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Abstract

Electricity markets are moving through integration around the world. However,

our understanding of those markets is still limited. I characterize the Bertrand

equilibrium in a discriminatory-price electricity auction when suppliers submit a

single o�er price for their entire production capacity and they face transmission

constraints and linear tari�s for the injection of electricity into the grid. With point

of connection tari�s, which are used in the majority of the European countries,

suppliers pay a tari� for the total electricity injected into the grid. In contrast, with

transmission tari�s, suppliers only pay a tari� for the electricity sold in the other

market. Transmission tari�s outperform point of connection tari�s by maximizing

consumers welfare and transmission e�ciency. The consequences of an increase in

transmission capacity di�er considerably depending on the tari�. If the transmission

tari�s are zero, an increase in transmission capacity is pro-competitive. In contrast,

if the transmission tari�s are positive, an increase in transmission capacity is pro-

competitive only when the transmission capacity is low.
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1 Introduction

The integration of electricity markets around the world has increased the importance of
congestion between countries/states and has initiated a discussion of how to harmonize
network tari�s. In general, transmissions from regions with low prices to regions with
high prices bene�t social welfare. In deregulated electricity markets, more transmission
would, in addition, normally improve the market competitiveness. However, it is very
costly to expand the transmission capacity. In order to focus the investments to points
in the grid where the gains in terms of enhanced market performance will be the largest,
one needs a better understanding of how transmission capacity in�uences the competition
between spatially distributed producers. The contribution of this paper is to characterize
the outcome of a discriminatory-price electricity auction, and how it depends on trans-
mission constraints and the tari�s to access the grid.

The analysis employs a simple duopoly model similar to that in Fabra et al. (2006).
In the basic set up, the two suppliers have symmetric production capacities and nil pro-
duction costs that are located in two di�erent markets ("North" and "South") connected
through a transmission line with a limited transmission capacity.1 When the transmission
line is capacity constrained, the equilibrium prices di�er across markets. Those di�erences
in prices generate a congestion rent which, as in Borenstein et al. (2000) and in the ma-
jority of the European countries (ENTSO-E, 2015; European Commission, 2015, Nord
Pool, 2007; Price Coupling Regions 2016a; Price Coupling Regions 2016b), I assume to
be captured by the transmission system operator. When the competition in the spot
electricity market is perfect, the introduction of �nancial rights to capture the congestion
rents can re-stablish perfect competition by avoiding the externalities caused by loop �ows
in the transmission network (Hogan, 1992; Chao et al., 1996).2. However, in the presence
of lumpy investments it is necessary to introduce tari�s to �nance the investments in
transmission capacity.3

To �nance the electricity grid, suppliers pay a monetary charge (tari�) to the network
owner when using the grid. The charge is linear and it depends on how much power the
suppliers inject into the grid (point of connection tari� ) or transmit through the grid
(transmission tari� ). The majority of European countries (ENTSO-E, 2013; ENTSO-
E, 2016) have point of connection tari�s. With the point of connection tari�s scheme,
suppliers pay a linear tari� for the electricity injected into the grid, i.e., the electricity
sold in their own market and the electricity sold in the other market. In contrast, for
transmission tari�s, electricity suppliers would only pay a linear tari� for the electricity
sold to the other market.

Each supplier faces a perfectly inelastic demand in each market that is known with
certainty when suppliers submit their o�er prices. Each supplier submits a single price

1 The term "transmission capacity constraint" is used throughout this article in the electrical engi-
neering sense: a transmission line is constrained when the �ow of power is equal to the capacity of the
line, as determined by engineering standards.

2When the competition in the spot electricity market is imperfect the allocation of transmission rights
plays a crucial role determining the equilibrium (Joskow and Tirole, 2000; Gilbert et al., 2004)

3For a complete study of the expansion of electricity grid and the tari� system in Europe review
Energinet (2015), ENTSO-E (2014), ENTSO-E (2016), European Commission (2013), Nord Pool (2010),
Svenska Kräfnat (2015).
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o�er for its entire capacity4 in a discriminatory price auction such as those used in the
UK wholesale electricity market. The assumption of price-inelastic demand can be justi-
�ed by the fact that the vast majority of consumers purchase electricity under regulated
tari�s that are independent of the prices set in the wholesale market, at least in the short
run. The assumption that suppliers have perfect information concerning market demand
is reasonable when applied to markets where o�ers are "short lived", such as in Spain,
where there are 24 hourly day-ahead markets each day.

When transmission tari�s are zero, the supplier located in the high-demand market
faces a high residual demand and it submits higher bids than the supplier located in the
low-demand market (size e�ect). When the transmission tari�s are positive and high
enough, the supplier located in the high-demand market faces lower costs and it submits
lower bids than the supplier located in the low-demand market to extract the e�ciency
rents (cost e�ect); given that the majority of consumers are located in that market, con-
sumers aggregate welfare could be larger than when transmission tari�s are zero.5 In
contrast, when suppliers are charged by the power that they inject into the grid (point
of connection tari�s), given that they pay the same tari� independent of the market in
which they are selling electricity, the strategic component of being located in the high-
demand market disappears and the equilibrium is only determined by the size e�ect and
the supplier located in the high-demand market submits higher bids than the supplier
located in the low-demand market. Moreover, due to demand being inelastic, the tari�
is passed through to consumers that are worse o� than in the zero transmission tari�s
scenario.6 Therefore, in terms of consumers welfare maximization, positive transmission
tari�s outperforms zero transmission tari�s that outperforms point of connection tari�s.

With positive transmission tari�s, an increase in transmission capacity is pro-competitive
only when the transmission capacity is low. In that case, an increase in transmission
capacity substantially increases the competition between suppliers that move from an iso-
lated market scenario to a connected market scenario; simultaneously, and due to the low
capacity of the line, the suppliers sell a small part of their production capacity into the
other market and an increase in transmission capacity slightly increases suppliers' costs.
Hence, an increase in the transmission capacity is pro-competitive. If the transmission
capacity is high, an increase in transmission capacity slightly increases the competition
between suppliers, but substantially increases their costs since they sell a large part of
their production capacity into the other market; therefore, the suppliers raise their bids to
cover the increase in costs, and an increase in transmission capacity is anti-competitive. If
the transmission tari�s are zero, or with point of connection tari�s, an increase in trans-
mission always increase competition between suppliers, and it doesn't modify their costs;
therefore, and increase in transmission capacity is always pro-competitive.

4Fabra et al. (2006) show that the equilibrium outcome allocation does not change when �rms submit
single price o�ers for their entire capacity and when they submit a set of price-quantity o�ers.

5If the transmission tari�s are very high, the supplier located in the high-demand market submits
lower bids than the supplier located in the low-demand market. However, due to the high tari�s, the
suppliers have to submit high bids to cover the costs, the equilibrium price in both markets is high and
consumers' aggregate welfare decreases. Therefore, positive transmission tari�s only increase consumers'
aggregate welfare when the tari� is high, but not when it is very high.

6This is in line with the pass-through literature (Marion and Muehlegger, 2011; Fabra and Reguant,
2014).
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My model contrasts with the previous models of price competition with production
capacity constraints (Kreps and Scheinkman, 1983; Osborne and Pitchik, 1986; Deneckere
and Kovenock, 1996; Fabra et al., 2006) where the results are exclusively driven by pro-
duction capacity constraints. In the presence of transmission constraints, there are two
relevant constraints that explain the results. If the production capacity is binding, the
equilibrium is symmetric even when the realization of demands across markets is asym-
metric. If the transmission capacity is binding, the equilibrium is asymmetric even when
the suppliers are symmetric in production capacity and production costs. Therefore, this
model provides a complete and novel analysis of the role played by the structural vari-
ables of the model (demand realization, production capacity and transmission capacity)
determining equilibrium outcome allocations.7

In the presence of transmission constraints and positive transmission tari�s the litera-
ture of truncated Pareto distributions available nowadays cannot be applied to work out
the equilibrium outcome allocations (Zaninetti et al., 2008; Aban, 2007). Therefore, this
paper also expand the literature of truncated Pareto distributions.

This paper also contributes to the literature that analyzes electricity markets. Boren-
stein et al. (2000) characterize the equilibrium in an electricity network where suppliers
compete in quantities as in a Cournot game. Holmberg and Philpott (2012) solve for
symmetric supply function equilibria in electricity networks when demand is uncertain
ex-ante, but they do not consider any transmission costs. Escobar and Jofré (2010) an-
alyze the e�ect of transmission losses and transmission costs on equilibrium outcome
allocations, but they neglect transmission constraints. Downward et al. (2014) found
that the introduction of a tax on suppliers' pro�t sometimes increases consumer welfare.
However, in their analysis, all suppliers produce in the same market and therefore, the
results are not driven by any type of size e�ect similar to the one described in this paper.
Hence, this paper is the �rst to characterize equilibrium outcomes in networks with both
transmission constraints and transmission costs. The paper also shows that the interac-
tion between transmission costs and transmission constraints is non-straightforward.

Hogan (1992) introduces the concept of a contract network that maintains short-run
e�ciency through an optimal spot-price calculation of transmission prices and provides
the correct long-term signals to invest in capacity. Chao and Peck (1996) propose a mar-
ket mechanism for electricity power transmission that consists of tradable transmission
capacity rights and a trading rule that also induces short-run e�ciency and long-term
correct signals. Joskow and Tirole (2000) work out the equilibrium in an electricity mar-
ket when �nancial and physical rights are introduced and they �nd that in a perfect
competition scenario, as in Chao and Peck (1996), the �nancial and physical transmission
rights generate the same equilibrium outcome allocations; in contrast, in an imperfect
competition scenario, the �nancial transmission rights outperform the physical transmis-

7Fabra et al. (2006) show that in electricity auctions, the equilibrium depends on the type of auction
implemented. In particular, they �nd that equilibrium outcome allocations di�er substantially when
uniform and discriminatory price auction are implemented. In Blazquez (2015), I work out the equilibrium
in a zonal price electricity market when uniform and discriminatory price auctions are implemented. I �nd
that when the demand is low, the discriminatory price auction outperforms the uniform price auction by
maximizing consumers welfare and transmission e�ciency. When the demand is high, the discriminatory
price auction outperforms the uniform price auction by maximizing consumers welfare, but no rank
between auctions can be established in terms of transmission e�ciency.
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sion rights by generating lower equilibrium prices and increasing e�ciency in production.
This paper depart from that literature in two directions. First, as in Joskow and Tirole
(2000), I assume imperfect competition in the spot electricity market, but in contrast with
their approach which assume that production capacity is installed in only one market, I
assume that production capacity is installed in both markets. Second, I assume lumpy
costs which requires the introduction of tari�s to �nance the transmission investments.

The results of this paper could also be of relevance for the trade literature. For in-
stance, Krugman (1980), Flam and Helpman (1987), Brezis et al. (1993) and Motta et
al. (1997) explain di�erences in prices and pro�ts in international trade models based on
product di�erentiation or product cost advantages. By introducing transport costs and
transport constraints, this paper �nds related results, even if the product is homogeneous
and suppliers have identical production technologies.

The article proceeds as follows. Section 2 describes the set up of model and the tim-
ing of the game. Section 3 characterizes the equilibrium in the presence of transmission
capacity constraints and zero transmission tari�s. Section 4 characterizes the equilibrium
when transmission tari�s are positive. Section 5 compares equilibrium outcomes and con-
sumer welfare when transmission tari�s and point of connection tari�s are implemented.
Section 6 concludes the paper. The analysis of point of connection tari�s and all proofs
are found in the Appendix.

