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We study the optimum for tax problems with multidimensional tax bases
and multidimensional heterogeneity of agents. We use the Euler-Lagrange
formalism to show how the optimal tax function balances efficiency versus
equity considerations. The equity considerations are captured in a localized
distributional characteristic, a generalization of the distributional charac-
teristic first introduced by Feldstein (1972a,b). We apply these findings to
the optimal joint taxation of couples, and to the optimal mixed taxation of
capital and labour income. We show robustness for pooling, bunching and
restrictions to the tax base.
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1. Introduction
The problem of optimal mixed taxation with multidimensional types, as stated by Mir-
rlees (1976), has long eluded an exact solution. Most optimal-tax models taking into
account distributional concerns, in the tradition of Mirrlees (1971) and Atkinson and
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Stiglitz (1976), assume that a single parameter, often an ability parameter, drives dif-
ferences between agents. This makes it difficult to study problems with multiple tax
bases where more extensive type heterogeneity is deemed relevant. The literature offers
no exact solution for example for the optimal mixed tax problem for labour and capital
income when individuals differ simultaneously in a number of dimensions, e.g. in their
abilities and their preferences for labour supply and for investment, or in the inheritances
they receive. Atkinson and Stiglitz (2015, p.xxi) list this question as one of the central
current challenges in public finance. My aim in this paper is to provide a solution.

This paper makes two contributions. The first is that it is the first to characterize
the full optimum in terms of sufficient statistics and distributional characteristics. The
second is that it introduces a solution method which avoids the labour intensity and
technical complications inherent to existing approaches. I apply my results to a number
of previously unsolved problems.

In optimal-tax theory it is customary to search for a tax system that maximizes a so-
cial welfare function. It maps the “social state”, e.g. the distribution of attained utility
levels or disposable incomes, on a scalar indicating a social judgment about that social
state. It takes into account normative criteria, for example social preferences for redis-
tribution, efficiency and responsibility. The maximization of the social welfare function
occurs subject to constraints such as the government budget, incentive compatibility and
restrictions to tax and benefit policies. Boadway (2012) gives an overview of the recent
literature.

The case with a one-dimensional tax base has been well studied. Saez (2001) and
Jacquet and Lehmann (2016) offer exact solutions. The optimal tax rate at each income
level is formulated as a product of three terms, traditionally denoted as A, B and
C,1 where the A-term relates negatively to the excess burden associated with the tax,
the B-term concerns the distributional advantage of levying an additional tax from all
individuals at higher income levels, and the C-term takes into account the thickness of
the income distribution at higher levels.2

There are two broad approaches in the literature to study the problem with multidi-
mensional tax bases, both of which lead to technical complications. The dual approach
to optimal taxation, which directly uses the tax function as an instrument, is gaining
popularity (see e.g. Christiansen (1984), Saez (2002), Werquin, Tsyvinski, and Golosov
(2015)). It is customary to first construct perturbations of the tax function, and then to
find conditions for such perturbations to have zero effect on social welfare. Some authors
construct combined perturbations such that the total effect on the government budget
is zero (e.g. Christiansen (1984), Saez (2002)). Others use Gateaux derivatives in the
direction of some reform function (Werquin, Tsyvinski, and Golosov (2015)). Although
the perturbation approach yields important insights, it becomes cumbersome when more
complex tax systems are studied.

Saez (2002), one of the founders of the perturbation approach, makes an important
1See for example Diamond (1998, p.86) for an early use of this notation.
2Gerritsen (2016) and Scheuer and Werning (2016) use perturbations to study the problem with a

one-dimensional tax base from different angles.
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advancement by finding conditions for optimal commodity taxes to be non-uniform. His
model is robust for multidimensional heterogeneity of the agents. He leaves finding
optimal tax formulas as an “extremely useful” and “important task” for future research
(2002, p.229). Werquin, Tsyvinski, and Golosov (2015) go beyond desirability conditions,
finding a second-order partial differential equation for the tax function, characterizing
the optimum for a quite general multidimensional problem. They stop short of solving
this equation.

The second, more traditional approach to study the optimal-tax problem is referred to
as the primal or the mechanism design approach. Instead of using variations to the tax
functions to figure out the optimum, one looks for an optimal allocation using individual
decision variables as controls, for example the consumption and labour supply variables
of the different individuals. The social welfare function is optimized using a Hamiltonian
or a Lagrangian. This leads to optimality conditions for the tax wedges in a fairly
straightforward way. The greater challenge is to find a tax function which implements
the optimum. An optimal tax system will generally be prohibitively complicated. In
a setting with multiple periods, for example, tax liabilities will generally depend in
non-separable ways on labour income and capital incomes in all periods at the same
time. Often it appears impossible to characterize this function analytically. Even in
cases where an analytical solution can be found, the task of reformulating it in terms
of observable statistics can be labour intensive. A further limitation of the approach is
that it has difficulties to handle multiple dimensions of heterogeneity of the agents, or
important restrictions to the tax function.

Diamond and Spinnewijn (2011) use this mechanism design approach to study the
problem of optimal mixed taxation of capital and labour income with heterogeneous
abilities and discount rates. They find desirability conditions in terms of the fundamen-
tals of the model. They do not characterize the optimum.

Mirrlees (1976) states the full optimization problem with a multidimensional tax base
and multidimensional heterogeneity of the agents, but solves it only for the case with
one-dimensional heterogeneity of the agents. For the case with multidimensional het-
erogeneity he finds a second-order partial differential equation for the utility profile as
a necessary condition for the optimum. Kleven, Kreiner, and Saez (2007) study the
optimal joint taxation of couples, finding a necessary condition of the exact same form.

Interestingly, the second-order partial differential equation found by Mirrlees (1976)
has the same form as the previously mentioned equation found by Werquin, Tsyvinski,
and Golosov (2015) – though it is expressed in terms of fundamentals of the model rather
than in terms of observable variables. Since second-order partial differential equations
of similar form are encountered in both approaches, the key to solving the optimal-tax
problem appears to lie in finding solutions for these equations.

Renes and Zoutman (2016a) make important headway by treating the second-order
differential equation found by Mirrlees (1976) as a first-order differential equation in the
multipliers of the incentive compatibility constraint. They show that these multipliers
form a conservative vector field, and use this fact to convert the problem into a new
second-order partial differential equation for which solution methods are more readily
available. They apply the Green functions approach, well-studied in physics and en-
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gineering but less familiar in economics, to characterize the optimum. Their method
still has a number of limitations. It cannot handle the case with more types than tax
bases – e.g. the cases treated by Saez (2001, 2002) and Jacquet and Lehmann (2016).
It also requires perfect screening, meaning that at most one type pools at each tax-base
level. The solutions are formulated in terms of fundamentals of the problem rather
than observable variables, lacking a straightforward economic interpretation. And the
procedure to convert the problem to a new second-order partial differential equation is
complicated.

The present paper suggests an alternative. The central methodological insight is
that the problem of optimal multidimensional taxation is essentially a field-theoretical
problem: the tax function is a scalar field over the tax base space, which is shaped in
order to optimize an objective, a social welfare functional subject to a resource constraint.
Both the level of the tax function at each value of the tax base (the tax liability) as its
gradient (the marginal tax rates) have an impact and need to be taken into account.

A central difference with traditional field theory is that the objective function is not
defined over the tax base space, but over a set of individuals, members of a multidimen-
sional type space. These individuals are free to choose any value in the tax base space,
as long as they can afford it. It is even possible for multiple types to choose the same
value of the tax base. This difference leads to a number of complications, but these
are not insurmountable. With some modifications it is still possible to characterize the
optimal tax function using well-established techniques.

