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The model

We shall deal with robustness properties of risk constrained stochastic
programs

min
x∈X

F0(x ,P)

subject to
Fj(x ,P) ≤ 0, j = 1, . . . , J; (1)

X ⊂ IRn is a fixed nonempty convex set,

functions Fj(x ,P), j = 0, . . . , J may depend on P

P is the probability distribution of a random vector ω with range
Ω ⊂ IRm

Denote X (P) set of feasible solutions, X ∗(P) set of optimal solutions,
ϕ(P) optimal value of the objective function in (1).
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Stability results and robustness wrt. P

Complete knowledge of the probability distribution is rare in practice –
stability, robustness, output analysis wrt. P is needed .
• Quantitative stability cf. Theorem 5 of Römisch (2003) applied to (1)
provides upper semicontinuity of the set of optimal solutions and a local
Lipschitz property of the optimal value function for stochastic programs
(1) with smooth, convex objective and one expectation type smooth
convex constraint F (x ,P) ≤ 0 if at the optimal solution x∗(P) of the
unperturbed problem

min
x∈X

F0(x ,P) s.t. F (x ,P) := EP f (x , ω) ≤ 0

the constraint is not active, or if ∇F (x∗(P),P) 6= 0.
To get metric regularity for multiple expectation type smooth convex
constraints Fj(x ,P) ≤ 0, j = 1, . . . , J, general constraint qualification
should be used or constraints reformulated as
F (x ,P) := maxj Fj(x ,P) ≤ 0 – again convex function.
• Another possibility – incorporate the incomplete knowledge of P into
the model – ambiguity (Pflug, Wozabal, Pichler...)
• Contamination bounds for the optimal value function
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Robustness analysis via Contamination

was firstly derived by Dupacova (1990) for (2), i.e. for X (P) independent
of P and for expectation type objective F0(x ,P).
Assume that SP

min
x∈X

EP f (x , ω) (2)

was solved for P, denote ϕ(P) optimal value. Changes in probability
distribution P are modeled using contaminated distributions Pt ,

Pt := (1− t)P + tQ, t ∈ [0, 1]

with Q another fixed probability distribution.
Via contamination, robustness analysis wrt. changes in P gets reduced to
much simpler analysis wrt. scalar parameter t (see e.g. resist).
Objective function in (2) is linear in P =⇒ F0(x ,Pt) is linear wrt. t =⇒
optimal value function

ϕ(t) := min
x∈X

F0(x ,Pt)

is concave on [0, 1] =⇒ continuity and existence of directional derivatives
in (0, 1). Continuity at t = 0 is property related with stability for SP (2).
In general, one needs set of optimal solutions X ∗(P) 6= ∅, bounded.
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Toy example

Consider a simple optimization problem:

min
x∈X=[0,1]

F0(x ,P) = EP(ω − x)2

where P is given as follows:

P(ω = 0) = 0.5, P(ω = 2) = 0.5

and
Q = −2 wp1.

Then the contaminated distribution P(t) is:

P(ω = −2) = t, P(ω = 0) =
1− t

2
, P(ω = 2) =

1− t

2

Contaminated problem:

min
x∈X=[0,1]

F0(x ,P(t)) = EP(t)(ω − x)2

where

EP(t)(ω − x)2 = t(−2− x)2 +
1− t

2
(0− x)2 +

1− t

2
(2− x)2
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Toy example

Contaminated problem:

min
x∈X=[0,1]

F0(x ,P(t)) = EP(t)(ω − x)2

where

EP(t)(ω − x)2 = t(−2− x)2 +
1− t

2
(0− x)2 +

1− t

2
(2− x)2

The optimal solution of the contaminated problem:

x(t) = 1− 3t for t ∈ [0,
1
3

]

= 0 for t ∈ [
1
3
, 1]

The optimal value function:

ϕ(t) = −9t2 + 8t + 1 for t ∈ [0,
1
3

]

= 2 + 2t for t ∈ [
1
3
, 1]

is increasing and concave function of t.
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Toy example
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Figure: Optimal objective value and its bounds
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Contamination Bounds

Concave ϕ(t) =⇒ contamination bounds

ϕ(0) + tϕ′(0+) ≥ ϕ(t) ≥ (1− t)ϕ(0) + tϕ(1), t ∈ [0, 1]. (3)

Using arbitrary optimal solution x(P) of (2) → upper bound

ϕ′(0+) ≤ F (x(P),Q)− ϕ(0).