2 The model

Set up of the model. There exist two electricity markets, market North and market
South, that are connected by a transmission line with capacity T . When suppliers trans-
mit electricity through the grid from one market to the other, they face a symmetric8 and
linear9 transmission tari� t.

There exist two duopolists with capacities kn and ks, where subscript n means that
the supplier is located in market North and subscript s means that the supplier is located
in market South. The suppliers' marginal costs of production are cn and cs for produc-
tion levels less than the capacity, while production above the capacity is impossible (i.e.,
in�nitely costly). Suppliers are symmetric in capacity kn = ks = k > 0 and symmetric
in production costs cn = cs = c = 0.10 The level of demand in any period, θn in market

8In order to reduce the transmission losses, transmission tari�s can include a locational and a seasonal
component similar to those added to point of connection tari�s. The locational component of the tari�
penalizes the injection of electricity into points of the grid that generate high �ows of electricity. The
seasonal/period-of-day component of the tari� penalizes the transmission of electricity when the losses are
larger. Due to the locational and seasonal elements, suppliers face asymmetric linear tari�s. I characterize
the equilibrium for symmetric transmission tari�s; however, the model can easily be modi�ed to introduce
this type of asymmetries. For a complete analysis of losses in Europe and a complete description of the
algorithm implemented to work out power losses, consult the document "ENTSO-E ITC Transit Losses
Data Report 2013". For a comparison of European tari� systems, check out the document "ENTSO-E
Overview of transmission tari�s in Europe: Synthesis 2016."

9The transmission tari�s are linear in electricity markets. However, the model can be modi�ed to as-
sume convex costs. When the transmission costs are convex, the existence of the equilibrium is guaranteed
by Dixon (1984).

10In this paper, I analyze the e�ect that transmission capacity constraints and tari�s to access the
grid have on equilibrium outcome allocations. In order to focus on that e�ect, I assume that suppliers
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North and θs in market South, is independent across markets11 and independent of market
price, i.e., perfectly inelastic. Moreover, θi ∈ [θi, θi] ⊆ [0, k + T ], i = n, s.

The capacity of the transmission line can be lower than the installed capacity in each
market T ≤ k, i.e., the transmission line could be congested for some realization of de-
mands (θs, θn). When T > k, the transmission line is not congested and the equilibrium
is as in Fabra et al. (2006).

Timing of the game. Having observed the realization of demands θ ≡ (θs, θn), each
supplier simultaneously and independently submits a bid specifying the minimum price
at which it is willing to supply up to its capacity, bi ≤ P , i = n, s, where P denotes
the "market reserve price", possibly determined by regulation. P can be interpreted as
the price at which all consumers are indi�erent between consuming and not consuming,
or a price cap imposed by the regulatory authorities (von der Fehr and Harbord, 1993).
Moreover, as I show in the next section, the equilibrium in this model could be in mixed
strategies. In that case, when the demand is inelastic, the introduction of a price cap
guarantees the existence of the upper bound of the support in a mixed strategies equilib-
rium (Baye et al., 1992; Fabra et al., 2006).

Let b ≡ (bs, bn) denote a bid pro�le. On basis of this pro�le, the auctioneer calls sup-
pliers into operation. If suppliers submit di�erent bids, the capacity of the lower-bidding
supplier is dispatched �rst. If the capacity of the lower-bidding supplier is not su�cient to
satisfy total demand, the higher-bidding supplier's capacity, supplier s, is then dispatched
to serve residual demand. If the two suppliers submit equal bids, then supplier i is ranked

�rst with probability ρi, where ρn + ρs = 1, ρi = 1 if θi > θj, and ρi =
1

2
if θi = θj,

i = n, s, i 6= j.12

The output allocated to supplier i, i = n, s, denoted by qi(θ, b), is given by

qi(b; θ, T ) =


min {θi + θj, θi + T, ki} if bi < bj

ρimin {θi + θj, θi + T, ki}+
[1− ρi] max {0, θi − T, θi + θj − kj} if bi = bj

max {0, θi − T, θi + θj − kj} if bi > bj

(1)

are symmetric in capacity and production costs. The generalization of the equilibrium to introduce
asymmetries in capacity and costs complicates the theoretical analysis and the interpretation of the
results and it is outside the scope of this paper.

11In the majority of electricity markets, demand in one market is higher than demand in the other
market. Moreover, there exists the possibility of some type of correlation between demands across mar-
kets. In this paper, I assume uniform distribution and independence of demand. However, the model
can be modi�ed to introduce di�erent distributions of demand and a correlation between demands across
markets.

12The implemented tie breaking rule is such that if the bids of both suppliers are equal and demand in
market i is larger than demand in market j, the auctioneer �rst dispatches the supplier located in market
i. This tie breaking rule minimizes the transmission costs and given that in this model, those costs are
the unique ones, it also minimizes the total costs. This tie breaking rule is in line with those used in the
literature where the tie breaking rule minimizes the total costs. Moreover, as I show in the next section,
the equilibrium in this model could be in mixed strategies. In that case, the tie breaking rule ensures
the existence of a mixed strategies equilibrium in the Bertrand game with transmission constraints and
transmission costs (Dasgupta and Maskin, 1986).
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Figure 1: Supplier n's output function (kn = ks = 60, T = 40)

total_residual-eps-converted-to.pdf

The output function plays an important role in determining the equilibrium and thus,
it is explained in detail. Below, I describe the construction of supplier n's output function;
the output for supplier s is symmetric.

The total demand that can be satis�ed by supplier n when it submits the lower bid
(bn < bs) is de�ned by min {θn + θs, θn + T, k}. The realization of (θs, θn) determines
three di�erent areas (left-hand panel, �gure ??).

min {θn + θs, θn + T, k} =


θs + θn if θs < T and θn + θs < k

θn + T if θs > T and θn + T < k

k if θn + T > k and θn + θs > k

When demand in both markets is low and the transmission line is not congested, sup-
plier n can satisfy total demand (θs + θn). If the demand in market South is larger than
the transmission capacity θs > T , supplier n cannot satisfy the demand in market South,
even when it has enough production capacity for this; therefore, the total demand that
supplier n can satisfy is (θn+T ). Finally, if the demand is large enough, the total demand
that supplier n can satisfy is its own production capacity (k).

The residual demand that supplier n satis�es when it submits the higher bid (bn > bs)
is de�ned by max {0, θn − T, θs + θn − k}. The realization of (θs, θn) determines three
di�erent cases (right-hand panel, �gure ??).

max {0, θn − T, θs + θn − k} =


0 if θn < T and θs + θn < k

θn − T if θn > T and θs < k − T
θs + θn − k if θs + θn > k and θs > k − T

When demand in both markets is low and the transmission line is not congested,
supplier s satis�es total demand and therefore, the residual demand that remains for
supplier n is zero. The total demand that supplier s can satisfy diminishes due to the
transmission constraint. As soon as the demand in market North is larger than the trans-
mission capacity (θn > T ), it cannot be satis�ed by supplier s and thus, some residual
demand (θn − T ) remains for supplier n. When total demand is large enough, supplier s
cannot satisfy total demand and some residual demand (θs+θn−k) remains for supplier n.

When both suppliers submit the same bid (bn = bs). Supplier n's demand change dis-
continuously around the diagonal (central panel, �gure ??). When the demand in market
North is larger than the demand in market South, supplier n satis�es the total demand.
When the demand in market North is lower than the demand in market South, supplier
n satis�es the residual demand. Finally, when the demand in both markets is the same,
supplier n satis�es the demand in its own market.

Finally, the payments are worked out by the auctioneer. When the auctioneer runs
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Figure 2: Supplier n's pro�t function (kn = ks = 60, T = 40, t > 0)

profit_total_residual-eps-converted-to.pdf

a discriminatory price auction, the price received by a supplier for any positive quantity
dispatched by the auctioneer is equal to its own o�er price, whenever a bid is wholly or
partly accepted. Hence, for a given realization of demands θ ≡ (θs, θn) and a bid pro�le
b ≡ (bs, bn), supplier i's pro�ts, i = n, s, can be expressed as

πdi (b; θ, T, t) =



bimin {θi + θj, θi + T, k}−
tmax {0,min {θj, T, k − θi}} if bi ≤ bj and θi > θj

biθi if bi = bj and θi = θj

bimax {0, θi − T, θi + θj − k}−
tmax {0, θj − k} otherwise

Given the relevance of the payo� function determining the equilibrium, I explain it in
detail. As for the outcome function, I focus on supplier n's payo� function; the one for
supplier s is symmetric. If bn ≤ bs and θn > θs, supplier n is dispatched �rst and satis�es
total demand. Supplier n's payo� function is πdn(b; θ, T ) = bn min {θn + θs, θn + T, k}.
In addition to this expression, due to the transmission tari�, supplier n is charged a
transmission tari� t for the power sold in market South. 13 The transmission costs have
four di�erent possible values: tθs when the realization of demand in market North is
low and the transmission line is not congested; tT when the realization of demand in
market North is low and the transmission line is congested; when the realization of de-
mand in market North is high but lower than its production capacity, the transmission
costs are t(k − θn); �nally, when demand in market North is larger than the production
capacity k, supplier n cannot sell any electricity in market South and the transmission
costs are zero. Hence, after adding the transmission costs, supplier n's payo� is equal
to πdn(b; θ, T, t) = bnmin {θn + θs, θn + T, k} − t max {0,min {θs, T, k − θn}} (left-hand
panel, �gure ??).

If bn = bs and θn = θs, each supplier satis�es the demand in its own market and no
electricity �ows through the grid. Supplier n's payo� function is πdn(b; θ, T ) = bnθn.

In the rest of the cases, supplier n is dispatched last and satis�es the residual demand.
Supplier n's payo� function is πdn(b; θ, T, t) = bnmin {θs + θn, θn + T, k}. In addition to
this expression, due to the transmission tari�, supplier n is charged a transmission tari� t
for the residual demand satis�ed in market South. Therefore, after adding the transmis-
sion costs, supplier n's payo� is equal to πdn(b; θ, T ) = bnmax {0, θn − T, θs + θn − k} −
tmax {0, θs − k} (right-hand panel, �gure ??).

13Given that the production costs are nil, the marginal costs in this model come from the transmission
tari�. In this paper, I use the standard de�nition of marginal costs as the cost of producing one more
unit of electricity.
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Figure 3: Zero transmission tari�s. Equilibrium areas (kn = ks = k = 60, T = 40, c = 0)

area_I-eps-converted-to.pdf

3 E�ect of transmission capacity constraints

I characterize the equilibrium in the presence of transmission capacity constraints and
zero transmission tari�s and then I analyze the e�ect of an increase in transmission ca-
pacity.

Lemma 1. In the presence of transmission constraints and zero transmission tari�s, when
the demand is low (area A), the equilibrium is in pure strategies, when the demand is
intermediate (areas A1, B1) or high (area B2), a pure strategies equilibrium does not
exist (�gure ??).14

Proof. When the demand is low (area A), both suppliers have enough capacity to satisfy
total demand in both markets and the transmission line is not congested. Therefore, they
compete �ercely to be dispatched �rst in the auction. Hence, the equilibrium is the typical
Bertrand equilibrium where both suppliers submit bids equal to their marginal cost.