I show how this optimum is characterized by an Euler-Lagrange equation, first graphi-
cally and then formally. This is a second-order partial differential equation which gener-
alizes the equation found by Werquin, Tsyvinski, and Golosov (2015). Next I show how
standard methods can be used to characterize solutions to the Euler-Lagrange equation.
I treat it as a first-order partial differential equation, and introduce multidimensional
Green functions to characterize the optimum directly in terms of observable quantities
such as population densities, average behavioural responses and average welfare weights
at each value of the tax base.

An advantage of using the tax function as an instrument, rather than the allocation,
is that it immediately leads to a characterization in terms of sufficient statistics, similar
to the findings of Saez (2001) for a one-dimensional tax base. This makes the results
much easier to interpret. Using the tax function as an instrument also makes that no
incentive compatibility constraints need to be taken into account, avoiding the usual
implementation issues that surface in multidimensional problems. Moreover, it allows
to remain agnostic about the process determining individual behaviour, as I do in most
of the paper, and it allows to distinguish between the wellbeing measures taken into
account by the planner on one hand, and the preferences driving individual behaviour
on the other.

The resulting characterization of the optimum is very similar to that for the problem
with linear taxes as stated by Atkinson and Stiglitz (1980, p.386-390). At any given
value of the multidimensional tax base, the efficiency effects of a marginal tax reform
should be balanced against its distributional effects. The proportional reduction of any
component of aggregate demand, along compensated demand curves, should be equal
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to a local distributional characteristic of that component. The distributional side of
this equation is new. It is a localized version of the distributional characteristic first
introduced by Feldstein (1972a,b). If we associate a marginal social welfare weight with
each potential value of the tax base, then the local covariance of these welfare weights
with the tax-base component under consideration determines the distributional impact
on social welfare. These findings apply even when the dimensionality of the type space
is higher than that of the tax base space.

Although these are interesting insights, they still do not teach us much about the
underlying economics. I go on to repeat the same techniques in the type space, still
using the tax function as an instrument. This again leads to a characterization of the
optimum where efficiency effects of a tax reform are balanced against equity effects.
The equity effects now consist of two parts. First there are again local distributional
characteristics of the different traits of the individuals. If for example individuals who
receive a larger inheritance have much lower marginal social welfare weights, this will
lead to a large distributional characteristic for this trait. Second, there are additional
terms indicating how well a given component of the tax base is suited to target a given
trait of the individuals. These two elements, how much we care about particular traits
(a normative part) and how well these traits can be targeted (an informational part),
determine the distributional impact of a given tax base component. These results extend
findings by Mirrlees (1976) and Renes and Zoutman (2016a).

I illustrate my results using a number of examples, applying either to the joint taxation
of couples or to the joint taxation of labour and capital incomes. My aim is not to
give a thorough discussion of these topics. Indeed, important normative issues such as
whether the government should tax individuals or families, or how families should enter
in social preferences, are not taken into account. Neither do I discuss what social welfare
weights should look like, e.g. whether the government should support couples where one
individual stays at home, or rather whether it should stimulate equal participation in
the labour market. The point I want to illustrate is that once the tax base, the social
objective and a behavioural model have been chosen, then the techniques in this paper
can be used to gain insight into the optimal tax system.

Still these examples yield some interesting results. For the problem of the optimal
joint taxation of couples, as posed by Kleven, Kreiner, and Saez (2007), I am able to
characterize for the first time the solution in terms of local distributional characteristics
of the households. For the optimal tax mix between capital income and labour income,
I study the case where discount rates are heterogeneous, a case that is excluded e.g.
by Werquin, Tsyvinski, and Golosov (2015). I confirm a number of classical reasons
for marginal tax rates on capital income to be non-zero: when discount rates are di-
rectly driven by labour abilities (Saez, 2002), when labour supply is a complement or a
substitute to consumption (Corlett and Hague, 1953), and when investment technology
is affected by an ability parameter. The latter complements the findings of (Gerritsen
et al., 2015). Even when neither of these reasons applies, an accidental correlation be-
tween the labour abilities and the discount rates suffices for the optimal marginal tax
rate on capital income to be non-negative (Diamond and Spinnewijn, 2011). I show that
the latter correlation remains sufficient even when social welfare weights are constructed
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such that they do not depend on the discount rates, holding individuals responsible for
their preferences. I show that when rates of returns depend on the individuals’ discount
rates, then the optimal marginal tax rates on capital income again differ from zero. I
state for the first time the optimality condition, extending on the desirability conditions
formulated in the past literature. It is straightforward to extend this formulation e.g. to
heterogeneous wealth endowments.

There are a number of possible complications while dealing with multidimensional
tax bases and multidimensional heterogeneity of the agents. The most important is the
possibility of bunching. Although Kleven, Kreiner, and Saez (2007) show that bunching
may not be a problem for a large range of social welfare objectives, it cannot simply
be ignored. I do not attempt to characterize when and where bunching will occur in
the optimum. I rather give necessary conditions to check whether a given tax function,
with our without bunching, is optimal given information about population densities and
behavioural responses. I show that the approach described in this paper remains valid
even when bunching occurs. Similarly, I show how to deal with potential issues such as
pooling, double deviations, and restrictions to the tax base space.

To the best of my knowledge, the possible use of the Euler-Lagrange formalism is
mentioned just once in the optimal-tax literature. Bohácek and Kejak (2016) construct
an Euler-Lagrangian to solve a dynamic problem with heterogeneous types and a one-
dimensional tax base. They prove the correctness of the approach for their specific
problem. They provide an analytical solution only for the end-points, resorting to sim-
ulations for the rest of the type distribution. The above-mentioned partial differential
equation identified by Werquin, Tsyvinski, and Golosov (2015) is a specialized version
of the Euler-Lagrange equation. It was derived for a specific optimal tax problem, and
excludes for example heterogeneous discount rates.

The present paper shows the general applicability of the Euler-Lagrange framework,
so that it is no longer necessary to construct new perturbations and list their effects
each time a new problem is encountered. Furthermore, as far as I know, it is the first to
identify the localized distributional characteristics that characterize the optimum.

In this paper I do not address the optimal choice of the tax base. I take a tax base
as given, and I determine the optimal tax function over this base. Since the problem
is not so difficult to solve with a separable tax function (see e.g. Kleven, Kreiner, and
Saez (2007)), I consider non-separable tax bases only – although I will encounter an
example where the optimal tax system turns out to be separable. The methods in
this paper remain valid even when the tax system is incomplete, e.g. in the cases of
tax avoidance or income shifting as studied by Christiansen and Tuomala (2008). The
approach also allows solving more general problems, e.g. with a government aiming
to gain sufficient votes to remain in power, or a formulation incorporating alternative
normative convictions, e.g. using generalized Pareto weights as discussed for a one-
dimensional tax base by Saez and Stantcheva (2016).

I start in section 2 by introducing the model and identifying the behavioural responses
to tax reforms. I introduce the Euler-Lagrange formalism in section 3. I show intuitively
and formally how the Euler-Lagrange equation is a necessary condition for the optimum.
In section 4 I then use the Euler-Lagrange equation to find a more intuitive characteri-
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zation of the optimum, using sufficient statistics in the tax base space, and in section 5 I
reformulate this characterization in terms of economic fundamentals. Finally in section
6, I list a number of potential complications, and I show how they can be overcome.

2. Model
We study a population of individuals who are distinguished by a K-dimensional column
vector of characteristics θ ≡

(
θ1, . . . , θK

)ᵀ
, with superscript .ᵀ denoting a transpose.

This vector is also called the type of the individual. The set of all such vectors is denoted
Θ, which is a convex subset of the real vector space RK . The type of an individual can
include characteristics such as ability, gender or preferences. The types have a cumulative
distribution function FΘ (θ), with corresponding density function fΘ (θ).