Contamination bounds (3) are global, valid for all t ∈ [0, 1]. They
quantify the change in optimal value due to considered perturbations of
(2); cf. application to stress test of CVaR. The approach can be
generalized to objective functions F (x ,P) convex in x and concave in P.

Stress testing and robustness analysis via contamination with respect to
changes in probability distribution P is straightforward for expected
disutility models (objective function is linear in P). Also stress testing for
convex risk or deviation measures via contamination can be developed:
When the risk or deviation measures are concave with respect to
probability distribution P they are concave wrt. parameter t of
contaminated probability distributions Pt .
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Contamination bounds – constraints dependent on P

New problems – ϕ(t) is no more concave in t.

Use Pt := (1− t)P + tQ, t ∈ (0, 1) in SP (1) at the place of P. Set of
feasible solutions of (1) for contaminated probability distribution Pt

X (Pt) = X ∩ {x |Fj(x ,Pt) ≤ 0, j = 1, . . . , J}. (4)

Denote X (t), ϕ(t), X ∗(t) the set of feasible solutions, the optimal value
ϕ(Pt) and the set of optimal solutions X ∗(Pt) of contaminated problem

minimize F0(x ,Pt) on the set X (Pt). (5)

The task is to construct computable lower and upper bounds for ϕ(t) &
exploit them for robustness analysis in risk-shaping with CVaR or for a
stochastic dominance test with respect to inclusion of additional
scenarios. Thanks to the assumed structure of perturbations
• lower bound can be derived for Fj(x ,P), j = 0, . . . , J, linear or concave
with respect to P without any smoothness or convexity assumptions with
respect to x ,
• convexity of SP (1) is essential for directional differentiability of the
optimal value function,
• further assumptions are needed for derivation of the upper bound.
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Lower bound

1. One constraint dependent on P and objective F0 independent of P:

min
x∈X

F0(x) subject to F (x ,P) ≤ 0. (6)

For contaminated probability distribution Pt we get

min
x∈X

F0(x) subject to F (x , t) := F (x ,Pt) ≤ 0 (7)

– nonlinear parametric program with scalar parameter t ∈ [0, 1], set of
feasible solutions X (t) := {x ∈ X |F (x , t) ≤ 0} depends on t.
In general, the optimal value function is not concave.

Theorem

Let F (x , •) be concave function of t ∈ [0, 1]. Then the optimal value
function of (7)

ϕ(t) := min
x∈X

F0(x) subject to F (x , t) ≤ 0

is quasiconcave in t ∈ [0, 1] with the lower bound

ϕ(t) ≥ min{ϕ(1), ϕ(0)}. (8)
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Lower bound – cont.

Proof is based on inclusion

X ((1−λ)t1+λt2) ⊂ {x ∈ X | (1−λ)F (x , t1)+λF (x , t2) ≤ 0} ⊂ X (t1)∪X (t2)
(9)

valid for arbitrary t1, t2 ∈ [0, 1] and 0 ≤ λ ≤ 1.

2. When also objective function depends on probability distribution, i.e.
on contamination parameter t, the problem is

min
x∈X

F0(x , t) := F0(x ,Pt) subject to F (x , t) ≤ 0. (10)

For F0(x ,P) linear or concave in P, lower bound can be obtained by
application of the above quasiconcavity result (8) separately to F0(x ,P)
and F0(x ,Q):

ϕ(t) = min
x∈X (t)

F0(x , (1− t)P + tQ) ≥ min
x∈X (t)

[(1− t)F0(x ,P) + tF0(x ,Q)] ≥

(1− t) min{ϕ(0), min
X (Q)

F0(x ,P)}+ t min{ϕ(1), min
X (P)

F0(x ,Q)}. (11)

The bound is more complicated but still computable.
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Lower bound -cont.