When the demand is intermediate (areas A1, B1) or high (area B2), at least one of
the suppliers faces a positive residual demand. Therefore, a pure strategies equilibrium
does not exist. First, an equilibrium such that bi = bj = c does not exist because at least
one supplier has the incentive to increase its bid and satisfy the residual demand. Second,
an equilibrium such that bi = bj > c does not exist because at least one supplier has the
incentive to undercut the other to be dispatched �rst. Finally, an equilibrium such that
bj > bi > c does not exist because supplier i has the incentive to shade the bid submitted
by supplier j.

A pure strategies equilibrium does not exist when the demand is intermediate or high.
However, the model satis�es the properties established by Dasgupta and Maskin (1986)
which guarantee that a mixed strategies equilibrium exists.

Lemma 2. In the presence of transmission constraints and zero transmission tari�s, in
a mixed strategies equilibrium, no supplier submits a bid lower than bid (bi) such that
bimin {θi + θj, θi + T, k} = P max {0, θi − T, θi + θj − k}. Moreover, the support of the
mixed strategies equilibrium for both suppliers is S =

[
max

{
bi, bj

}
, P
]
.

Proof. Given that the demand is inelastic, the supplier's pro�t is maximized when it sets
the reservation price. Therefore, the reservation price is the upper-bound of the support.

Each supplier can guarantee for itself the payo� P max {0, θi − T, θi + θj − k}, since
each supplier can always submit the highest bid and satisfy the residual demand. There-
fore, in a mixed strategy equilibrium, no supplier submits a bid that generates a payo�

14Equation ?? de�nes three di�erent areas (�gure ??). The intersection of the areas in the left and the
right-hand panels in that �gure generates the equilibrium areas in �gure ??.
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Figure 4: Zero transmission tari�s. Mixed strategy equilibrium

CDF_I-eps-converted-to.pdf

equilibrium lower than P max {0, θi − T, θi + θj − k}. Hence, no supplier submits a bid
lower than bi, where bi solves bimin {θi + θj, θi + T, k} = P max {0, θi − T, θi + θj − k}.

No supplier can rationalize submitting a bid lower than bi, i = n, s. In the case when
bi = bj, the support is symmetric. In the case when bi < bj, supplier i knows that supplier
j never submits a bid lower than bj. Therefore, in a mixed strategy equilibrium, supplier

i never submits a bid bi such that bi ∈
(
bi, bj

)
, because supplier i can increase its expected

payo� choosing a bid bi such that bi ∈
[
bj, P

]
. Hence, the equilibrium strategy support

for both suppliers is S =
[
max

{
bi, bj

}
, P
]

Using Lemmas one and two, I characterize the equilibrium.

Proposition 1. In the presence of transmission constraints and zero transmission tari�s,
the characterization of the equilibrium falls into one of the next two categories.

i Low demand (area A). The equilibrium strategies pair is in pure strategies.

ii Intermediate demand (areas A1, B1) and high demand (area B2). The equilibrium
strategies pair is in mixed strategies.

When the demand is low (area A), suppliers compete �ercely to be dispatched �rst in
the auction and the equilibrium is the typical Bertrand equilibrium in which both suppli-
ers submit bids equal to their marginal cost. Suppliers' marginal costs are nil since the
production and transmission tari�s are nil. Therefore, equilibrium prices and pro�ts are
also nil. Moreover, given that suppliers' bids are equal, no electricity �ows through the
grid.

As soon as the transmission line becomes congested (intermediate demand, areas A1
and B1), the supplier located in the high-demand market (supplier n) faces a high residual
demand and the supplier located in the low-demand market (supplier s) cannot sell its en-
tire production capacity. Equation ?? in annex 1 de�nes the asymmetric mixed strategies
equilibrium and the shape of the cumulative distribution functions that are represented
in the left-hand panel in �gure ??. As can be observed, the slope of supplier s's cumula-
tive distribution function in the lower bound of the support is steeper than the slope of
supplier n's cumulative distribution function. Given that the derivative of the cumulative
distribution function is the probability distribution function, supplier s submits lower
bids with higher probability than supplier n. In the upper bound of the support, supplier
s's cumulative distribution function is continuous, i.e., supplier s assigns zero probabil-
ity to the maximum bid allowed by the auctioneer; in contrast, supplier n's cumulative
distribution function is discontinuous, i.e., supplier n assigns a positive probability to the
maximum bid allowed by the auctioneer. Therefore, when the demand is intermediate,
the supplier located in the high-demand market randomizes submitting higher bids with
a higher probability, i.e., its cumulative distribution function stochastically dominates the
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Figure 5: Zero transmission tari�s. Increase in transmission capacity 4T , θs = 5, θn =
55, k = 60, c = 0, t = 0, P = 7

increase_T_t-eps-converted-to.pdf

cumulative distribution function of the supplier located in the low-demand market.

Finally, when the demand is high (area B2), the transmission capacity is not binding,
but the production capacity is. Therefore, both suppliers face the same residual and total
demand and the equilibrium is symmetric, i.e., both suppliers randomize using the same
cumulative distribution function (right-hand panel, �gure ??). When the transmission
capacity is high enough T ≥ k, the transmission line is not congested and the equilibrium
when the demand is intermediate (areas A1 and B1) coincides with the equilibrium in
area B2, i.e., the equilibrium is as in Fabra et al. (2006). It is important to notice that
when the equilibrium is in mixed strategies (symmetric or asymmetric), the probability
that both suppliers submit the same bid is zero.

These results are in contrast to the models of price competition with production capac-
ity constraints (Kreps and Scheinkman, 1983; Osborne and Pitchik, 1986; Deneckere and
Kovenock, 1996; Fabra et al., 2006) where the results are exclusively driven by production
capacity constraints. In the presence of transmission constraints, there are two relevant
constraints that explain the results. If the production capacity is binding, the equilibrium
is symmetric even when the realization of demands is asymmetric. If the transmission
capacity is binding, the equilibrium is asymmetric even when the suppliers are symmetric
in production capacity. Therefore, this model provides a complete and novel analysis of
the role played by the structural variables of the model (demand realization, production
capacity and transmission capacity) determining equilibrium outcome allocations.

To conclude this section, I analyze the e�ect of an increase in transmission capacity
on the main variables of the model.

Proposition 2. In the presence of transmission constraints and zero transmission tar-
i�s, an increase in transmission capacity (4T ) reduces the lower bound of support b
and reduces the expected bids for both suppliers (an increase in transmission capacity
is pro-competitive). Moreover, an increase in transmission capacity reduces the pro�t of
the supplier located in the high-demand market. However, an increase in transmission
capacity modi�es the pro�t of the supplier located in the low-demand market in a non
monotonic pattern (table ?? and �gure ??).

An increase in transmission capacity reduces the residual demand and, according to
lemma two, the lower bound of the support decreases (left-hand panel, �gure ??; column
two, table ??; equation ?? in annex 1). A decrease in the lower bound of the support im-
plies that both suppliers randomize submitting lower bids and therefore, the expected bid
decreases for both suppliers (right-hand panel, �gure ??; columns �ve and six, table ??;
equations ?? and ??, annex 1). Finally, an increase in transmission capacity reduces the
expected bid and the residual demand of the supplier located in the high-demand market

11



Table 1: Zero transmission tari�s. Increase in transmission capacity 4T (θs = 5, θn =
55, k = 60, c = 0, t = 0, P = 7). Main variables.

T b πn πs En(b) Es(b)

0 7 385.07 35 7 7
5 5.835 350.1 58.35 6.8963 6.3795
15 4.668 280.08 93.36 6.5587 5.6770
25 3.501 210.06 105.03 5.9261 4.8530
35 2.335 140.1 93.4 4.8981 3.8464
45 1.168 70.08 58.4 3.2589 2.5102
55 0 0 0 0 0

as does its expected pro�t (central panel, �gure ??; column three, table ??; equation
??, annex 1). In contrast, an increase in transmission capacity reduces the expected bid
and increases the total demand of the supplier located in the low-demand market. When
the transmission capacity is low, the increase in demand dominates the decrease in the
expected bid and its expected pro�t increases. However, when the transmission capacity
is large enough, the decrease in bids dominates and its expected pro�t decreases (central
panel, �gure ??; column four, table ??; equation ??, annex 1).

4 E�ect of transmission capacity constraints and transmission

tari�s

I characterize the equilibrium in the presence of transmission capacity constraints and
positive transmission tari�s and then I analyze the e�ect of an increase in transmission
capacity.

Lemma 3. In the presence of transmission constraints and positive transmission tari�s,
in the low demand area (area A), the equilibrium is in pure strategies. In the interme-
diate demand area (area A1) and when the transmission tari�s are high, the equilibrium
is in pure strategies; otherwise, a pure strategies equilibrium does not exist. Moreover,
due to the presence of transmission tari�s, the pure strategies equilibrium is asymmetric.
In the intermediate demand areas (areas B1a,B1b) or in the high-demand areas (area
B2a,B2b), a pure strategies equilibrium does not exist (�gure ??).

Proof. In the low demand area (area A), both suppliers have enough capacity to satisfy
total demand and the transmission line is not congested. Therefore, the competition to be
dispatched �rst is �erce. Moreover, the supplier located in the high-demand market (sup-
plier i) faces lower total marginal costs. Hence, the equilibrium is the typical Bertrand
equilibrium with asymmetries in costs where the supplier located in the high-demand

market extracts the e�ciency rents. The pure strategies equilibrium is bi = bj =
tθi

θi + θj
.

The equilibrium pro�ts are:

12



Figure 6: Positive transmission tari�s. Equilibrium areas (kn = ks = k = 60, T = 40, c =
0, t > 0)

area_II-eps-converted-to.pdf

πj = (θi + θj)
tθi

θi + θj
− tθi = 0; πi = (θi + θj)

tθi
θi + θj

− tθj = t(θi − θj) > 0

The equilibrium price is
tθi

θi + θj

Electricity �ows from the high-demand market to the low-demand market, i.e., the
electricity losses are minimized.

When the demand belongs to area A1, the transmission constraint binds for the sup-
plier located in the low-demand market (supplier j); therefore, only the supplier located
in the high-demand market can satisfy total demand. The supplier located in the high-
demand market prefers to submit a low bid and extract the e�ciency rent instead of sub-

mitting a high bid and satisfying the residual demand if (θi+θj)
tT

θj + T
− tθj ≥ P (θi−T ).

In such a case, the pure strategies equilibrium is bi = bj =
tT

θj + T
, i.e., supplier i prefers

to extract the e�ciency rents when the transmission tari�s are high enough.

The equilibrium pro�ts are:

πj = (θj + T )
tT

θj + T
− tT = 0; πi = (θi + θj)

tT

θj + T
− tθj > 0

The equilibrium price is
tT

θi + T

The electricity �ows from the high-demand market to the low-demand market, i.e.,
the electricity losses are minimized.

In the rest of the cases, a pure strategies equilibrium does not exist and the proof
proceeds as in lemma one.

A pure strategy equilibrium does not exist in the intermediate or high-demand areas.
However, the implemented tie breaking rule guarantees that the model satis�es the prop-
erties established by Dasgupta and Maskin (1986) which ensure that a mixed strategy
equilibrium exists.

Lemma 4. In a mixed strategies equilibrium, in the presence of transmission tari�s and
positive transmission costs, no supplier submits a bid lower than bid (bi) such that
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bimin {θi + θj, θi + T, k} − tmax {0,min {θj, T, k − θi}} =
P max {0, θi − T, θi + θj − k} − tmax {0, θj − k} .

Moreover, the support for the mixed strategies equilibrium for both suppliers is S =[
max

{
bi, bj

}
, P
]
.

Proof. The proof proceeds as in lemma two.

Using lemmas three and four, I characterize the equilibrium.