There is a government which does not observe the type of the individuals, but it does
observe for each individual an L-dimensional column vector x ≡

(
x1, . . . , xL

)ᵀ
which is

called the tax base. The values of the tax base are elements of the tax base space X ,
which is a convex subset of the real vector space RL. I denote the cumulative distribution
function as FX (x), with corresponding density function fX (x). The government uses
the value x of the tax base for each individual to determine their tax liability T (x),
which is a scalar-valued, potentially nonlinear function.

Each individual makes a number of decisions, given the tax function and his type.
These decisions may include for example labour supply, consumption of different goods,
savings, and so on. They may also include reporting decisions such as how much taxes to
evade, or how much labour income to declare as capital income. The government does not
observe all of these decisions. Together with the type, these decisions do determine the
tax base, which is observed by the government. For example, although the government
may not observe an individual’s labour effort and his ability, it does observe the gross
labour income declared by the individual. To facilitate my exposition, I will act as if the
individual chooses the value of his tax base directly, given his type and the tax function.
This leads to the vector-valued tax base function x (θ, T ).

The government chooses the function T in order to maximize social welfare, which is
the sum of individual wellbeing measures v (θ, T ):

max
T

∫
Θ
v (θ, T ) dFΘ (θ) . (1)

The individual wellbeing measure is determined by the individual type and by the tax
function. It may simply be defined as the indirect utility of an individual, or as some
other measure of individual wellbeing, taking into account social normative judgments.
There is not necessarily a direct link between the wellbeing measure taken into account
by the government, and individual behaviour.

The government aims to levy an exogenously determined revenue, which without loss
of generality is normalized to zero. This leads to the government budget constraint:∫

Θ
T (x (θ, T )) dFΘ (θ) = 0. (2)
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The simultaneity in this formulation requires careful attention. The government budget
constraint depends on the tax liability owed by each individual, while the chosen values of
the tax base by the individuals depend again on the tax function. One should distinguish
conceptually between the function T , and its value T (x) at a particular value of the tax
base.

Denote the partial derivatives of the tax function using a subscript: Tl ≡ ∂T/∂xl, and
denote the gradient of the tax function as follows:

∇xT (x) ≡ (T1 (x) , . . . , TL (x)) . (3)

I will refer to it in short as the tax gradient.
To find necessary conditions for a tax function T to be optimal, I use the fact that a

small tax reform should leave social welfare unchanged. I assume that for an individual
who chooses value x (θ, T ) of the tax base, his response to a small tax reform will be will
be along the intensive margin, excluding discrete jumps.3 I assume that his response will
be determined only by the change in the tax liability at x, and by the change in the tax
gradient at x. Locally, individual behaviour thus remains unchanged if the tax function
is replaced by a linearized version, since this leaves the tax liability and the tax gradient
unchanged. For example in the neoclassical labour supply model, where an individual
chooses his labour supply such that the indifference curve at his chosen bundle is tangent
to his budget set, the individual would not change his behaviour if the budget set were
linearized.4 Furthermore, I assume that individual wellbeing is affected only by a change
in the tax liability, and not by a change in the gradient or higher-order derivatives of
the tax function. If the chosen wellbeing measure is the indirect utility function, then
this assumption is automatically fulfilled because of the envelope property.

I use a subscript T to denote the effect of a local change in the tax liability. For
example, xT (θ, T ) denotes the column vector containing the effects of a change in the
tax liability on the different components of the tax base chosen by a type-θ individual
in presence of tax function T :

xT (θ, T ) ≡

x
1
T (θ, T )

...
xLT (θ, T )

 .
Similarly, the marginal social value of an extra unit of income for a type-θ individual
equals −vT (θ, T ).

I use a subscript Tl to denote the effect of a local change in the l-th component of the
tax gradient, holding constant the tax liability at the original value of the tax base. The

3More precisely, I assume that the impact of discrete jumps on social welfare is of second order, and
that it can be ignored when studying marginal tax reforms. This excludes the empirically relevant
cases where individuals face discrete choice sets, or where they do not re-optimize continuously.

4This assumption is not innocuous. For example in presence of uncertainty, the local curvature of the
tax function will affect the variance of after-tax income, which will affect individual behaviour. The
derivations in this paper can be extended to include higher-order derivatives of the tax function,
analogous to the methods used in the calculus of variations with higher-order derivatives. For an
overview, see for example Courant and Hilbert (1953, p.190).
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effects of a change in the tax gradient on the tax base chosen by a type-θ individual are
summarized in the following matrix:

x∇T (θ, T ) ≡


x1
T1

(θ, T ) · · · x1
TL

(θ, T )
... . . . ...

xLT1
(θ, T ) · · · xLTL

(θ, T )

 . (4)

Note that even if I assume that small local reforms to the curvature of the tax function
do not affect the chosen values of the tax base, the responses to a marginal reform of
the tax liability or the tax gradient are affected by the curvature. The reason is that
when the tax function is nonlinear, the response of the value of the tax base to a reform
triggers an additional change in the gradient of the tax function, which causes second-
round behavioural effects.5

3. Euler-Lagrange Formalism
The problem facing the government is to maximize social welfare (1), subject to gov-
ernment budget constraint (2), using the tax function T as an instrument. A necessary
condition for the function T to be optimal, is that a marginal tax reform leaves social
welfare unchanged.

Any tax reform triggers a number of effects. There is an impact on individual well-
being, and as such a direct effect on social welfare. There is also a mechanical effect
on government revenue, controlling for changes in individual behaviour, and there are
additional effects on government revenue, attributable to the changes in individual be-
haviour. Requiring that these effects sum to zero then yields a necessary condition for
the optimum.

A difficulty is that it is impossible to study all admissible reforms and to list their
effects. Luckily we can use the fundamental lemma of the calculus of variations, which
states that it suffices to study every extremely local reform to the tax function, changing
the liability at one particular value of the tax base and taking into account the induced
changes in the tax gradient around it.

In the present section I will construct such local tax reforms, and show intuitively how
they lead to a partial differential equation, a necessary condition for the optimum, which
is similar to the Euler-Lagrange equation often used in the calculus of variations. I will
first show in subsection 3.1 how for one-dimensional tax bases, this equation corresponds
to the ABC-style optimal-tax equation that is found in the literature. Next I will argue
how it is straightforward to construct similar local tax reforms for multidimensional
bases, and I show how a similar Euler-Lagrange equation characterizes the optimum. In
subsection 3.2 I do this graphically for a two-dimensional tax base, and in subsection 3.3
I formally prove the multidimensional optimal-tax condition. I will treat the boundary
conditions for the optimum in subsection 3.4.

5These additional effects are similar to those discussed by Jacquet and Lehmann (2016), and are in
contrast with the linearized counterparts in Saez (2001).
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I exclude for now the possibility of bunching. Bunching occurs when there is a mass
point, and thus a discontinuity, in the population density fX in the tax base space. This
situation could occur e.g. at an edge of the tax base space, because a range of types ends
up in a corner solution, or as Ebert (1992) illustrates it could also occur in the interior
of the tax base space, leading to a kink in the optimal tax function. I will treat this
possibility in section 6. Throughout the present section I assume that the tax function
and the objective function are sufficiently smooth, excluding the possibility of kinks or
bunching.

Note that I follow Jacquet and Lehmann (2016) in distinguishing between bunching
and pooling: the latter situation occurs when different types choose the same value of
the tax space without forming a mass point. This situation occurs for example when
the dimension of the type space is higher than the dimension of the tax base space.
Throughout this section I allow for any number of dimensions in the type space, and
thus for pooling.

3.1. One-Dimensional Tax Base
The case with a one-dimensional tax base is well understood. It was first solved for
one-dimensional types by Mirrlees (1971). Its intuition for multidimensional types is
discussed by Saez (2001), and formalized by Jacquet and Lehmann (2016). I will treat
it here in a different way, that can be extended more readily to the case of a multidi-
mensional tax base.