3. For multiple constraints and contaminated probability distribution it
would be necessary to prove first the inclusion X (t) ⊂ X (0) ∪ X (1) and
then the lower bound (8) for the optimal value
ϕ(t) = minx∈X (t) F0(x ,Pt) can be obtained as in the case of one
constraint.

Denote Xj(t) = {x |Fj(x ,Pt) ≤ 0}. Then according to (9),
Xj(t) ⊂ Xj(0) ∪ Xj(1), hence

X (t) ⊂ X ∩
⋂
j

[Xj(0) ∪ Xj(1)] := X0.

To evaluate the corresponding lower bound minx∈X0 F0(x ,Pt) would
mean to solve a facial disjunctive program.

Notice that no convexity assumptions with respect to x were needed.
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Directional derivative

Assume now that problem (1) is convex with respect to x . Then
directional derivative of optimal value function ϕ(0) can be obtained acc.
to Gol’shtein (1970), Theorem 17 applied to Lagrange function

L(x , u, t) = F0(x , t) +
∑

j

ujFj(x , t)

when the set of optimal solutions X ∗(P) = X ∗(0) and the set of
Lagrange multipliers U∗(P) = U∗(0) are nonempty and compact and all
functions Fj are linear in P – linearity in the contamination parameter t:

ϕ′(0+) = min
x∈X∗(0)

max
u∈U∗(0)

∂

∂t
L(x , u, 0) = min

x∈X∗(0)
max

u∈U∗(0)
(L(x , u,Q)−L(x , u,P)).

(12)
Formula (12) simplifies substantially when U∗(0) is a singleton.
When the constraints do not depend on P we get

ϕ′(0+) = min
x∈X∗(0)

∂

∂t
F0(x , 0+) = min

x∈X∗(0)
F0(x ,Q)− ϕ(0)). (13)

These formulas can be exploited to construct an upper bound.
More general cases are treated in e.g. Bonnans-Shapiro.
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Upper bound

To derive an upper bound for optimal value of the contaminated problem
with probability dependent constraints we shall assume that all functions
Fj(x , t), j = 0, . . . , J, are linear in t on interval [0, 1]. Denote

F (x ,Pt) = F (x , t) := max
j

Fj(x , t).

For convex Fj(•,P)∀j the max function F (•,P) is convex and

X (t) = X ∩ {x : F (x , t) ≤ 0}
with one linearly perturbed convex constraint.
1. Assume first that for optimal solution x∗(0) of (1), F (x∗(0),P) = 0
and F (x∗(0),Q) ≤ 0. Then at least one of constraints is active at
optimal solution and x∗(0) ∈ X (t)∀t :

F (x∗(0), t) = max
j

[(1− t)Fj(x∗(0),P) + tFj(x∗(0),Q)]

≤ (1− t)F (x∗(0),P) + tF (x∗(0),Q) ≤ 0.

 trivial global upper bound F0(x∗(0), t) ≥ ϕ(t); if F0(x ,P) is linear in
P

ϕ(t) ≤ F0(x∗(0), t) = (1− t)ϕ(0) + tF0(x∗(0),Q)∀t ∈ [0, 1]; (14)
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Local upper bound via NLP stability results

In convex case – analyze optimal value function by 1st order methods:
If x∗(0) is nondegenerate point, X in (4) convex polyhedral, the
contaminated problem reduces locally into problem with parameter
independent set of feasible solutions e.g. [Robinson]→ for t small enough
optimal value function ϕ(t) is concave and its upper bound equals

ϕ(t) ≤ ϕ(0) + tϕ′(0+)∀t ∈ [0, t0]. (15)

Nondegenerate point: for X = IRn means independence of gradients of
active constraints at x∗(0) or nondegeneracy for LP.