Proposition 3. In the presence of transmission constraints and positive transmission tari�s,
the characterization of the equilibrium falls into one of the next three categories.

i Low demand (area A). The equilibrium strategies pair is in pure strategies.

ii Intermediate demand (area A1). When the transmission tari�s are high, the equilib-
rium strategies pair is in pure strategies. In contrast, when the transmission tari�s
are low, the equilibrium strategies pair is in mixed strategies.

iii Intermediate demand (areas B1a, B1b) and high demand (areas B2a, B2b). The
equilibrium strategies pair is in mixed strategies.

In the low demand area (area A), suppliers compete �ercely to be dispatched �rst in
the auction and the equilibrium is the typical Bertrand equilibrium with asymmetries in
costs where the supplier located in the high-demand market extracts the e�ciency rents.
Therefore, the pro�ts of the supplier located in the high-demand market are positive; the
pro�ts of the supplier located in the low-demand market are nil; the equilibrium price in
both markets is the same; and the electricity �ows from the low-demand market to the
high demand market.

In the intermediate demand area (area A1), the transmission capacity binds for the
supplier located in the low-demand market; therefore, only the supplier located in the
high-demand market can satisfy total demand and the equilibrium crucially depends on
the value of the transmission tari�s (low, intermediate or high).15 If the transmission
tari�s are high enough, the supplier located in the high-demand market prefers to sat-
isfy the total demand by submitting a low bid and extracting the e�ciency rents. If
the transmission tari�s are intermediate, the supplier located in the high-demand market
faces lower marginal costs and thus, it has incentives to submit low bids to extract the ef-
�ciency rents. Simultaneously, it faces a high residual demand and thus, it has incentives
to submit high bids. The two economic forces work in opposite directions and non cumu-
lative distribution function stochastically dominates the other (left-hand panel, �gure ??;
equation ??, annex 2).16 This is in contrast to the zero transmission tari�s case where
the cumulative distribution function of the supplier located in the low-demand market
stochastically dominates the one of the supplier located in the high-demand market (left-
hand panel, �gure ??). Finally, if the transmission tari�s are low, the supplier located in

15Those tari�s are de�ned in equations ?? and ?? and are summarized in �gure ?? in annex 2.
16It is important to remind that in the presence of transmission constraints and when the transmission

tari�s are intermediate or high, the equilibrium is in mixed strategies (lemma 3).
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Figure 7: Positive transmission tari�s. Mixed strategy equilibrium

CDF_II-eps-converted-to.pdf

the high-demand market prefers to submit a high bid and satisfy the residual demand;
therefore, the cumulative distribution function of the supplier located in the high-demand
market stochastically dominates the one of the supplier located in the low-demand market.

When the demand is intermediate, but larger than in Area A1 (areas B1a and B1b),
the same logic applies and the stochastic or non-stochastic dominance crucially depends
on transmission tari�s. Moreover, since both suppliers face a positive residual demand, a
pure strategies equilibrium does not exist even when the transmission tari�s are high.

In the high demand areas (areas B2a and B2b), the transmission capacity is not bind-
ing, but the production capacity is. Therefore, both suppliers face the same demand.
However, due to the transmission tari�s, the supplier located in the high-demand market
faces lower total marginal costs and it submits lower bids to extract the e�ciency rents.
Hence, the cumulative distribution function of the supplier located in the low-demand
market stochastically dominates the cumulative distribution function of the supplier lo-
cated in the high-demand market (right-hand panel, �gure ??). This is in contrast to the
zero transmission tari�s case where both suppliers randomize using the same cumulative
distribution function (right-hand panel, �gure ??).

Finally, when the demand belongs in the diagonal, both suppliers face the same de-
mand and marginal costs. In the low demand area (area A), the equilibrium is a symmetric
pure strategies equilibrium; otherwise (areas B1a and B2b), the equilibrium is a symmet-
ric mixed strategies equilibrium.

The results presented in proposition 3 not only complement the models of price com-
petition with capacity constraints introducing transmission constraints and transmission
tari�s, but also contribute to the literature of truncated Pareto distributions. In partic-
ular, in annex 2, I show that the standard approach followed by the truncated Pareto
distribution literature to characterize the equilibrium and to stablish the stochastic dom-
inance relation between cumulative distribution functions cannot be applied when the
suppliers face positive transmission tari�s. In annex 2, I compare the characterization of
the equilibrium when the transmission tari�s are zero and when they are positive, and I
explain the reasons that made necessary an extension of the theory of truncated Pareto
distributions.

To conclude this section, I analyze the e�ect of an increase in transmission capacity
on equilibrium outcome allocations.

Proposition 4. In the presence of transmission constraints and transmission tari�s, an
increase in transmission capacity (4T ) has di�erent e�ects depending on the transmission
capacity (�gure ??, table ??).

i. When the transmission capacity is low, an increase in transmission capacity de-
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Figure 8: Positive transmission tari�s. Increase in transmission capacity 4T , (θs =
5, θn = 55, k = 60, c = 0, t = 1.5, P = 7)

increase_T_tpositive-eps-converted-to.pdf

creases the lower bound of the support of the supplier located in the high-demand
market and increases the lower bound of the support of the supplier located in the
low-demand market; reduces the expected bids of both suppliers (an increase in
transmission capacity is pro-competitive); reduces the pro�t of the supplier located
in the high-demand market and modi�es the pro�t of the supplier located in the
low-demand market in a non-monotonic pattern.

ii. When the transmission capacity is low, an increase in transmission capacity de-
creases the lower bound of the support of the supplier located in the high-demand
market and increases the lower bound of the support of the supplier located in the
low-demand market; increases the expected bids of both suppliers (an increase in
transmission capacity is anti-competitive); increases the expected pro�t of the sup-
plier located in the high-demand market and does not modify the expected pro�t
of the supplier located in the low-demand market.

When the transmission capacity is low (T ≤ 44 for the numerical examples in table
?? and �gure ??), an increase in transmission capacity substantially increases the com-
petition between suppliers that move from an isolated market scenario to a connected
market scenario; simultaneously, and due to the low capacity of the line, an increase in
transmission capacity slightly increases the marginal costs since now, the suppliers export
more electricity to the other market and that electricity is charged by the transmission
tari�. Hence, the competitive e�ect dominates, and an increase in transmission capacity
has the same e�ects on equilibrium outcome variables as when the transmission tari�
are nil (proposition 2): The lower bound of the support decreases and so do suppliers'
expected bids (right-hand panel, �gure ??; columns �ve and six, table ??); reduces the
expected pro�t of the supplier located in the high-demand market and modi�es the pro�t
of the supplier located in the low-demand market in a non-monotonic pattern (central
panel, �gure ??; columns three and four, table ??).

If the transmission capacity is high enough (T > 44), an increase in transmission
capacity slightly increases the competition between suppliers, but substantially increases
their marginal cost. Therefore, the lower bound of the support increases since the suppliers
have to submit higher bids to compensate the increase in costs (left-hand panel, �gure
??). An increase in the lower bound of the support entailed that both suppliers randomize
submitting higher bids and therefore, the expected bids increase for both suppliers (right-
hand panel, �gure ??; columns �ve and six, table ??). Finally, an increase in transmission
capacity increases the expected pro�t of the supplier located in the high-demand market
since the increase in costs allows it to extract the e�ciency rents; in contrast, the expected
pro�t of the supplier located in the low-demand market does not change because the
increase in pro�ts derived from an increase in the expected bid is compensated by the
increase in marginal costs (central panel, �gure ??; columns three and four, table ??).

16



Table 2: Positive transmission tari�s. Increase in transmission capacity 4T (θs = 5, θn =
55, k = 60, t = 1.5, P = 7) . Main variables.

T b πn πs En(b) Es(b)

0 7 385.07 35 7 7
5 5.959 350.05 52.09 6.9079 6.4483
15 4.793 280.09 73.36 6.5206 5.7490
25 3.626 210.07 71.28 5.7253 4.9301
35 2.459 140.05 45.86 4.2942 3.9307
45 1.351 73.575 0 1.3569 2.7304
55 1.376 75 0 1.3821 3.5075

5 Model comparison and consumer welfare

In this section, I compare equilibrium outcome allocations and their e�ects on consumer
welfare in the presence of transmission constraints and when the transmission tari�s are
nil and positive. I also compare these results with the equilibrium when suppliers face a
point of connection tari�.17

In the presence of a congested transmission lines and zero transmission tari�s (Model
I), the supplier located in the high-demand market faces a high residual demand, while
the supplier located in the low-demand market cannot sell its entire production capac-
ity. Therefore, the supplier located in the high-demand market has incentives to submit
higher bids than the supplier located in the low-demand market. Given that the majority
of consumers are located in the high-demand market, the aggregate payment that con-
sumers face to acquire electricity is large (column eight, table ??).

When positive transmission tari�s are implemented (Model II), the supplier located
in the low-demand market faces high marginal costs and thus, its expected bid is high.
In contrast, the supplier located in the high-demand market faces low marginal costs and
for high enough transmission tari�s, it �nds more pro�table to extract the e�ciency rents
undercutting the supplier located in the low-demand market.18 These changes in equi-
librium prices induce a drastic decrease on consumers electricity expenses (column eight,
table ??). Moreover, the introduction of positive transmission tari�s makes the electricity
to �ow from the high to the low-demand market reducing the �ow of electricity and thus,
increasing transmission e�ciency.

Finally, if suppliers face a point of connection tari� (Model III), they pay the same
transmission tari� for the electricity sold in their own market and the electricity sold in
the other market. Therefore, the competitive advantage derived of being located in the
high-demand market disappears. Moreover, given that electricity demand is very inelas-
tic, an increase in suppliers costs is passed through to consumers that face an increase

17As I explain in the introduction, with point of connection tari�s, the suppliers are charged by the
total power injected into the grid. In annex 4, I have characterized the equilibrium when suppliers face
a point of connection tari�.

18As I indicate in the previous section, this result is only valid when the tari� is intermediate, but not
when it is high. Intermediate and high tari�s are de�ned in equations ?? and ?? and are summarized in
�gure ?? in annex 2.
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Table 3: E�ect of the transmission constraint and di�erent tari�s to access the grid on
the equilibrium outcome (θs = 5, θn = 55, k = 60, c = 0, P = 7)

T b πn πs π = πn + πs En(b) Es(b) θnEn(b) + θsEs(b)

Model I 40 1.75 105 184 289 4.2 3.2 247
Model II 40 1.87 105 24 129 3.1 3.3 187
Model III 40 2.87 82.5 62 144.5 4.8 4 284

Model I: zero transmission costs. Model II: transmission tari� (t = 1.5). Model III: point of connection tari� (t = 1.5)

in equilibrium prices in both markets. Hence, consumers welfare decrease (column eight,
table ??).

The comparison between the three models suggests that the introduction of transmis-
sion tari�s could increase aggregate consumers welfare. In contrast, point of connection
tari�s always reduce aggregate consumers welfare. However, it is important to emphasize
that these results are only valid when the tari�s are symmetric.

The symmetric transmission tari�s scenario is relevant as a benchmark model. In
that case, the regulator does not interfere in the market and equilibrium market alloca-
tions are only determined by the structural parameters of the model. Moreover, in that
scenario, the knowledge of the market and the information required by the regulator to
implement those tari�s is minimal. However, as described in the model section, in the ma-
jority of countries, point of connection tari�s present some type of asymmetry (seasonal
or locational components) to reduce the �ow of electricity. Therefore, it is important
to characterize the equilibrium when asymmetric transmission and point of connection
tari�s are implemented. Moreover, given that symmetric transmission tari�s outperform
point of connection tari�s by maximizing consumers welfare and transmission e�ciency,
it is a noteworthy economic policy issue to determine whether introducing the "correct"
asymmetry in point of connection tari�s could lead to the same outcome as when symmet-
ric transmission tari�s are implemented, i.e., under particular tari� designs, asymmetric
point of connection tari�s and symmetric transmission tari�s could be equivalent.