To focus our thoughts, I will treat the case of an optimal labour income tax. I denote
gross labour income as z, the corresponding tax liability is T (z) and the corresponding
marginal tax rate is Tz (z). I denote the cumulative distribution function of gross labour
income as FX (z), with corresponding density function fX (z). I denote the support
of the latter function as [z, z]. Saez (2001) finds the optimal marginal tax rate at an
arbitrary gross income level Z by increasing the marginal tax rate by a small quantity
dTz over an interval of small width dZ, as illustrated in figure 1. Individuals at income
level Z experience an increase in their marginal tax rate, which leads to compensated
effects, and individuals at higher income levels experience an increase in their tax liability,
which leads to income effects. Saez (2001) adds together all mechanical, behavioural and
welfare effects of this reform, and requires that the total effect on social welfare should
be zero. This, together with a transversality condition, leads directly to a necessary
condition for the tax optimum.

The difficulty for us is that it is not clear how to extend this reform to the case with a
multidimensional tax base. I will introduce a different kind of reform which leads to the
same characterization of the optimum as the one found by Saez (2001), but which can
be readily extended to higher dimensions. The trick lies in still performing the reform
introduced by Saez (2001), namely increasing the marginal tax rate at gross income Z
by a quantity dTz over an interval of width dZ, and adding a reverse reform at a small
distance δ � dZ. In other words, at gross income Z + δ, there is a decrease in the
marginal tax rate by the same quantity dTz over an interval of the same width dZ. The
resulting tax reform is shown in figure 2.
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Figure 1: The tax reform as introduced by Saez (2001). At gross income level Z, over
an income range of width dZ, the marginal tax rate is increased by dTz. At
income levels above Z, the tax liability is increased by dZdTz.

(a) The original tax function and the reformed tax function.

Z z

T (z)

dZ

dTz

dZdTz

(b) The size of the tax reform.

Z zdZ

dTz

dT (z)

dZdTz

11



Figure 2: The tax reform for a one-dimensional tax base as introduced in this paper.
The tax reform introduced by Saez (2001) is maintained at gross income level
Z, but it is reversed at gross income level Z + δ, with δ � dZ small.

(a) The original tax function and the reformed tax function.

Z z

T (z)

dZ

dTz

dZdTz

dZ

−dTz

Z + δ

(b) The size of the tax reform.

Z zdZ

dTz

dT (z)

dZdTz

Z + δdZ

δ

−dTz
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The social-welfare effect of this marginal reform should of course be zero in the op-
timum, as is the case for any marginal reform. A reason for choosing this particular
reform, is that any broader reform could be decomposed into smaller reforms of the kind
introduced here. This intuition is captured more formally in the fundamental lemma of
the calculus of variations, which I will apply in subsection 3.3.

This reform has a number of effects. First, there are behavioural effects at Z, where
individuals experience an increase dTz in their marginal tax rate. The number of in-
dividuals experiencing this change equals fX (Z) dZ. A difficulty is that individuals of
different types might pool at the same gross income level Z. Denote the average response
of all individuals pooling at Z to a reform of the marginal tax rate as zTz (Z).6 The total
resulting change in government revenue will then be

[
zTzTzf

X ] (Z) dTzdZ.7 Second, and
similarly, the decrease in the marginal tax rate at Z+ δ causes a decrease in government
revenue by

[
zTzTzf

X ] (Z + δ) dTzdZ. Third, individuals on the interval [Z,Z + δ] expe-
rience an increase of their tax liability by dTzdZ. This leads to a mechanical effect on
tax revenue equal to dTzdZ

∫ Z+δ
Z fX (z) dz . Fourth, this increased tax liability leads to

welfare effects, which equal dTzdZ
∫ Z+δ
Z (vT (z) /λ) fX (z) dz, where λ is the government

budget multiplier which converts the individual wellbeing measure to monetary units.
Fifth, the increased tax liability also leads to behavioural effects, which have revenue
effect dTzdZ

∫ Z+δ
Z

[
zTTzf

X ] (z) dz. Note that we do not need to account for the change
in the density function fX (z): since we multiply the average per-individual effect with
the number of individuals experiencing the reform, we need to work with the original
distribution before the reform takes place.8

A necessary condition for the tax function T to be optimal, is that the above reform
does not affect social welfare. Adding all effects, dropping the common factor dTzdZ,
dividing by δ, and requiring that the terms sum to zero leads to the following condition:

1
δ

∫ Z+δ

Z
(1− α (z)) fX (z) dz =

[
zTzTzf

X ] (Z + δ)−
[
zTzTzf

X ] (Z)
δ

, (5)

where α (z) ≡ − [vT /λ+ zTTz] (z) denotes the average net marginal effect on social
welfare, in monetary units, of an exogenous income increase for individuals at income
level z, as first introduced by Diamond (1975). This equation tells us that the social-
welfare effect of a change in the tax liability at a small interval [Z,Z + δ] in the income
distribution, should be compensated by the effects of the ensuing changes in the tax
gradient around this interval.

If we now take the limit for very small values of δ, keeping dz � δ, we are studying the
effect of an extremely local reform to the tax function. The left-hand side of equation
(5) will converge to (1− α (Z)) fX (Z), while the right-hand side by definition converges

6Throughout this paper, for any function g : Θ → RD, with D some dimensionality, I will denote using
a bar g (x) the average of the function g for all individuals pooling at tax base x.

7Where necessary, I will denote the product of the values of any functions g (x) and h (x) as [gh] (x).
8I ignore the impact of individuals making a discrete jump due to the reform, e.g. because they were

almost indifferent between two bundles before the reform. It is of second order compared to the total
impact.
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to the derivative of zTzTzf
X with respect to z at Z:

(1− α (Z)) fX (Z) = d

dz

[
zTzTzf

X
]

(Z) . (6)

This differential equation is similar to the one-dimensional Euler-Lagrange equation
found in the calculus of variations. The main difference is that the objective of our opti-
mization is defined as an integral over the type space, while the tax instrument is defined
in the tax base space. In the traditional version of the Euler-Lagrange equation, both
the objective and the instrument would be defined in the same vector space. Averaging
though at each value of the tax base takes care of this difference. In subsection 3.3 I
derive this equation more rigorously.

Since I exclude for now the possibility of bunching, the marginal tax rates should be
zero at the edges of the tax base space:

Tz (z) = Tz (z) = 0.

There is no point in distorting labour supply at the lowest income level, as there are no
individuals at lower income levels to whom the proceeds can be redistributed. Similarly,
there is no point distorting labour supply at the highest income level, as there is nobody
at higher income levels to levy additional taxes from. This point was first made for the
top by Sadka (1976), and for the bottom by Seade (1977).9

Integrating (6) and using the latter boundary conditions leads to the necessary optimal-
tax condition:

∀z :
∫ z

z

(
1− α

(
z′
))
fX

(
z′
)

dz′ = −zTz (z)Tz (z) fX (z) , (7)

with transversality condition: ∫ z

z
α
(
z′
)
fX

(
z′
)

dz′ = 1.

The transversality condition conforms to the notion, discussed by Jacobs (2013), that
the marginal cost of public funds equals one when the tax system is optimal.

By performing this integration, the local reform that I constructed at one specific value
of the tax base, is repeated over the interval [z, z], recovering the tax reform constructed
by Saez (2001). Defining the elasticity e (z) ≡ −zTz (z) (1− Tz (z)) /z, holding constant
the tax liability T (z) at z, we can reformulate this in a more traditional ABC-form:

∀z : Tz (z)
1− Tz (z) = A (z)B (z)C (z) , (8)

9I will derive these boundary conditions more formally for the formalism of this paper in subsection
3.3.
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with:

A (z) ≡ 1
e (z) ,

B (z) ≡
∫∞
z (1− α (z′)) fX (z′) dz′

1− FX (z) ,

C (z) ≡ 1− FX (z)
zfX (z) .

