Estimating Parameter Uncertainty in the StoNED Model

Ørjan Mydland^{1,2} Jonas Andersson¹ Endre Bjørndal¹

¹Norwegian School of Economics, Norway

²Høgskolen i Innlandet, Norway

February 13, 2018

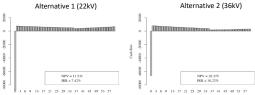
Outline

- Incentive regulation
- The StoNEZD benchmarking model
- Bootstrapping procedure for assessing uncertainty in parameter estimates
- Monte Carlo Study
- Conclusions

Incentive regulation

- Incentives for efficient organization, operation, and investments
 - Revenue should be independent of the regulated company's own cost
 - Revenue = cost of the "marginal" company, given the company's "output" (volume and quality)
 - Operating income: depends also on the company's efficiency and cost
- Sufficient revenue level to attract both financial and human capital
 - Competitive rate of return on invested capital
 - Accept continual efficiency differences and super-profits
- Yardstick implementation: $R_i = \alpha C_i^* + (1 \alpha)C_i$
 - *C** typically determined with benchmarking methods: DEA, SFA, StoNED/StoNEZD

Marginal cost estimates and investment incentives



	Project 1	Project 2
Stage 1 (DEA shadow prices)	-12 582	17 409
Stage 2 (env. factors)	-2 317	1 369
Stage 3 (calibration)	26 430	9 601
NPV	11 531	28 379

The StoNEZD model (Johnson and Kuosmanen, 2011)

$$\min_{\gamma,\alpha,\beta,\delta,\epsilon} \sum_{i} \epsilon_{i}^{2} \tag{1}$$

s.t.

$$\ln x_i = \ln \gamma_i + \sum_k \delta_k z_{ki} + \epsilon_i \qquad \forall i \qquad (2)$$

$$\gamma_i = \alpha_i + \sum_r \beta_{ri} y_{ri} \qquad \forall i \qquad (3)$$

$$\gamma_i \ge \alpha_j + \sum_r \beta_{rj} y_{ri} \qquad \qquad \forall j, i \qquad (4)$$

 $\beta_{ri} \ge 0 \qquad \qquad \forall r, i \qquad (5)$

Method of moments

$$\hat{\sigma}_{u} = \sqrt[3]{\frac{\hat{M}_{3}}{\left(\frac{4}{\pi}-1\right)\sqrt{\frac{2}{\pi}}}},$$

$$\hat{\sigma}_{v} = \sqrt{\hat{M}_{2} - \left(\frac{\pi-2}{\pi}\right)\hat{\sigma}_{u}^{2}},$$
(6)
$$\hat{\sigma}_{v} = \sqrt{\hat{M}_{2} - \left(\frac{\pi-2}{\pi}\right)\hat{\sigma}_{u}^{2}},$$
(7)
where $\hat{M}_{2} = \sum_{i}(\hat{\epsilon}_{i}-\bar{\epsilon})^{2}/n$ and $\hat{M}_{3} = \sum_{i}(\hat{\epsilon}_{i}-\bar{\epsilon})^{3}/n.$

Estimated cost norm

$$\hat{\mu} = \hat{\sigma}_u \sqrt{2/\pi},\tag{8}$$

$$\hat{C}(\mathbf{y}_i, \mathbf{z}_i) = \left(\hat{\alpha}_i + \sum_r \hat{\beta}_{ri} y_{ri}\right) e^{-\hat{\mu} + \sum_k \hat{\delta}_k z_{ki}}$$
(9)

Parametric bootstrap

Use the estimates \(\hightarrow u\) and \(\hightarrow v\) to simulate bootstrap error terms for each of the \(i = 1, ..., n\) DMUs:

 $egin{aligned} \epsilon^*_i &= u^*_i + v^*_i \ u^*_i &\sim N(0, \hat{\sigma}^2_u)^+ \ v^*_i &\sim N(0, \hat{\sigma}^2_v) \end{aligned}$

Generate new cost numbers based on the simulated residuals and estimated parameter values:

$$x_i^* = \left(\hat{\alpha}_i + \sum_r \hat{\beta}_{ri} y_{ri}\right) e^{\epsilon_i^* + \sum_k \hat{\delta}_k z_{ki}}$$

- Sased on x^{*}, y, and z, use the StoNEZD procedure to estimate α^{*}, β^{*}, δ^{*}, σ^{*}_u and σ^{*}_v.
- Repeat 1-3 for B, say 1000, times. We now have B bootstrap estimates which can be seen as a draw from the sampling distribution of the parameter estimator(s).

8/13

Checking the reliability of the bootstrap estimates

"True" parameter values, α , β , δ , σ_u and σ_v (based on estimates from the Finnish data).

1 Simulate error term for each of the i = 1, ..., n DMUs:

$$egin{aligned} \epsilon_i &= u_i + v_i \ u_i &\sim N(0, \sigma_u^2)^+ \ v_i &\sim N(0, \sigma_v^2) \end{aligned}$$

Q Generate new cost numbers based on the simulated error terms:

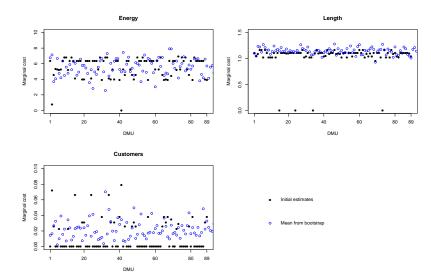
$$\tilde{x}_{i} = \left(\alpha_{i} + \sum_{r} \beta_{ri} y_{ri}\right) e^{\epsilon_{i} + \sum_{k} \delta_{k} z_{ki}}$$

- 3 Based on \tilde{x} , y, and z, use the StoNEZD procedure to estimate α , β , δ , σ_u and σ_v .
- **4** Save the estimates $\hat{\alpha}$, $\hat{\beta}$, $\hat{\delta}$, $\hat{\sigma}_u$ and $\hat{\sigma}_v$.
- Sun the bootstrap procedure to obtain measures of uncertainty for each parameter estimate, e.g. standard deviation. Save them.
- Repeat 1-5 S, say 1000, times. We now have S estimates for each parameter, each with a corresponding standard deviation.

Data for Finnish distribution companies (Kuosmanen, 2012)

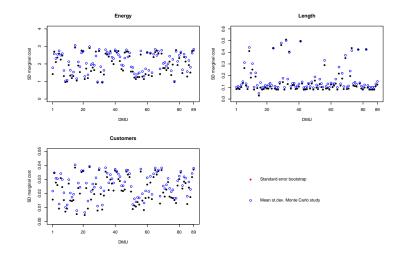
Variable	Label	Mean	St. Dev.	Min	Median	Max
Outputs						
Energy transmission (Gwh)	y ₁	480	972	15	171	6599
Length of network (km)	y ₂	4,135	10,223	51	989	67611
Number of customers	y ₂	35,449	71,871	24	11,081	420,473
Inputs						
Total cost (1000 €)	x	8,418	18,048	268	3,102	117,554
Environmental variables						
Proportion of underground cables	z	0.33	0.26	0.01	0.24	1.00

"True" beta values and mean of bootstrap values (B = 1000)



11/13

Bootstrap estimates (B = 1000) of st.dev. compared to mean from simulations (S = B = 100)



Conclusions and future research

- We study the performance of the bootstrap for making inference on the estimation of parameters, marginal costs, in the cost function of the StoNEZD model
- Preliminary results are mixed
 - Estimated means versus true means
 - Estimated uncertainty versus simulated uncertainty
- Future work
 - Run the study with larger values for B and S
 - Non-parametric bootstrap