n+1} = 1$. We pose $X_{ij} = a'_{ij}x'_j$.

$$\longrightarrow \mathbb{P}\left[\sum_{j=1}^{n} a_{ij} x_j \ge b_i\right] \iff \mathbb{P}\left[\sum_{j=1}^{n+1} a'_{ij} x'_j \ge 0\right]$$

Computing the solution : solve a SOCP

Resolution of Joint CCP Problem

The joint CCP can be shown to be convex.

Step 1 : Gradient can be computed by repeated use of Genz' code.

Corollary 1 Let ξ be a Gaussian Random variable of dimension n. Let x, A,B,a,b be vectors and matrices of appropriate dimension. Now consider the mapping $\varphi : x \mapsto \mathbb{P}[a + Ax \leq \xi \leq Bx + b]$. We have:

 $\nabla \varphi = \nabla_a F_{\xi}(a, b)^{\mathsf{T}} A + \nabla_b F_{\xi}(a, b)^{\mathsf{T}} B$ $\triangle \varphi = A^{\mathsf{T}} \triangle_{aa} F_{\xi}(a, b) A + A^{\mathsf{T}} \triangle_{ab} F_{\xi}(a, b) B + B^{\mathsf{T}} \triangle_{ba} F_{\xi}(a, b) A + B^{\mathsf{T}} \triangle_{bb} F_{\xi}(a, b) B.$

Step 2 : We can apply a cutting planes algorithm to solve the problem

The Hydro Sub-Problem : Solving the Joint CCP Problem

Step 1 : gradient of a joint chance constraint

Theorem 1 Assume that $\xi \sim \mathcal{N}(\mu, \Sigma)$ with some positive definite covariance matrix Σ . Then, for i = 1, ..., n,

$$\frac{\partial}{\partial b_i} F_{\xi}(a,b) = f_{\xi_i}(b_i) F_{\tilde{\xi}(b_i)}(\tilde{a},\tilde{b})$$
(2)

$$\frac{\partial}{\partial a_i} F_{\xi}(a,b) = -f_{\xi_i}(a_i) F_{\tilde{\xi}(a_i)}(\tilde{a},\tilde{b}).$$
(3)

Here, f_{ξ_i} is as in Lemma 1, $\tilde{\xi}(b_i)$, $\tilde{\xi}(a_i)$, are n - 1-dimensional random vectors distributed according to $\tilde{\xi}(b_i)$, $\tilde{\xi}(a_i) \sim \mathcal{N}(\hat{\mu}, \hat{\Sigma})$ such that $\hat{\mu}$ results from the vector $\mu + \sigma_{ii}^{-1}(b_i - \mu_i)\sigma_i$ (in case of b_i) or from the vector $\mu + \sigma_{ii}^{-1}(a_i - \mu_i)\sigma_i$ (in case of a_i) by deleting component i and $\hat{\Sigma}$ is defined as in Lemma 1. Moreover \tilde{a} and \tilde{b} result from a and b by deleting the respective component i.

Resolution of Joint CCP Problem

Step 2 : cutting planes algorithm

- 1. Let x_0 be the solution of the "average" problem, x_s a Slater point. Set $A_0 = A$, $b_0 = b$ and k = 0.
- 2. Find λ^* such that $x_k^* = (1 \lambda^*)x_k + \lambda^* x_s$ and $|\varphi(x_k^*) - p| < \varepsilon$.
- 3. Add constraint $-\nabla \varphi(x_k^*)^{\mathsf{T}} x \leq \varphi(x_k^*) \nabla \varphi(x_k^*)^{\mathsf{T}} x_k^* p$ to the matrix.
- 4. Solve $\min_{x} c^{\mathsf{T}}x$; $s.t.A_{k}x \leq b_{k}$ to find x_{k+1} .
- 5. If $\varphi(x_{k+1}) > p \delta$ then stop, else move k = k + 1 and go in step 2.

Probabilistic/Robust Approaches

F4 : Robust Conic

Uncertainty set : find some set \mathcal{E}_p such that $\mathbb{P}[\eta \in \mathcal{E}_p] \approx p$ such as

$$\mathcal{E}_{p} = \left\{ x : x^{\mathsf{T}} \Sigma^{-1} x \leq n + \Phi^{-1}(p) \sigma_{C} \right\}$$

with $\sigma_{C} = \sqrt{\sum_{i=1}^{n} \mathbb{E}\left(y_{i}^{4}\right) - n}$
 $y = L^{-1} \eta$
 $\Sigma = LL^{\mathsf{T}}.$