The A-term contains the inverse of the average elasticity of gross income with respect to
local changes in the marginal tax rate, keeping constant the tax liability at income level
z. The B-term contains the average redistributional effect of taking one euro from each
individual above income level z and lowering the tax liability elsewhere in the income
distribution. The C-term is a hazard rate, which relates the number of individuals who
are at the income level where the reform to the marginal tax rate takes place – whose
labour supply decisions are being distorted, to the number of individuals who are at
higher income levels – from whom additional funds are levied for redistribution.

3.2. Two-Dimensional Tax Base
The tax reform which I introduced for a one-dimensional tax base in the previous subsec-
tion, can be extended to a two-dimensional tax base. Suppose the government observes a
tax base (z, y) for all individuals. Its components z and y could be thought of for exam-
ple as labour income and capital income, or the incomes of two individuals in a couple.
The government aims to maximize social welfare by setting a joint, non-separable tax
function T (z, y), taking into account the multidimensional heterogeneity of the agents.
A necessary condition for the tax function to be optimal is that a small tax reform leaves
social welfare unchanged. To fix thoughts, I will refer to the tax base components as
labour income and capital income.

Consider a small rectangular area in the tax base space delineated by an interval[
Z,Z + δZ

]
in the labour income distribution, and an interval

[
Y, Y + δY

]
in the cap-

ital income distribution. I introduce a number of tax reforms within this rectangle[
Z,Z + δZ

]
×
[
Y, Y + δY

]
. These reforms are illustrated in figure 3. Around labour in-

come Z, over an infinitesimal width dX, increase the marginal labour income tax by dTx.
Conversely, decrease it by dTx over width dX around labour income Z + δZ . Similarly,
increase the marginal capital income tax by the same quantity dTx over the same width
dX around capital income Y , and decrease it by dTx around capital income Y + δY .

There are again a number of effects from these reforms. Let us first consider the
increase in the marginal tax rate on labour income in the rectangle delineated by intervals
[Z,Z + dX] and

[
Y, Y + δY

]
. Reasoning similar to that of the previous subsection shows

that for each level of capital income y within this rectangle, the total effect on the
government budget equals:

dTxdX
[
{zTzTz + yTzTy} fX

]
(Z, y) .
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Figure 3: The tax reforms in two dimensions. At level Z of the first component of the
tax base, over an income range of width dX, the marginal tax rate is increased
by dTx. At income level Z + δZ , with δZ � dX small, this reform is reversed
by a decrease in the marginal tax rate by dTx over an income range of width
dX. Similar reforms are implemented for the second component of the tax
base. Within the rectangle at which the reforms take place, the tax liability is
increased by dTxdX.

(a) The tax base values where the reform takes place, form a small rectangle in the tax base space.

Z z

dX

dTx

−dTx

dX

Z + δZ

y

Y

dX

dX

Y + δY

−dTxdTx dT = dTxdX

(b) The size of the tax reforms.

Z

z

Z + δZ

y

Y

Y + δY

dT (z, y)
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The total effect over the interval
[
Y, Y + δY

]
follows by integrating the latter equation:

dTxdX
∫ Y+δY

Y

[
{zTzTz + yTzTy} fX

]
(Z, y) dy.

Similar effects occur at the other three edges of the rectangle on which the reforms take
place.10

Within the edges of the rectangle the tax liability increases by dTxdX. Again following
reasoning similar to that of the previous subsection, we find the following effect on social
welfare:

dTxdX
∫ Z+δZ

Z

∫ Y+δY

Y
(1− α (z, y)) fX (z, y) dydz,

with α (z, y) ≡ − [vT /λ+ zTTz + yTTy] (z, y) the average net marginal social welfare
weight of individuals with labour income z and capital income y.

Setting the sum of all effects to zero, dividing by dTxdX and by δY δZ , and grouping
similar terms on the same line yields:

1
δY δZ

∫ Z+δZ

Z

∫ Y+δY

Y
(1− α (z, y)) fX (z, y) dydz (9)

= 1
δY

∫ Y+δY

Y

[{
zTyTz + yTyTy

}
fX
] (
Z + δZ , y

)
−
[{
zTyTz + yTyTy

}
fX
]
(Z, y)

δZ
dy

+ 1
δZ

∫ Z+δZ

Z

[{
zTyTz + yTyTy

}
fX
] (
z, Y + δY

)
−
[{
zTyTz + yTyTy

}
fX
]
(z, Y )

δY
dz.

The intuition here is similar to the one-dimensional case. The income effects of a local
tax increase should be exactly cancelled out by the ensuing compensated effects in the
surrounding region.

Now take the limits δZ → 0 and δY → 0, keeping dX � δZ and dX � δY . Recognize
on the right-hand side the definition of partial derivatives with respect to z and y. We
can rewrite:

(1− α (Z, Y )) fX (Z, Y ) = ∂

∂z

[
{zTzTz + yTzTy} fX

]
(Z, Y )

+ d

dy

[{
zTyTz + yTyTy

}
fX
]

(Z, Y ) .

Denoting the tax-base vector x ≡ (z, y) and writing X ≡ (Z, Y ), this can be shortened
in vector notation:

(1− α (X)) fX (X) =
2∑
l=1

∂

∂xl

[
(∇xT · xTl

) fX
]

(X) , (10)

10Note that with dX sufficiently small, the small inaccuracies in my exposition at the four corners of
the square become negligible. A more formal prove is provided in the next subsection.
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with gradient ∇xT introduced in equation (3), and the matrix containing behavioural
responses xTl

in equation (4). This partial differential equation again is similar to
the Euler-Lagrange equation found in multidimensional variational analysis, with the
added complication that we need to average behavioural effects and welfare weights at
each income level. This partial differential equation is a necessary condition for the tax
function T to be optimal. As in the one-dimensional case, it is amended with a boundary
condition for the gradient ∇xT (X), which I will discuss in subsection 3.4, and with the
government revenue constraint. Finding a fixed-point equation that characterizes the
optimum is not as straightforward as in the one-dimensional case, and is postponed
until section 4.

Before doing this, we might gain some further intuition by integrating the Euler-
Lagrange equation. Let V ⊆ X be a compact area in the tax base space, with a
piecewise smooth boundary Γ (V ).11 Integrate Euler-Lagrange equation (10) over this
area: ∫

V
(1− α (x)) dFX (x) =

∫
V

2∑
l=1

∂

∂xl

[
{∇xT (x) · xTl

(x)} fX (x)
]

dx.

The left-hand side of this equation is the effect on social welfare of a unit increase in
the tax liability in the interior of the integration area V , as illustrated in figure 4a. To
interpret the right-hand side, I rewrite it using a theorem from vector calculus, named
the divergence theorem or Gauss’s theorem. For any point x at the boundary Γ (V ) of
our integration area, let x̂ be an outward-pointing unit vector that is perpendicular to
the boundary, as illustrated in figure 4a. The divergence theorem then allows rewriting
our integrated Euler-Lagrange equation:∫

V
(1− α (x)) dFX (x) =

∫
Γ (V )

[
{∇xT · x∇T · x̂} fX

]
(x) dΓ . (11)

The right-hand side of this equation is a surface integral. The term within square
brackets, which is a scalar, is integrated over the boundary Γ (V ).

Note in figure 4b that due to the increased tax liability in the interior of V , the tax
gradient changes on the edge Γ (V ). The entity x∇T (x) · x̂ is equal to the average
behavioural effect caused by a unit change of the tax gradient that is perpendicular to
the boundary Γ (V ) at x. The term within curly brackets is the budgetary effect of this
behavioural response for one individual at x, and the term fX (x) indicates how many
individuals reside at that value of the tax base. The surface integral then adds these
effects over the entire boundary Γ (V ). Equation (11) thus states that in the optimum,
the effects caused by a unit increase in the tax liability at the interior of the area V
should be exactly compensated by the behavioural effects due to the induced changes of
the tax gradient at the edges of the area V .
11I maintain this notation throughout this paper, also in higher dimensions: for any compact subset of
RL, let Γ (·) denote its boundary surface.
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Figure 4: The tax reform in two dimensions, integrated over an area V .