6 Conclusion

Electricity markets are moving through integration processes around the world. In such
a context, there exists an intense debate to analyze the e�ect of transmission constraints
and tari�s to access the grid on suppliers' strategies. The contribution of this paper is to
characterize the outcome of an electricity market auction in the presence of transmission
constraints and di�erent tari�s to access the grid.

In the presence of transmission constraints and zero transmission tari�s, the supplier
located in the high-demand market faces a high residual demand and it submits higher
bids than the supplier located in the low-demand market. When the transmission tari�s
are positive, the supplier located in the high-demand market faces lower marginal costs. If
the transmission tari�s are high enough, the supplier located in the high-demand market
submits lower bids than the supplier located in the low-demand market to extract the e�-
ciency rents; given that the majority of consumers are located in that market, consumers
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aggregate welfare could increase. Moreover, the electricity �ows from the high-demand
market to the low-demand market and transmission losses are minimized; therefore, the
introduction of positive transmission tari�s increases transmission e�ciency.

When suppliers are charged according to the power that they inject into the grid (point
of connection tari�s), given that they pay the same tari� independent of the market where
they are selling electricity, the strategic component of being located in the high-demand
market disappears. Moreover, due to the fact that demand is inelastic, the tari� is passed
through to consumers that are worse o� than in the zero transmission tari�s scenario and
thereby also worse o� than in the positive transmission tari�s scenario.

The consequences of an increase in transmission capacity di�er considerably due to
the transmission tari�s. If the transmission tari�s are zero, an increase in transmission
capacity is pro-competitive. In contrast, if the transmission tari�s are positive, an increase
in transmission capacity could be anti-competitive. When point of connection tari�s are
implemented, an increase in transmission capacity is always pro-competitive.

The results that I present in this paper complement the models of price competition
with capacity constraints (Kreps and Scheinkman, 1983; Osborne and Pitchik, 1986; De-
neckere and Kovenock, 1996; and Fabra et al., 2006). Moreover, I also provide novel
results that expand the literature of truncated Pareto distributions.

In the next future, I would like to extend the model to introduce more suppliers in
both markets to study other relevant problems as mergers, investment in production and
transmission capacity, entry decisions, etcetera.19

The symmetric transmission model presented in the paper is useful to compare equilib-
rium outcome allocations when di�erent tari�s are implemented. However, the model can
easily be modi�ed to analyze models that include some type of seasonal and geographical
component in the tari�s. In the next future, I would like to explore the design of novel
tari�s that include a seasonal and a geographical component.

19It is important to emphasize that the introduction of more suppliers into the model complicates the
characterization of the equilibrium (Baye et al., 1992). Moreover, the presence of transmission constraints
introduce asymmetries in the residual demand and therefore, it is not possible to follow Janssen et al.
(2003) to work out a symmetric equilibrium.
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Annex 1. E�ect of transmission capacity constraints

Proposition 1. Characterization of the equilibrium in the presence of transmission con-
straints and zero transmission tari�s.

When demand is low (area A, �gure ??): bn = bs = c = 0, the equilibrium pro�t is zero
for both suppliers. No electricity �ows through the grid.

When demand is intermediate (areas A1 and B1, �gure ??) or high (area B2, �gure
??), a pure strategies equilibrium does not exist, as it is proved in lemma one; however,
the model presented in section two satis�es the properties established by Dasgupta and
Maskin (1986) which guarantee that a mixed strategies equilibrium exists. In particular,
the discontinuities of πi,∀i, j are restricted to the strategies such that bi = bj. Further-
more, it is simple to con�rm that by reducing its price from a position where bi = bj, a
supplier discontinuously increases its pro�t. Therefore, πi(bi, bj) is everywhere left lower
semi-continuous in bi and hence, weakly lower semi-continuous. Obviously, πi(bi, bj) is
bounded. Finally, πi(bi, bj) + πj(bi, bj) is continuous because discontinuous shifts in the
clientele from one supplier to another only occur where both suppliers derive the same
pro�t per customer. Therefore, theorem �ve in Dasgupta and Maskin (1986) applies and
hence, a mixed strategies equilibrium exists.

The existence of the equilibrium is guaranteed by Dasgupta and Maskin (1986). How-
ever, they did not provide an algorithm to work out the equilibrium. Nevertheless, using
the approach proposed by Karlin (1959), Shapley (1957), Shilony (1977), Varian (1980),
Kreps and Scheinkman (1984), Osborne and Pitchik (1986), Deneckere and Kovenock
(1996) and Fabra et al. (2006), the equilibrium characterization is guaranteed by con-
struction. I use the approach proposed by this branch of the literature to work out the
mixed strategies equilibrium. In particular, I work out the lower bound of the support, the
cumulative distribution function, the probability distribution function, the expected equi-
librium price and the expected pro�t.

Lower Bound of the Support. The lower bound of the support is de�ned according to
lemma two.

Cumulative Distribution Function (CDF). To work out the CDF, I follow Varian (1980)
and Kreps and Scheinkman (1984).

For further reference,
Li(θ, k, T ) = min {θi + θj, θi + T, k},
Hi(θ, k, T ) = max {0, θi − T, θi + θj − k} and

Ci(θ, k, T ) =
min {θi + θj, θi + T, k}

min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}
.

In the �rst step, the payo� function for any supplier is:

πi(b) = b [Fj(b)Hi(θ, k, T ) + (1− Fj(b))Li(θ, k, T )] =
= −b Fj(b) [Li(θ, k, T )−Hi(θ, k, T )] + (2)

b Li(θ, k, T )
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In the second step, πi(b) = πi∀b ∈ Si, i = n, s, where Si is the support of the mixed
strategies. Then,

πi = −b Fj(b) [Li(θ, k, T )−Hi(θ, k, T )] +

b Li(θ, k, T )⇒

Fj(b) =
b Li(θ, k, T )− πi

b [Li(θ, k, T )−Hi(θ, k, T )]
(3)

The third step, at b, Fi(b) = 0∀i = n, s. Then,

πi = bLi(θ, k, T ) (4)

In the fourth step, plugging ?? into ??, I obtain the mixed strategies for both suppliers.

Fj(b) =
b Li(θ, k, T )− b Li(θ, k, T )
b [Li(θ, k, T )−Hi(θ, k, T )]

=

=
Li(θ, k, T )

Li(θ, k, T )−Hi(θ, k, T )

b− b
b

= Ci(θ, k, T )
b− b
b
∀i = n, s (5)

For further reference,
Lj(b) = b min {θi + θj, θi + T, k},
Hj(b) = b max {0, θi − T, θi + θj − k}

It is easy to verify that equation Fj(b) is indeed a cumulative distribution function
with the following properties. First, in the third step, I have established that Fj(b) = 0.
Second, using partial derivatives it can be show that the cumulative distribution function

is increasing
∂Fj(b)

∂b
= Ci

b

b2
> 0. Third, the cumulative distribution function is concave,

∂Fj(b)

∂b2
= −Ci

b

b3
< 0. Fourth, Fj(b) ≤ 1∀b ∈ Sj. Fifth, if Ci(θ, k, T ) > Cj(θ, k, T ), then

Fj(b) > Fi(b)∀b ∈ S, i.e., Fi(b) stochastic dominates Fj(b). If Ci(θ, k, T ) = Cj(θ, k, T ),
then Fj(b) = Fi(b)∀b ∈ S, i.e., Fj(b) and Fi(b) are symmetric. Finally, Fj(b) is continuous
in the support because Li(b) − Li(b) and Li(b) − Hi(b) are continuous functions in the
support.

Probability Distribution Function.

fj(b) =
∂Fj(b)

∂b

=
Li(θ, k, T )b (Li(θ, k, T )−Hi(θ, k, T ))

b2 (Li(θ, k, T )−Hi(θ, k, T ))
2

=
Li(θ, k, T )

Li(θ, k, T )−Hi(θ, k, T )

b

b2
= Ci(θ, k, T )

b

b2
∀i = n, s (6)

Expected Equilibrium Bid.
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Ej(b) =

∫ P

b

bfj(b)∂b

=

∫ P

b

b Li(θ, k, T )b

b2 (Li(θ, k, T )−Hi(θ, k, T ))
∂b+ P (1− Fj(P ))

=
Li(θ, k, T )b

Li(θ, k, T )−Hi(θ, k, T )
[ln(b)]Pb + P (1− Fj(P ))

= b Ci(θ, k, T ) [ln(b)]
P
b + P (1− Fj(P )) ∀i = n, s (7)

where (1− Fj(P )) in equation ?? is the probability assigned by �rm j to the maximum
price allowed by the auctioneer.20

Expected Pro�t. The expected pro�t is de�ned by equation ?? and it is equal to πj =
b min {θi + θj, θj + T, k} = bLi(θ, k, T ).

Lemmas 1 and 2, and equations ??, ??, ?? and ?? fully characterize the equilibrium.
To facilitate the understanding of the equilibrium, in area A1, I work out the lower bound
of the support, the cumulative distribution function, the probability distribution function,
the expected bid, and the expected pro�t. I also establish the stochastic dominance rank
between suppliers' cumulative distribution functions. Moreover, the characterization of
the equilibrium in area A1 will be useful to compare the equilibrium when t = 0 and when
t > 0.

First, I work out the lower bound of the support on the border between areas B1 and
B2, θs = k − T . On the border, bn solves

bnmin {θn + θs, θn + T, k} = P max {0, θn − T, θs + θn − k} ,

therefore bn =
P (θn − T )

k
and bs solves

bsmin {θn + θs, θs + T, k} = P max {0, θs − T, θs + θn − k} ,

therefore bs =
P (θn + θs − k)

θs + T
. Plugging the value of θs on the border between these areas

into bs formula, I obtain bs =
P (θn + k − T − k)

k − T + T
=
P (θn − T )

k
= bn. Therefore, on the

border between areas A1 and B1, bs = bn =
P (θn − T )

k
.

Taking partial derivatives
∂bn
∂θs

=
−P (θn − T )
(θn + θs)2

< 0 and
∂bs
∂θs

=
P (k + T − θn)

(θs + T )2
> 0.

Therefore, bn > bs. Hence, the support of the mixed strategies equilibrium is de�ned by

20When the transmission line is congested, the mixed strategy equilibrium is asymmetric. In such
an equilibrium, the cumulative distribution function for the supplier located in the low-demand market
is continuous in the upper bound of the support. In contrast, the cumulative distribution function of
the supplier located in the high-demand market has a mass point in the upper-bound of the support,
which means that the supplier located in the high-demand market submits the maximum bid allowed by
the auctioneer with a positive probability (1− Fj(P )). Hence, in order to work out the expected value,
in addition to the integral, it is necessary to add the term P (1− Fj(P )). Figure ?? illustrates these
characteristics.
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S = [max {bn, bs} , P ] = [bn, P ]. In particular, S =

[
P (θn − T )
(θn + θs)

, P

]
.