If also strict complementarity holds true, one faces locally an
unconstrained minimization problem. More detailed insight can be
obtained by a second order analysis; e.g. if ∃ continuous trajectory
[x∗(t), u∗(t)] of optimal solutions and Lagrange multipliers of (5)
emanating from the unique optimal solution x∗(0) and unique Lagrange
multipliers u∗(0) of (1) we get (15) with

ϕ′(0+) = (L(x∗(0), u∗(0),Q)− ϕ(P)). (16)
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Illustrative example – mean-CVaR models

Consider S = 53 equiprobable scenarios of weakly returns % of N = 9
assets (9 European stock market indexes: AEX, ATX, BCII, BFX, FCHI,
GDAXI, PSI20, IBEX, ISEQ) in period 5.10.2007 - 3.10.2008. The
scenarios can be collected in the matrix

R =


r 1

r 2

...
rS


where r s = (r s

1 , r
s
2 , . . . , r

s
N) is the s-th scenario. We will use x for the

vector of portfolio weights and the portfolio possibilities are given by

X = {x ∈ IRN |1′x = 1, xn ≥ 0, n = 1, 2, ...,N}

that is, the short sales are not allowed. The historical data comes from
pre-crisis period. The data are contaminated by a scenario rS+1 from
10.10.2008 when all indexes strongly fell down. The additional scenario
can be understood as a stress scenario or the worst-case scenario.
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Illustrative example – mean-CVaR models

Index Country Mean Max Min A.S.
AEX Netherlands -0.0098 0.10508 -0.12649 -0.24551
ATX Austria -0.01032 0.067022 -0.06982 -0.28503
BCII Italy -0.01051 0.047976 -0.06044 -0.19581
BFX Belgium -0.00997 0.051099 -0.07386 -0.2253
FCHI France -0.00795 0.050254 -0.06292 -0.21704
GDAXI Germany -0.00742 0.040619 -0.07568 -0.21151
PSI20 Portugal -0.00998 0.049866 -0.07404 -0.18116
IBEX Spain -0.00625 0.053098 -0.06992 -0.2074
ISEQ Ireland -0.01378 0.113174 -0.14689 -0.26767

Table: Descriptive statistics of 9 European stock indexes and the additional
scenario

We will apply the contamination bounds to mean-risk models with CVaR
as a measure of risk. Two formulations are considered: In the first one,
we are searching for a portfolio with minimal CVaR and at least the
prescribed expected return. Secondly, we minimize the expected loss of
the portfolio under the condition that CVaR is below a given level.
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Illustrative example – CVaR minimizing

Mean-CVaR model with CVaR minimization is a special case of the
general formulation (1) when F0(x ,P) = CVaR(−%′x) and
F1(x ,P) = EP(−%′x)− µ(P); µ(P) is the maximal allowable expected
loss. We choose

µ(P) = −EP%′(
1

9
,

1

9
, ...,

1

9
)′ =

1

53

53∑
s=1

−rs(
1

9
,

1

9
, ...,

1

9
)′.

It means that the minimal required expected return is equal to the
average return of the equally diversified portfolio. The significance level
α = 0.95 and X is a fixed convex polyhedral set representing constraints
that do not depend on P.

We construct:

Lower bound (globally for t ∈ [0, 1]):

(1− t) min{ϕ(0), min
X (Q)

F0(x ,P)}+ t min{ϕ(1), min
X (P)

F0(x ,Q)}
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Illustrative example – CVaR minimizing

Trivial upper bound (globally for t ∈ [0, 1]): Since x∗(0) is a feasible
solution of fully contaminated problem, we may use the trivial global
bound:

F0(x∗(0),Pt) = CVaRα(x∗(0), (1− t)P + tQ))

The disadvantage of this trivial bound is the fact, that it would
require evaluation of the CVaR for each t. Linearity with respect to
t does not hold true, but using concavity of CVaR with respect to t,
we may derive an upper estimate for F0(x∗(0), t):

Upper estimate of upper bound (globally for t = [0, 1]):

CVaRα(x∗(0), (1− t)P + tQ)