(a) The area V over which the integrated reform takes place. The vectors â and b̂ are unit normal vectors,
at arbitrary points a and b on the edge Γ (V ) of the integration area, i.e. they are perpendicular to
the edge and they have Euclidean norm ||â|| =

∣∣∣∣b̂∣∣∣∣ = 1.

z

y

V

â

a

b̂

b

||â|| =
∣∣∣∣∣∣b̂∣∣∣∣∣∣ = 1

Γ (V )

(b) The size of the integrated tax reform.

z

y

dT (z, y)

dT = 1

19



3.3. Higher-Dimensional Tax Bases
In the previous subsection I have shown that the reform that I have proposed for a one-
dimensional tax base, can be readily extended to a two-dimensional tax base. I found
a partial differential equation, the Euler-Lagrange equation, amended with boundary
conditions and the government budget constraint, to be a necessary condition for the
tax optimum.

This reasoning can now be further extended to tax bases with an arbitrary number
of dimensions. The following theorem shows how Euler-Lagrange equation (10) can be
extended to an L-dimensional tax base.12

Theorem 1. The tax optimum with an L-dimensional tax base with multidimensional
heterogeneity of the agents, in absence of bunching, complies to the following partial
differential equation, referred to as the Euler-Lagrange condition:

∀x ∈ X : (1− α (x)) fX (x) =
L∑
l=1

∂

∂xl

[
(∇xT · xTl

) fX
]

(x) , (12)

subject to the boundary conditions:

∀x ∈ Γ (X ) :
[
(∇xT · x∇xT · x̂) fX

]
(x) = 0, (13)

and the government budget constraint:∫
RL
T (x) fX (x) dx = 0. (14)

Proof. See appendix A.

Equation (12) is a multidimensional and extremely local version of equation (9). The
intuition is the same: if there is a local increase of the tax liability at tax base value x,
then the income effects of this change should be cancelled out by the ensuing compen-
sated effects in the infinitesimal region surrounding it.

The intuition perhaps becomes a bit clearer by integrating the equation. I extend in
the following corollary the integration procedure from the two-dimensional case, set forth
in the previous subsection, to the multidimensional case. It follows again that when the
tax function in place is optimal, then if the tax liability is marginally increased on a
subset of the tax base space, the effects on social welfare should be exactly compensated
by the effects of the ensuing change in the tax gradient at the boundary of this subset.
12More generally, for an additively separable objective functional

∫
Θ
L (θ, T ) dF Θ (θ) with non-linear in-

strument T , where reforms of T only have local effects on L (θ, T ) and the curvature of T does not af-
fect the value of L (θ, T ), an analogous proof shows that ∀x : LT (x) fX (x) =

∑
j

∂
∂zj

[
LTjf

X
]

(x)
is a necessary condition for the optimum, subject to boundary condition

[{
L∇T · x̂

}
fX
]

(x) = 0
and the government budget constraint. This finding allows applying the techniques in this paper in
a more general context.
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Corollary 1. The tax optimum with an L-dimensional tax base with multidimensional
heterogeneity of the agents, in absence of bunching, complies to the following condition,
for any compact volume V ⊆ X with piecewise smooth boundary Γ (V ), and with x̂ the
unit vector normal to that boundary at point x ∈ Γ (V ):∫

V
(1− α (x)) dFX (x) =

∫
Γ (V )

[
(∇xT · x∇xT · x̂) fX

]
(x) dΓ . (15)

Proof. Integrate Euler-Lagrange equation (12) over volume V and apply the divergence
theorem.

Even if this corollary has an intuitive interpretation, the fact that it has to be valid
for any compact volume V ⊆ X makes it unpractical to use. Moreover, it does not
give us the kind of insight into the properties of the gradient of the tax function that
we obtain for the one-dimensional problem from ABC-equation (8). I provide a more
intuitive characterization of the optimum in section 4. Before doing so, I will discuss the
boundary condition for the optimum.

3.4. Boundary Conditions: Application to Joint Taxation of Couples
Euler-Lagrange condition (12) is a partial differential equation for the tax function T . If
it has solutions, further restrictions need to be imposed to pin down the one that we are
interested in. Like in the one-dimensional case, one needs to impose government budget
constraint (14) on the one hand, and the set of boundary conditions (13) on the other.
To gain intuition, I will describe here the boundary conditions for the joint taxation of
couples.

Let the tax base be defined by the gross earnings of a couple: x ≡
(
xP , xS

)
, where

xP are the earnings of the primary earner, and xS are the earnings of the secondary
earner. The primary earner is the individual with the highest income: xP ≥ xS . The
boundaries for this problem are illustrated in figure 5. The fact that the secondary
earner, by definition, cannot earn more than the primary earner, makes that the line
defined by xP = xS is a boundary of the tax base space. Requiring that both incomes
are non-negative: xS , xP ≥ 0, yields another boundary at xS = 0. Finally, there will
be a boundary at the top income of the primary earner, xP ≡ xP . If I do not impose
an upper bound to the incomes, then the third “boundary” occurs as the income of the
primary earner approaches infinity: xP → ∞. This last possibility is the one depicted
in figure 5.

Theorem 1 tells us that the condition for the boundary of the tax base space Γ (X )
looks as follows:

∀x ∈ Γ (X ) : fX (x)
{[
TxP (x)xP∇T + TxS (x)xS∇T

]
· x̂
}

= 0,

where x̂ is the unit normal vector perpendicular to the boundary at any point x on
that boundary. The term between square brackets is a row vector, with its l-th element
TxP (x)xPTl

+ TxS (x)xSTl
indicating the average change in government revenue at x that
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Figure 5: The boundaries for the two-dimensional problem of the taxation of couples,
with tax base x ≡

(
xP , xS

)
. The boundaries are determined by the fact that

the primary earner has the higher income: xP ≥ xS , by the fact that incomes
are restricted to be positive: xS ≥ 0, and by the top income distribution for
primary earners. The figure depicts the case where the income distribution is
unbounded at the top: xP →∞. The boundary condition states that at each
point x at the boundary, the vector ∇T (x) · x∇T containing the effects of a
change in the tax gradient on government revenue, should be tangent to the
boundary. Put differently, changes in the tax gradient perpendicular to the
boundary should have no effects on government revenues.

xP →∞

xS

x P
=
x S
xP

∇
T (x ′) · x ′∇

T

∇T (x) · x∇T

∇T (x′′) · x′′∇T

x′′

x

x′

x̂ ′= (
−

1√
2 , 1√

2

)

x̂ = (0,−1)

x̂′′ = (1, 0)

xP ≥ xS

is caused by a small change in the marginal tax rate Tl. The left-hand side of the
boundary condition thus indicates the change in government revenue that is caused by
a unit change in the tax gradient, perpendicular to the surface of the tax base space.
This change should be zero in the optimum.

Suppose that fX (x) 6= 0. Since the term within square brackets is a vector, and
since its dot product with the unit normal vector x̂ should be zero, it follows the vector
described by this term within square brackets should be parallel to the boundary of the
tax base space.

Let us look specifically at the point x in the figure, which lies on the boundary xS = 0.
The coordinates of the unit normal vector at this point are

(
x̂P , x̂S

)
= (0,−1). Assuming

that there are at least some individuals choosing this point, fX (x) 6= 0, the boundary
condition states:

−TxP (x)xPTS
− TxS (x)xSTS

= 0.