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b
θn + θs
θs + T

b− b
b

= Cn(θ, k, T )
b− b
b

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
θs + T

θs + T

b− b
b

= Cs(θ, k, T )
b− b
b

if b ∈ (b, P )

1 if b = P

(8)

Given that bn > bs, it is easy to show that Fs(P ) is continuous in the upper bound of
the support, and that Fn(P ) is discontinuous in the upper bound of the support:

Fs(P ) =
θn + θs
θs + T

P − P (θn − T )
θn + θs
P

= Cn(θ, k, T )
P − P (θn − T )

θn + θs
P

= 1

Fn(P ) =
θs + T

θs + T

P − P (θn − T )
θn + θs
P

= Cs(θn, k, T )
P − P (θn − T )

θn + θs
P

< 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=
θn + θs
θs + T

b

b2
= Cn(θ, k, T )

b

b2

fn(b) =
∂Fn(b)

∂b
=
θs + T

θs + T

b

b2
= Cs(θ, k, T )

b

b2
(9)

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

θn + θs
θs + T

b

b
∂b =

θn + θs
θs + T

b [ln(b)]Pb

= Cs(θ, k, T )b [ln(b)]
P
b

En(b) =

∫ P

b

bfn(bn)∂b =

∫ P

b

b

b2
∂b =

θs + T

θs + T
b [ln(b)]Pb + (1− Fn(P ))P

= Cn(θ, k, T )b [ln(b)]
P
b + (1− Fn(P ))P (10)

Given that Fn(b) is discontinuous in the upper bound of the support, to work out
supplier n's expected bid is necessary to multiply the maximum bid allowed by the auc-
tioneer by the probability that supplier n assigns to that bid (1− Fn(P ))P .

Fifth, the expected pro�t is de�ned by equation ?? and is equal to πn = b(θs + θn)
and πs = b(θs + T ).
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Finally, I show that Fn(b) stochastically dominates Fs(b). Following Kreps and Scheinkman
(1984) and the theory of truncated Pareto distributions (Aban et al., 2007; Zaninetti et al.,
2008), it is enough to show that Cs(θ, k, T ) < Cn(θ, k, T ). Given than θn + θs ≥ T + θs,

it is straightforward to check that
θs + T

θs + T

b− b
b
≤ θn + θs

θs + T

b− b
b
∀b ∈ (b, P ). Therefore,

Fn(b) ≤ Fs(b)∀b ∈ [b, P ], i.e., Fn(b) stochastically dominates Fs(b).

Following a similar approach and applying equations ??, ??, ?? and ??, it is straight
forward to characterize the equilibrium in the areas B1 and B2.

Proposition 2. e�ect of an increase in transmission capacity in the presence of trans-
mission constraints and zero transmission tari�s.

Area A1.

∂b

∂T
=

−P
(θs + θn)

< 0 (11)

∂Fn(P )

∂T
=

1

(θs + θn)
> 0 (12)

∂En(b)

∂T
=

∂b

∂T

[
ln

(
P

b

)]
+ b

 b
P

− ∂b
∂T

P

b2

− ∂Fn(P )

∂T

=
∂b

∂T

[
ln

(
P

b

)
− 1

]
− ∂Fn(P )

∂T
< 0⇔ ln

(
P

b

)
> 1 (13)

∂Es(b)

∂T
=

∂b

∂T

θs + θn
θs + T

[
ln

(
P

b

)]
− b θs + θn

(θs + T )2

[
ln

(
P

b

)]
+ b

θs + θn
θs + T

 b
P

− ∂b
∂T

P

b2

(14)
=

∂b

∂T

θs + θn
θs + T

[
ln

(
P

b

)
− 1

]
− b θs + θn

(θs + T )2

[
ln

(
P

b

)]
< 0⇔ ln

(
P

b

)
> 1

∂πn
∂T

= −P < 0 (15)

∂πs
∂T

=
−P

(θs + θn)
(θs + T ) +

P (θn − T )
(θs + θn)

=
P (θn − 2T − θs)

(θs + θn)
> 0

⇔ θn > 2T + θs (16)

Area B1. The proof follows the same approach than in area A1.
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Annex 2. E�ect of transmission capacity constraints and trans-

mission tari�s

Proposition 3. Characterization of the equilibrium in the presence of transmission con-
straints and positive transmission tari�s.

In areas A and A1 (�gure ??), the equilibrium is in pure strategies, and the equilibrium
strategies, price, and pro�ts are worked out in lemma 3. In the rest of the areas, a pure
strategies equilibrium doesn't exist. However, the tie breaking rule implemented in the
model determines that in case of a tie, the supplier located in the high demand market is
dispatched �rst, i.e., the transmission costs are minimized. Therefore, the model satis�es
the properties established by Dasgupta and Maskin (1986) which guaranteed that a mixed
strategies equilibrium exists.

As in proposition one, I work out the general formulas of the lower bound of the support,
the cumulative distribution function, the probability distribution function, the expected
equilibrium price and the expected pro�t.

Lower Bound of the Support. The lower bound of the support is de�ned according to
lemma four.

Cumulative Distribution Function.

For further reference:

Hi(θ, k, T ) = max {0, θi − T, θj + θi − k}
Hti(θ, k, T ) = max {0, θj − k}
Li(θ, k, T ) = min {θi + θj, θi + T, k}
Lti(θ, k, T ) = max {0,min {θi, T, k − θi}}

In the �rst step, the payo� function for any �rm is:

πi(b) = Fj(b) [b (Hi(θ, k, T ))− t (Hti(θ, k, T ))] +
(1− Fj(b)) [b (Li(θ, k, T ))− t (Lti(θ, k, T ))] =

= −Fj(b) [b (Li(θ, k, T ))− t (Lti(θ, k, T ))− b (Hi(θ, k, T )) + t (Hti(θ, k, T ))]

b (Li(θ, k, T ))− t (Lti(θ, k, T )) (17)

In the second step, πi(b) = πi∀b ∈ Si, i = n, s, where Si is the support of the mixed
strategy. Then,

πi = −Fj(b) [b (Li(θ, k, T ))− t (Lti(θ, k, T ))− b (Hi(θ, k, T )) + t (Hti(θ, k, T ))]

b (Li(θ, k, T ))− t (Lti(θ, k, T ))⇒

Fj(b) =
b (Li(θ, k, T ))− t (Lti(θ, k, T ))− πi

b [Li(θ, k, T )−Hi(θ, k, T )]− t [Lti(θ, k, T )−Hti(θ, k, T )]
(18)

In the third step, at b, Fi(b) = 0∀i = n, s. Then,

25



πi = b (Li(θ, k, T ))− t (Lti(θ, k, T )) (19)

Fourth step, plugging ?? into ??, I obtain the mixed strategies for both �rms.

Fj(b) =
(b− b)Li(θ, k, T )

b [Li(θ, k, T )−Hi(θ, k, T )]− t [Lti(θ, k, T )−Hti(θ, k, T )]
=

∀i = n, s (20)

As can be observed in equation ??, when t = 0, the cumulative distribution function

can be written as a constant Ci(θ, k, T ) multiplied by
b− b
b

, which simpli�ed the compu-

tation of the probability distribution function, the expected value, and it facilitates the
analysis of the stochastic dominance relation between cumulative distribution functions.
In contrast, when t > 0, the denominator in equation ?? cannot be factorized, and the cu-
mulative distribution function cannot be simpli�ed. Therefore, when t > 0, the approach
followed by the truncated Pareto distributions literature to work out the cumulative dis-
tribution function, the probability distribution function, the expected equilibrium price
and the expected pro�t cannot be applied and I have developed new methods to fully
characterize the equilibrium.

Probability Distribution Function.

fj(b) =
∂Fj(b)

∂b

=
Li(·) [b [Li(θ, k, T )−Hi(θ, k, T )]− t [Lti(θ, k, T )−Hti(θ, k, T )]]
[b [Li(θ, k, T )−Hi(θ, k, T )]− t [Lti(θ, k, T )−Hti(θ, k, T )]]2

∀i = n, s (21)

For further reference:

n(·) = Li(·) [b [Li(θ, k, T )−Hi(θ, k, T )]− t [Lti(θ, k, T )−Hti(θ, k, T )]]
d1(·) = [Li(θ, k, T )−Hi(θ, k, T )]

d2(·) = [Lti(θ, k, T )−Hti(θ, k, T )]

As can be observed in equation ??, when t = 0, the cumulative distribution function

can be written as a constant Ci(θ, k, T ) multiplied by
b

b2
. In contrast, when t > 0, equa-

tion ?? cannot be simpli�ed.

Expected Equilibrium Bid.

Ej(b) =

∫ P

b

bfj(b)∂b

=

∫ P

b

b (n(·))
[b (d1(·))− t (d2(·))]2

∂b+ P (1− Fj(P )) ∀i = n, s
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I work out the expected equilibrium bid by substitution of variables. In particular:

U = [b (d1(·))− t (d2(·))]⇒ b =
U + t (d2(·))

d1(·)
∂U

∂b
= d1 ⇒ ∂b =

∂U

∂d1

Therefore:

Ej(b) =

∫ P

b

(
U + t (d2(·))

d1(·)

)
n(·)

U2

∂U

d1(·)
+ P (1− Fj(P ))

=
n(·)
d1(·)

[∫ P

b

U∂U

U2
+

∫ P

b

t (d2(·)) ∂U
U2

]
+ P (1− Fj(P ))

=
n(·)
d1(·)2

[
ln(U)− t (d2(·))

U

]P
b

+ P (1− Fj(P ))

Substituting again:

Ej(b) =
n(·)
d1(·)2[
ln

(
P (d1(·))− t (d2(·))
b (d1(·))− t (d2(·))

)
− t (d2(·))
P (d1(·))− t (d2(·))

+
t (d2(·))

b (d1(·))− t (d2(·))

]
+P (1− Fj(P )) (22)

As can be observed in equation ??, when t = 0, the expected equilibrium bid can be
worked out easily, and can be written as a constant Ci(θ, k, T ) multiplied by b [ln(b)]Pb . In
contrast, when t > 0, to work out the expected equilibrium bid is necessary to integrate
by substitution of variables.

Lemmas 3 and 4, and equations ??, ??, ?? and ?? fully characterize the equilibrium.
To facilitate the understanding of the equilibrium and to establish comparisons with the
equilibrium when t = 0, in area A1, I work out the lower bound of the support, the
cumulative distribution function, the probability distribution function, the expected bid,
and the expected pro�t. I also establish the stochastic dominance rank between suppliers'
cumulative distribution functions.

First, the lower bound of the support is:

bnθn + bnθs − tθs = P (θn − T )⇒ bn =
P (θn − T ) + tθs

θn + θs

bsθs + bsT − tT = 0⇒ bs =
tT

θs + T
(23)

Second, I work out the cumulative distribution function.
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Fs(b) =


0 if b < b

(b− b)(θn + θs)

b [(θs + θn)− (θn − T )]− t min {θs, k − θn}
if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
(b− b)(θs + T )

b(θs + T )− tT
if b ∈ (b, P )

1 if b = P

(24)

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=

(θn + θs)(b(θs + T )− tθs)
(b(θs + T )− tθs)2

fn(b) =
∂Fn(b)

∂b
=

(θs + T )(b(θs + T )− tT )
(b(θs + T )− tT )2

(25)

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
(θn + θs)(b(θs + T )− tθs)

(b(θs + T )− tθs)2
+ (1− Fs(P ))P

=
(θn + θs)(b(θs + T )− tθs)

(θs + T )2[
ln

(
P (θs + T )− tθs
b(θs + T )− tθs

)
− tθs
P (θs + T )− tθs

+
tθs

b(θs + T )− tθs

]
+(1− Fs(P ))P

En(b) =

∫ P

b

bfn(bs)∂b =

∫ P

b

b
(θs + T )(b(θs + T )− tT )

(b(θs + T )− tT )2
+ (1− Fn(P ))P

=
(b(θs + T )− tT )

(θs + T )[
ln

(
P (θs + T )− tT
b(θs + T )− tT

)
− tT

P (θs + T )− tT
+

tT

b(θs + T )− tT

]
+(1− Fn(P ))P (26)

I have solved equation ?? by substituting the variables:

U = b(θs + T )− tθs ⇒ b =
U + tθs
θs + T

∂U

∂b
= θs + T ⇒ ∂b =

∂U

θs + T
and

U = b(θs + T )− tT ⇒ b =
U + tT

θs + T
∂U

∂b
= θs + T ⇒ ∂b =

∂U

θs + T
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Fifth, the expected pro�t is de�ned by equation ?? and is equal to πn = b(θs+θn)− tθs
and πs = b(θs + T )− tT .