≤ (1− t)CVaRα(x∗(0),P) + tΦα(x∗(0), v∗(x ,P),Q),

see [D-P].
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Illustrative example – CVaR minimizing

The lower bound is linear, the upper bound is piecewise linear in t and for
small values of t it coincides with the estimated upper bound.
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Figure: Comparison of optimal values (CVaR(t)) of mean-CVaR models with
lower bound (LB), upper bound (UB) and the estimated upper bound (EUB)
for the contaminated data.
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Illustrative example – Expected loss minimizing

As the second example, consider the mean-CVaR model minimizing the
expected loss subject to a constraint on CVaR. This corresponds to (1)
with F0(x ,P) = EP(−%′x) and F1(x ,P) = CVaR(−%′x)− c where
c = 0.19 is the maximal accepted level of CVaR. For simplicity, this level
does not depend on the probability distribution. Similarly to the previous
example, we compute the optimal value ϕ(t) and its lower and upper
bound.

Lower bound (globally for t ∈ [0, 1]):

(1− t) min{ϕ(0), min
X (Q)

F0(x ,P)}+ t min{ϕ(1), min
X (P)

F0(x ,Q)}

Upper bound (locally for t ∈ [0, t0]): In this case x∗(0) /∈ X (Q),
hence the trivial upper bound can not be used. Therefore we apply
the more general upper bound:

ϕ(t) ≤ ϕ(0) + tϕ′(0+)∀t ∈ [0, t0].

that leads to:

ϕ(t) ≤ (1− t)ϕ(0) + tF0(x∗(0),Q)∀t ∈ [0, t0].
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Illustrative example – Expected loss minimizing
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Figure: Comparison of minimal mean loss values with its lower bound (LB) and
upper bound (UB) for the contaminated data.

The upper bound coincides with ϕ(t) for t ≤ 0.043. It illustrates the fact
that the local upper bound is meaningful if the probability of the
additional scenario is not too large, i.e. no more than the double of
probabilities of the original scenarios for our example.
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Markowitz model example – Expected loss minimizing

Consider the mean-var (Markowitz) model minimizing the expected loss
subject to a constraint on var. This corresponds to (1) with
F0(x ,P) = EP(−%′x) and F1(x ,P) = x>Σx − v where v = 0.001 is the
maximal accepted level of var. We compute the optimal value ϕ(t) and
its lower and upper bound.

original distribution - 40 monthly return scenarios before the crises

alternative distribution - 40 monthly return scenarios during the
crises

Lower bound (globally for t ∈ [0, 1]):

(1− t) min{ϕ(0), min
X (Q)

F0(x ,P)}+ t min{ϕ(1), min
X (P)

F0(x ,Q)}

Upper bound (locally for t ∈ [0, t0]): We apply the local upper
bound:

ϕ(t) ≤ ϕ(0) + tϕ′(0+)∀t ∈ [0, t0].

that leads to:

ϕ(t) ≤ (1− t)ϕ(0) + tF0(x∗(0),Q)∀t ∈ [0, t0].
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Illustrative example – Markowitz model
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Figure: Comparison of minimal mean loss values with its lower bound (LB) and
upper bound (UB) for the contaminated data.

The upper bound holds true all t ∈ [0, 1].
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Illustrative example – Mean-VaR0.97model
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Figure: Comparison of minimal mean loss values with its lower bound (LB)

The upper bound holds true for t ≤ 0.028.
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Illustrative example – Mean-VaR0.95model
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Figure: Comparison of minimal mean loss values with its lower bound (LB)
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Conclusions

We considered SP problems with constraints depending on
probability distributions.

We derived lower bound for optimal value function (under weak
assumptions)

We proposed several upper bounds (more strong assumptions were
needed)

We applied it to mean-risk portfolio selection models
(mean-variance, mean-CVaR, mean-VaR)

It can be applied to more complicated problems, for example,
problems with stochastic dominance constraints (FSD, SSD portfolio
efficiency tests)

One needs to be careful with the assumptions, especially when
deriving the upper bounds...
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