It immediately follows that, contrary to the one-dimensional case, the marginal tax rate

22



at the boundary is no longer necessarily zero. Assuming that the behavioural response
of the primary earner is positive (working more as the marginal tax rate for his partner
increases), and that of the secondary earner is negative (working less as his marginal
tax rate increases), then all that one can infer from the boundary condition is that the
marginal tax rates TxP and TxS have the same sign, and that their proportion is as
follows:

TxS (x)
TxP (x) = −

xPTS

xSTS

.

In other words, suppose that the secondary earner has no income, and the primary earner
has a positive income, facing a positive marginal tax rate. It follows in this situation
that the secondary earner will also face a positive marginal tax rate, even if this person
does not work and even if there is no bunching at the bottom. All that is required is
that the total tax wedge for the family, the term within square brackets, is zero.

If we look at the point x′ on the boundary where xS = xP , the coordinates of the unit
normal vector are x̂′ =

(
−1/
√

2, 1/
√

2
)
.13 Assuming that at least some individuals are

in this situation, so fX (x′) 6= 0, then the boundary condition at this point states:

TxP (x′)
TxS (x′) = −

x′S
TS − x′STP

x′P
TS − x′PTP

.

An advantage of my approach is now that anonymity can be imposed through the suffi-
cient statistics. If both individuals have equal incomes, xS = xP , the government has no
way of telling them apart. Imposing anonymity on the sufficient statistics implies that
the own-tax elasticities are equal, x′S

TS = x′P
TP , and that the cross-elasticities are equal:

x′P
TS = x′S

TP . It follows that when both individuals have equal incomes, xS = xP , they
should face equal marginal tax rates:

TxP

(
x′
)

= TxS

(
x′
)
.

Finally let us study the situation for a tax base value x′′, where the earnings of the
primary earner either reach a top value xP = xP , or they approach infinity: xP →∞. In
this case the coordinates of the unit normal vector are (1, 0), and the boundary condition
becomes:

fX
(
x′′
) [
TxP

(
x′′
)
x′′PTP

+ TxS

(
x′′
)
x′′STP

]
→ 0.

If the income distribution is bounded from above, with income density fX (x′′) strictly
larger than zero, then the term within square brackets must become zero for the top
individual. Note that this does not imply that the top marginal tax rates become zero:
if the behavioural responses have opposite signs, both individuals might face positive
marginal tax rates at the top, even if the income distribution is bounded from above. It
is only the total tax wedge for the couple, the term within square brackets, that should

13One can verify that the norm of this vector equals one: ||x̂′|| =
√(
−1/
√

2
)2 +

(
1/
√

2
)2.
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become zero. With an unbounded distribution, what happens depends on the asymptotic
behaviour of the income distribution and the elasticities. Like in the one-dimensional
case, the term within square brackets no longer necessarily decreases at the top.

4. Characterizing the Optimum
The right-hand side of the Euler-Lagrange equation (12) is a first-order derivative of a
term that itself already contains first-order derivatives ∇xT of the tax function. The
Euler-Lagrange equation is thus a second-order partial differential equation in T . Gen-
erally, this equation is hard to solve analytically. Finding an analytical solution though
is not necessary to find an intuitive economic interpretation.

I will argue in this section that the optimum is determined by a balancing exercise
between efficiency and equity, that is a localized version of the balancing exercise de-
scribed for linear taxes by Atkinson and Stiglitz (1980, p.386-390). At any given value
of the tax base, the proportionate reduction in a component of aggregate demand, along
compensated demand curves, should be equal to a localized distributional characteristic
for that tax base component similar to the one introduced by Feldstein (1972a,b).

Before arriving at this conclusion I need to introduce some methodology. For the
one-dimensional problem, in subsection 3.1, we found the ABC-style formulation (8) by
taking the integral of the Euler-Lagrange equation (6). This integration method treats
the problem as if it were a first-order partial differential equation in zTzTzf

X , rather
than a second-order partial differential equation in T .

Indeed, the ABC-equation (8) does not provide an analytical solution to the Euler-
Lagrange equation. The three terms on the right-hand side still depend on the tax
function. It is a necessary fixed-point equation for the optimum, a reformulation of the
second-order Euler-Lagrange equation which has the more elegant economic interpreta-
tion described in subsection 3.1. I extend this reasoning to higher-dimensional tax bases,
treating the multidimensional Euler-Lagrange equation (12) as a first-order rather than
as a second-order partial differential equation.

We saw in corollary 1 that for multidimensional problems, simply integrating the
Euler-Lagrange equation no longer yields straightforward insight into the optimal gra-
dient of the tax function. I introduce a different solution method. In subsection 4.1 I
illustrate this method for the one-dimensional case, where it coincides with the method
of Green functions that is often used in the exact sciences, and that was introduced
for mechanism design problems by Renes and Zoutman (2016a).14 I then extend this
method to multidimensional tax bases in the subsequent subsections. For now, I still
assume that the tax function is smooth, postponing the inclusion of kinks and bunching
to a later section. I still allow for multidimensional heterogeneity of the agents and for
pooling without bunching.
14An introduction and some examples of the use in the exact sciences can be found in Arfken and Weber

(2005).
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4.1. One-Dimensional Tax Base
I will now derive the ABC-style optimal-tax equation (8) from the one-dimensional
Euler-Lagrange equation (6) using the method of Green functions. This may at first
seem like a detour, but it will become clear in the following subsections how this allows
reformulating the multidimensional Euler-Lagrange equation (12) in a more intuitive
way. I will treat the one-dimensional Euler-Lagrange equation (6) as a first-order differ-
ential equation of the following form:

∀z ∈ [z, z] : A (z) = dB (z)
dz

, (16)

with “unknown” function:
B (z) ≡

[
zTzTzf

X
]

(z) ,

with “known” function:
A (z) ≡ (1− α (z)) fX (z) ,

and with initial condition B (z) = 0.
First I introduce the concept of a Dirac delta function. It is a generalized function

z 7→ δ (z) which has value zero everywhere except at z = 0, and which integrates to one
over the whole real line:

∫
R δ (z) dz = 1. It is “generalized” in the sense that in order to

satisfy these properties, it must take an infinite value in z = 0 (if not, it would integrate
to zero).15 One way to represent the Dirac delta function is to see it as the limit of a
series of functions. For example, define the following rectangular function:

δε (x) ≡
{1
ε if 0 < x < ε,

0 elsewhere.
(17)

This function is depicted in figure 6. One can see that for any ε,
∫
R δε (z) dz = 1. Take

the limit ε→ 0 to find that δε → δ.
The reason why the Dirac delta function is used, is that it has a desirable property

that will help us. Intuitively it can be seen as follows. For any function g : R→ R, use
definition (17) to find the following integral:∫

R
g
(
z′
)
δε
(
z′
)

dz′ = 1
ε

∫ ε

0
g
(
z′
)

dz′.

Take the limit ε→ 0 to find the property:∫
R
g
(
z′
)
δ
(
z′
)

dz′ = g (0) ,

or more generally:
∀z ∈ [z, z] :

∫
R
g
(
z′
)
δ
(
z − z′

)
dz′ = g (z) . (18)

15The concept of a Dirac delta function is described more extensively e.g. by Arfken and Weber (2005).
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Figure 6: The function δε which takes value 1/ε on the interval [0, ε], and which is zero
elsewhere. It is depicted for four values ε4 < ε3 < ε2 < ε1. Taking the limit
ε → 0 leads to the one-dimensional Dirac delta function δ which is zero for
any z 6= 0, and which approaches infinity at z = 0.