When t = 0, the cumulative distribution function can be written as Ci(θ, k, T ) multi-

plied by
b

b2
. Therefore, following the theory of truncated Pareto distributions, the stochas-

tic dominance rank between Fn(b) and Fs(b) can be established by comparing Cn(θ, k, T )
with Cs(θ, k, T ). In contrast, when t > 0, to establish the stochastic dominance rank, it
is necessary to follow a di�erent approach. First, I work out the transmission tari� that

equalizes bs and bn, and the transmission tari� that equalizes
∂Fs(b)

∂b

∣∣∣∣
b=b

and
∂Fn(b)

∂b

∣∣∣∣
b=b

.

I work out the transmission tari� that equalizes bs and bn.

t̂ | bn =
P (θn − T ) + t̂θs

θn + θs
=

t̂T

θs + T
= bs ⇔

t̂ =
P (θn − T )(θs + T )

T (θn + θs)− θs(θs + T )
(27)

Moreover, if bn ≥ bs, then Fs(b) is continuous in the upper bound of the support,
and Fn(b) is discontinuous in the upper bound of the support. If bn < bs, then Fs(b) is
discontinuous in the upper bound of the support, and Fn(b) is continuous in the upper
bound of the support.

If bn ≥ bs ⇒ Fs(P ) = 1

Fn(P ) =
(P (θs + T )− tθs)(θs + T )

(P (θs + T )− tT )(θs + θn)

If bn < bs ⇒ Fs(P ) =
(P (θs + T )− tT )(θs + θn)

(P (θs + T )− tθs)(θs + T )

Fn(P ) = 1 (28)

I work out the slope of the cumulative distribution function at the lower bound of the

support, and I work out the transmission tari� that equalizes
∂Fs(b)

∂b

∣∣∣∣
b=b

and
∂Fn(b)

∂b

∣∣∣∣
b=b

.

To do that, �rst, I have to work out the slope of the cumulative distribution function,

∂Fs(b)

∂b
=

(θs + θn)(b(θs + T )− tθs)
(b(θs + θn)− tθs − b(θn − T ))2

> 0

∂Fn(b)

∂b
=

(θs + T )(b(θs + T )− tT )
(b(θs + T )− tT )2

> 0.

Therefore, the slope of the cumulative distribution function at the lower bound of the
support is de�ned by:

∂Fs(b)

∂b

∣∣∣∣
b=b

=
(θs + θn)

(b(θs + θn)− tθs − b(θn − T ))
∂Fn(b)

∂b

∣∣∣∣
b=b

=
(θs + T )

(b(θs + T )− tT )
.
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Figure 9: Relation between transmission tari�s and stochastic dominance

Fn(b) < Fs(b) Fn(b) ≶ Fs(b) Fn(b) > Fs(b)

bn > bs bn < bs

t = 0 t̃ = t̂ θn−T
θn+θs t̂ = P (θn−T )(θs+T )

T (θn+θs)−θs(θs+T )

∂Fn(b)/∂b < Fs(b)/∂b
Fn(P ) < Fs(P ) = 1

∂Fn(b)/∂b = Fs(b)/∂b
Fn(P ) < Fs(P ) = 1

∂Fn(b)/∂b > Fs(b)/∂b
Fn(P ) = Fs(P ) = 1

Hence, the transmission tari� that equalizes
∂Fs(b)

∂b

∣∣∣∣
b=b

and
∂Fn(b)

∂b

∣∣∣∣
b=b

is de�ned by:

t̃ | ∂Fn(b)
∂b

∣∣∣∣
b=b

=
(θs + T )

b(θs + T − tT )
=

(θs + θn)

(b(θs + θn)− tθs − b(θn − T ))
=
∂Fs(b)

∂b

∣∣∣∣
b=b

⇔

t̃ =
b(θn − T )(θs + T )

T (θn + θs)− θs(θs + T )
. (29)

Given that b < P , it is straightforward to check that t̃ < t̂. Moreover, to work out a
close form solution of t̃, it is enough to plug the value of b computed in ?? into ??. For
the particular values of demand (θs, θn) that belong to area A1, the formula is de�ned by

t̃ = t̂
(θn − T )
(θs + θn)

.

As can be observed in �gure ??, equations ?? and ?? de�ne two thresholds. When
t ∈ [0, t̃], the cumulative distribution function of the supplier located in the high demand
market (Fn(b)) stochastic dominates the one of the supplier located in the low demand
market (Fs(b)). First, Fn(b)'s slope at the lower-bound of the support is lower than
Fs(b)'s slope at the lower-bound of the support. Second, Fn(P ) < Fs(P ). Therefore,
given that the cumulative distribution function is continuous, increasing and concave,
Fn(b) < Fs(b)∀b ∈ [b, P ], i.e., Fn(b) stochastically dominates Fs(b). When t ∈ (t̃, t̂],
none cumulative distribution functions stochastically dominates the other. First, Fn(b)'s
slope at the lower-bound of the support is higher than Fs(b)'s slope at the lower-bound of
the support. Second, Fn(P ) < Fs(P ). Therefore, given that the cumulative distribution
function is continuous, increasing and concave, Fn(b) and Fs(b) cross each other for some
b ∈ [b, P ]. Therefore, none cumulative distribution function stochastically dominates the
other. Finally, when t ≥ t̂, using the same procedure as above, it can be shown that
Fn(b) > Fs(b)∀b ∈ [b, P ], i.e., Fs(b) stochastically dominates Fn(b).

Proposition 4. E�ect of an increase in transmission capacity in the presence of trans-
mission constraints and positive transmission tari�s.

In the presence of transmission capacity constraints and transmission tari�s, the "size"
and "cost" e�ects determine the equilibrium. These two mechanisms work in opposite
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directions modifying the relevant variables of the model (lower bound of the support,
expected bids and expected pro�ts) in a non-monotonic pattern. Therefore, no clear con-
clusions can be obtained through the analysis of the partial derivatives. However, the
e�ect of an increase in transmission capacity can be studied by using equations ??, ??,
?? and ??.

In this section, I present the static comparative analysis in order to illustrate the dif-
�culties to obtain a close form solution. I present the results for area A1. In the rest of
the areas, the analysis follows a similar approach.

∂bn
∂T

=
−P

(θs + θn)
< 0

∂bs
∂T

=
t(θs + T )− tT

(θs + T )2
=

tθs
(θs + T )2

> 0

∂Fn(P )

∂T
=

(2P (θs + T )− tθs) ((P (θs + T )− tT )(θn + θs)))

((P (θs + T )− tT )(θn + θs))
2 +

t(θn + θs)(P (θs + T )− tθs)(θs + T )

((P (θs + T )− tT )(θn + θs))
2 > 0

∂En(b)

∂T
=

∂b

∂T
(θs + T ) + (b− t)(θs + T )− b(θs + T ) + tT

(θs + T )2[
ln

(
P (θs + T )− tT
b(θs + T )− tT

)
− tT

P (θs + T )− tT
+

tT

b(θs + T )− tT

]
+

b(θs + T )− tT
θs + T[

b(θs + T )− tT
P (θs + T )− tT

]
(P − t)(b(θs + T )− tT )−

(
∂b

∂T
(θs + T ) + b− t

)
(P (θs + T )− tT )

(b(θs + T )− tT )2

+

b(θs + T )− tT
θs + T

[
−t(P (θs + T )− tT )− (P − t)tT

(P (θs + T )− tT )2

]
+

b(θs + T )− tT
θs + T

t(b(θs + T )− tT )−
(
∂b

∂T
(θs + T ) + b− t

)
tT

(b(θs + T )− tT )2
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∂Es(b)

∂T
=

∂b

∂T
(θs + T )3(θs + θn) + b(θn + θs)(θs + T )2 − 2(θs + T ) [(θs + θn)(b(θs + T )− tθs)]

(θs + T )4[
ln

(
P (θs + T )− tθs
b(θs + T )− tθs

)
− tθs
P (θs + T )− tθs

+
tθs

b(θs + T )− tθs

]
+

(θn + θs)(b(θs + T )− tT )
(θs + T )2[

(b(θs + T )− tθs)
P (θs + T )− tθs

]
P (b(θs + T )− tθs)−

(
∂b

∂T
(θs + T ) + b

)
(P (θs + T )− tθs)

(b(θs + T )− tθs)2

+

(θn + θs)(b(θs + T )− tθs)
(θs + T )2

[
− Ptθs
(P (θs + T )− tθs)2

]
+

(θn + θs)(b(θs + T )− tθs)
θs + T

−btθs −
(
∂b

∂T
(θs + T )tθs

)
(b(θs + T )− tθs)2


∂πn
∂T

= −P < 0

∂πs
∂T

=
−P

(θs + θn)
(θs + T ) +

P (θn − T ) + tθs
(θs + θn)

− t

=
P (θn − 2T − θs)− tθn

(θs + θn)

Annex 3. Equilibrium when suppliers pay a point of connection

tari�

In this paper, I assume that suppliers face transmission constraints and that they are
charged by a linear transmission tari� for the electricity sold in the other market. Under
this assumption, I show that suppliers' strategies are a�ected by the "size" and the "cost"
e�ects that work in the opposite direction and determine equilibrium outcome allocations.
However, when suppliers face transmission constraints and they are charged on basis of
the total electricity that they inject into the grid (point of connection tari�), the suppli-
ers pay the same transmission tari� for the electricity sold in their own market and the
electricity sold in the other market.

Therefore, with point of connection tari�s, the competitive advantage (cost e�ect)
derived from the location in the high-demand market disappears and equilibrium market
outcomes exclusively depend on the size e�ect. Moreover, given that electricity demand is
very inelastic, an increase in production costs is passed through to consumers that face an
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increase in equilibrium prices in both markets. This result is in line with the pass through
literature (Marion and Muehlegger 2011; Fabra and Reguant 2014). Hence, a change in
the design of transmission tari�s from the design used in the majority of the countries to
the one proposed in this article could induce a large improvement in consumer welfare.

The approach to work out the lower bound of the support, the cumulative distribu-
tion function, the probability distribution function, the expected equilibrium price and the
expected pro�t is similar to the one used in propositions 1 and 3. To facilitate the un-
derstanding of the equilibrium and to establish comparisons with the transmission tari�s
scenario, in area A1, I work out the lower bound of the support, the cumulative distri-
bution function, the probability distribution function, the expected equilibrium price and
the expected pro�t. I also analyze the e�ect that an increase in transmission capacity has
on the main variables of the model. I conclude the annex by comparing the equilibrium
outcome of the three model speci�cations.

First, I work out the lower bound of the support. Using the same approach as in annex
one, it is straightforward to show that bn > bs. Hence, S = [max {bn, bs} , P ] = [bn, P ],
where bn can be derived from (bn − t)(θn + θs) = (P − t)(θn − T ), where t is the point
of connection tari� that it is taken as a cost by the suppliers. Therefore, in area A1,

S =

[
t+

(P − t)(θn − T )
(θn + θs)

, P

]
.

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b
θn + θs
θs + T

b− b
b− t

= Cn(θ, k, T )
b− b
b− t

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
θs + T

θs + T

b− b
b− t

= Cs(θ, k, T )
b− b
b− t

if b ∈ (b, P )

1 if b = P

(30)

As can be observed in equation ?? when the transmission tari�s are null (t = 0), and
in equation ?? with point of connection tari�s, the cumulative distribution function can

be written as a constant Ci(θ, k, T ) multiplied by
b− b
b

or by
b− b
b− t

. This contrast with

the positive transmission tari�s scenario (t > 0), where the denominator in equation ??

cannot be factorized, and the cumulative distribution function cannot be simpli�ed.

Given that bn > bs, it is easy to show that FS(P ) is continuous in the upper bound of
the support, and that Fn(P ) is discontinuous in the upper bound of the support.
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Fs(P ) =
θn + θs
θs + T

P − t− (P − t)(θn − T )
θn + θs

P − t
= Cn(θ, k, T )

P − t− (P − t)(θn − T )
θn + θs

P − t
= 1

Fn(P ) =
θs + T

θs + T

P − t− P − t(θn − T )
θn + θs

P − t
= Cs(θ, k, T )

P − t− P − t(θn − T )
θn + θs

P − t
=

=
(θs + T )

(θn + θs)
< 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=
θn + θs
θs + T

b− t
(b− t)2

= Cn(θ, k, T )
b− t

(b− t)2

fn(b) =
∂Fn(b)

∂b
=
θs + T

θs + T

b− t
(b− t)2

= Cs(θ, k, T )
b− t

(b− t)2
(31)

As can be observed in equation ?? when the transmission tari�s are null (t = 0), and
in equation ?? with point of connection tari�s, the probability distribution function can

be written as a constant Ci(θ, k, T ) multiplied by
b

b2
or by

b− t
(b− t)2

. This contrast with

the positive transmission tari�s scenario (t > 0), where the denominator in equation ??

cannot be simpli�ed.

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
θn + θs
θs + T

(b− t)
(b− t)2

∂b =

θn + θs
θs + T

(b− t)
[
ln

(
P − t
b− t

)
− t

P − t
+

t

b− t

]
En(b) =

∫ P

b

bfn(bn)∂b =

∫ P

b

b
b− t

(b− t)2
∂b+ (1− Fn(P ))P =

(b− t)
[
ln

(
P − t
b− t

)
− t

P − t
+

t

b− t

]
+ (1− Fn(P ))P (32)

In equation ??, I have solved by substituting variables:

U = b− t⇒ b = U + t
∂U

∂b
= 1⇒ ∂b = ∂U

As can be observed in equation ??, with point of connection tari�s, the expected bid

formula cannot be simpli�ed as Ci(θ, k, T ) multiplied by b ln

(
P

b

)
as when the transmis-

sion tari�s are null (t = 0). In contrast, given that to work out the expected bid, it is
necessary to integrate by parts, the expected bid with point of connection tari�s (equation
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Table 4: The e�ect of transmission constraints, transmission tari�s and point of connection
tari�s on the main variables of the model (θs = 5, θn = 55, k = 60, c = 0, P = 7)

T b πn πs π En(b) Es(b) θnEn(b) + θsEs(b)

Model I 40 1.75 105 184 289 4.2 3.2 247
Model II 40 1.87 105 24 129 3.1 3.3 187
Model III 40 2.87 82.5 62 144.5 4.8 4 284

??), and the expected bid with positive transmission tari�s (t > 0) (equation ??) are very
similar.

Fifth, the expected pro�t is de�ned by πn = (b− t)(θs + θn) and πs = (b− t)(θs + T ).

Figure 10: Cumulative Distribution Functions of models I, II and III.

model_I_II_III-eps-converted-to.pdf

Model comparison

In the last part of the annex, I compare the equilibrium outcome of the three di�er-
ent model speci�cations: transmission constraints and zero transmission tari�s (model I);
transmission constraints and positive transmission tari�s (model II) and, �nally, trans-
mission constraints and positive point of connection tari�s (model III).

As can be observed in �gure ??, the three di�erent model speci�cations a�ect suppli-
ers' strategies in di�erent ways, and that induces important changes on the main variables
of the model (table ??).

I have discussed the three models in detail in section four (pages. 18-19). I refer the
reader to those pages to follow the analysis.

35



References

Aban, I. B., Meerschaert M. M. and Panorska A. K., 2006,"Parameter Estimation for the
Truncated Pareto Distribution," Journal of the American Statistical Association, 101,
473, 270-277.

Baye, M. R., Kovenock D., and Vries C. G., 1992, "It Takes Two to Tango: Equilibria in
a Model of Sales," Games and Economic Behavior, 4, 493-510.

Blázquez, M., 2014, "E�ects of Transmission Constraints on Electricity Auctions," PhD
dissertation, University of Bologna.

Borenstein, S., Bushnell J. and Stoft S., 2000, "The Competitive e�ects of transmission
capacity in a deregulated electricity industry," Rand Journal of Economics, 31, 294-325.

Brezis, E., Krugman P. R. and Tsiddon D., 1993, "Leapfrogging in International Compe-
tition: A Theory of Cycles in National Technological Leadership," American Economic
Review, 83, 1211-219.

Chao, H-P., and Peck S., 1996, "A Market Mechanism for Electric Power Transmission",
Journal of Regulatory Economics, 10, 25-59.

Dasgupta, P., and Maskin E., 1986, "The Existence of Equilibrium in Discontinuous Eco-
nomic Games, II: Applications," Review of Economic Studies, 53, 27-41.

Deneckere, R., and Kovenock D., 1996, "Bertrand-Edgeworth Duopoly with Unit Cost
Asymmetry," Economic Theory, 8, 1-25.

Dixon, H., 1984, "The existence of mixed-strategy equilibria in a price-setting oligopoly
with convex costs," Economics Letters, 16, 205-212.

Downward, A., Philpott A. and Ruddell K., 2015, "Supply Function Equilibrium with
Taxed Bene�ts," EPOC Working paper.

Energinet, 2015, "System Plan 2015. Electricity and Gas in Denmark."

ENTSO-E, 2013, "ENTSO-E ITC Transit Losses Data Report."

ENTSO-E, 2014, "10-Year Network Development Plan."

ENTSO-E, 2015, "Electricity Regionalisation in Motion."

ENTSO-E, 2016, "ENTSO-E ITC Overview of Transmission Tari�s in Europe: Synthesis
2014."

Escobar, J.F., and Jofré A., 2010, "Monopolistic Competition in Electricity Networks
with Resistance Losses," Economic Theory, 44, 101-121.

36



European Commission, 2013, "Commission Regulation (EU) No 347/2013. On Guidelines
for Trans-European Energy Infrastructure and Repealing Decision No 1364/2006/EC and
amending Regulation (EC) No 713/2009, (EC) No 714/2009 and (EC) No 715/2009."

European Commission, 2015, "Commission Regulation (EU) No 2015/1222. Establishing
a Guideline on Capacity Allocation and Congestion Management."

Fabra, N., von der Fehr N. H. and Harbord D., 2006, "Designing Electricity Auctions,"
Rand Journal of Economics, 37, 23-46.

Fabra, N., and Reguant M., 2014, "Pass-Through of Emissions Costs in Electricity Mar-
kets," American Economic Review, 104, 2872-2899.

von der Fehr, N.H., and Harbord D., 1993, "Spot Market Competition in the UK Eletric-
ity Industry," Economic Journal, 103, 531-46.

Flam, H., and Helpman E., 1987, "Vertical Product Di�erentiation and North-South
Trade," American Economic Review, 77, 810-822.

Gilbert, R., Neuho� K. and Newbery D., 2004, "Allocating Transmission to Mitigate
Market Power in Electricity Networks," The RAND Journal of Economics, 35, 691-709.

Hogan, W., 1992, "Contract Networks for Electric Power Transmission", Journal of Reg-
ulatory Economics, 4, 211-242.

Holmberg, P., and Philpott A.B., 2012, "Supply Function Equilibria in Transportation
Networks," IFN Working Paper 945.

Hu, S., Kapuscinski R. and Lovejoy W. S., 2010, "Bertrand-Edgeworth Auction with
Multiple Asymmetric Bidders: The Case with Demand Elasticity," SSRN Working Paper.

Janssen, M. C. W., and Moraga-González J. L., 2004, "Strategic Pricing, Consumer Search
and the Number of Firms," Review of Economic Studies, 71, 1089-1118.

Joskow, P. L., and Tirole J., 2000, "Transmission Rights and Market Power on Electric
Power Networks," RAND Journal of Economics, 31, 450-487.

Karlin, S., 1959, "Mathematical Methods and Theory in Games, Programming and Eco-
nomic," London: Pergamon Press.

Kreps, D. M., and Scheinkman J. A., 1984 "Quantity Precommitment and Bertrand Com-
petition Yield Cournot Outcomes," RAND Journal of Economics, 14, 326-337.

Krugman, P., 1980, "Scale Economies, Product Di�erentiation, and the Pattern of Trade,"
American Economic Review, 70, 950-959.

Marion, J., and Muehlegger E., 2011, "Fuel Tax Incidence and Supply Conditions," Jour-
nal of Public Economics, 95, 1202-12.

37



Motta, M., Thisse J-F. and Cabrales A., 1997, "On the Persistence of Leadership or
Leapfrogging in International Trade," International Economic Review, 38, 4, 809-824.

Nord Pool, 2007, "TSO Congestion Rent. How to Calculate the Congestion Rents."

Nord Pool, 2010, "Point Tari� System."

Osborne, M., and Pitchik C., 1986, "Price Competition in a capacity-constrained duopoly,"
Journal of Economic Theory, 38, 283-260.

Price Coupling Regions, 2016a, "EUPHEMIA Public Description PCR Market Coupling
Algorithm."

Price Coupling Regions, 2016b, "Price Coupling Regions Project. Main Features."

Rosenthal, R.W., 1980, "A Model in which an Increase in the Number of Sellers Leads to
a Higher Price," Econometrica, 48, 1575-1579.

Shapley, L. S., 1957, "A Duopoly Model with Price Competition," Econometrica, 25, 354-
355.

Shilony, Y., 1977, "Mixed Pricing in Oligopoly," Journal of Economic Theory, 14, 373-388.

Shitovitz, B., 1973, "Oligopoly in Markets with Continuum of Traders," Econometrica,
41, 467-501.

Svenska Kraftnät, 2012, "Transmission Tari�" http://www.svk.se/Start/English/Operations-
and-market/Transmission-tari�/.

Statnett, 2015, "Statnett's Operations and Market Development Plan 2014-20."

Varian, H., 1980, "A Model of Sales," American Economic Review, 70, 651-659.

Zaninetti, L., and Ferraro M., 2008, "On Truncated Pareto Distribution with Applica-
tions," Central European Journal of Physics, 6, 1, 1-6.

38

http://www.svk.se/Start/English/Operations-and-market/Transmission-tariff/
http://www.svk.se/Start/English/Operations-and-market/Transmission-tariff/