0 zε2
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1
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ε1
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Integrating a function g with δ (z − z′) dz′ as measure thus selects its value g (z).16

Now suppose that we can find a function G : R2 → R whose derivative is the Dirac
delta:

∀z, z′ ∈ [z, z] : dG (z, z′)
dz

≡ δ
(
z − z′

)
, (19)

and which complies to the following initial condition:

∀z′ ∈ [z, z] : G (z, z) ≡ 0. (20)

Then the following function solves differential equation (16):

B (z) ≡
∫ z

z
A
(
z′
)
G
(
z, z′

)
dz′. (21)

To see this, take its derivative:

∀z ∈ [z, z] : dB (z)
dz

= d

dz

[∫ z

z
A
(
z′
)
G
(
z, z′

)
dz′
]

=
∫ z

z
A
(
z′
) dG (z, z′)

dz
dz′

=
∫ z

z
A
(
z′
)
δ
(
z − z′

)
dz′

= A (z) ,

where I used the fact that the derivative can be brought inside the integral, and I used
definition (19) and property (18). Furthermore, verify that indeed the initial condition
for B is fulfilled:

B (z) =
∫ z

z
A
(
z′
)
G
(
z, z′

)
dz′ = 0,

because of condition (20).
It follows that finding a solution to a differential equation of form (16) boils down to

finding a function G which solves equation (19) and which complies to initial condition
(20). Such a function is called a Green function of the problem.

I will now show that the Green function for the one-dimensional problem is the unit
step function.17 This function is defined as follows:

∀z, z′ : H
(
z − z′

)
=
{

1 if z > z′,

0 if z ≤ z′.
(22)

It immediately follows that it complies to initial condition (20):

∀z ∈ [z, z] : H (z − z) = 0.
16This property is so fundamental that it is sometimes used as a defining property of the Dirac delta

function.
17Again, see Arfken and Weber (2005) for a more traditional formulation of this property.
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Furthermore, note that if we interpret δ (z) dz as a probability measure, then its cumu-
lative distribution function is H (z):∫ z

−∞
δ
(
z′′ − z′

)
dz′′ = H

(
z − z′

)
,

from the definition of the Dirac delta function. Take derivatives on both sides:

dH (z − z′)
dz

= δ
(
z − z′

)
. (23)

We have thus found that the unit step function is the Green function for our problem.
Substitute it into equation (21) to find the solution to differential equation (16):

B (z) =
∫ z

z
A
(
z′
)
H
(
z − z′

)
dz′ =

∫ z

z
A
(
z′
)

dz′.

This is exactly the solution that we would have found by simply integrating the differ-
ential equation. Applying it to the one-dimensional Euler-Lagrange equation (6) leads
to ABC-equation (8). I will extend this method to higher-dimensional problems in the
following subsections.

4.2. Two-Dimensional Tax Base
The two-dimensional Euler-Lagrange equation (10) is a second-order partial differential
equation, subject to the boundary condition that the entity {∇xT (x) · xTl

(x) · x̂} fX (x)
equals zero on the boundary Γ (X ) of the tax base space. Following the procedures for
the one-dimensional case, set forth in the previous subsection, I will treat this equation
as if it were a first-order partial differential equation. In other words, I will solve a
partial differential equation of the following form:

∀x ∈ X : A (x) =
2∑
l=1

∂Bl (x)
∂xl

, (24)

with:

A (x) ≡ (1− α (x)) fX (x) , (25)

∀l : Bl (x) ≡

∑
j

Tjx
j
Tl

 fX
 (x) , (26)

subject to boundary conditions:

∀x ∈ Γ (X ) : B (x) · x̂ = 0. (27)
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Note that this formulation immediately leads to a transversality condition. Use the
divergence theorem to find:∫

X
A (x) dx =

∫
X

2∑
l=1

∂Bl (x)
∂xl

dx

=
∫
Γ (X )

B (x) · x̂dΓ

= 0,

or substituting (25) for A (x): ∫
X
α (x) fX (x) dx = 1. (28)

This condition extends the notion, discussed by Jacobs (2013), that the marginal cost of
public funds equals one when the tax system is optimal.

To solve first-order partial differential equation (24), first introduce the two-dimensional
Dirac delta function as the product of two one-dimensional Dirac delta functions:

∀x, y ∈ R2 : δ2 (x, y) ≡ δ (x) δ (y) . (29)

This function can again be constructed as the limit of a series of functions. I again use
the rectangular function for this purpose:

δ2
ε

(
x1, x2

)
≡ δε

(
x1
)
δε
(
x2
)

=
{ 1
ε2 if 0 < x1 < ε and 0 < x2 < ε,

0 elsewhere.

This function is depicted in figure 7. It integrates to one for any ε:∫ ∞
−∞

∫ ∞
−∞

δ2
ε

(
x1, x2

)
dx1dx2 = 1. (30)

Take the limit ε→ 0 to find that δ2
ε → δ2.

It is straightforward to check that property (18) extends to two dimensions. Integrat-
ing a function g : R2 → R with measure δ2 (x− x′) dx′ selects its value g (x) :

∀x ∈ R2 :
∫
R2
g
(
x′
)
δ2 (x− x′)dx′ = g (x) .

Like in the one-dimensional case described in the previous subsection, I will show that
finding a solution to first-order partial differential equation (24) boils down to finding a
Green function G : R2 → R2 which solves the following partial differential equation:

∀x ∈ R2 : δ2 (x− x′) =
2∑
l=1

∂Gl (x,x′)
∂xl

, (31)

complying to the following boundary condition:

∀x ∈ Γ (X ) ,∀x′ ∈ X : G
(
x,x′

)
· x̂ = 0. (32)

29



Figure 7: The function δ2
ε which takes value 1/ε2 on the rectangle [0, ε]×[0, ε], and which

is zero elsewhere. Taking the limit ε → 0 leads to the two-dimensional Dirac
delta function δ2 which is zero for all points besides the origin, and which
approaches infinity at the origin.

1
ε2
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δ2
ε
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Note that the Green function G now is a vector-valued function, rather than a scalar-
valued function as in the one-dimensional case.

If we find such a function G, then first-order partial differential equation (24) has the
following solution:

∀x, l : Bl (x) ≡
∫
X
A
(
x′
)
Gl
(
x,x′

)
dx′. (33)

This can be seen by substituting it into the right-hand side of partial differential equation
(24), noting that the partial derivative can be brought inside the integral and using
property (30):

∀x :
2∑
l=1

∂Bl (x)
∂xl

=
2∑
l=1

∂

∂xl

[∫
X
A
(
x′
)
Gl
(
x,x′

)
dx′

]

=
∫
X
A
(
x′
) 2∑
l=1

∂Gl (x,x′)
∂xl

dx′

=
∫
X
A
(
x′
)
δ2 (x− x′)dx′

= A (x) .

Verify that indeed the boundary conditions (27) are fulfilled, using condition (32):

∀x ∈ Γ (X ) ,∀x ∈ X : B (x) · x̂ =
∫
X
A
(
x′
)
G
(
x,x′

)
· x̂dx′ = 0.

The question now is how to find the functions Gl that comply to partial differential
equation (31) with boundary conditions (32). I will state a solution here for the case
where the tax base space equals the entire two-dimensional real vector space, X = R2. I
will treat cases where the tax base set is a strict subset of the real vector space, X ( R2,
e.g. excluding negative values, in section 6.

I will show that the Green function for this problem looks as follows:

∀x,x′ : G
(
x,x′

)
≡ x− x′

D2 (x− x′) , (34)

where I introduce the two-dimensional distance function for any vector v in R2:

D2 (v) ≡ 2V 2 (||v||) ,

with V 2 (r) a function which maps a real number r on the surface area πr2 of a circle
with radius r, and with ||v|| ≡

√
(v1)2 + (v2)2 the Euclidean norm, the “length” of the

vector v. After showing that this function indeed is a Green function, I will show how
it leads to intuitive optimal-tax results.
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First I need to show that the function (34) solves partial differential equation (31). I
show in appendix B that it complies to the following properties:

∀x 6= x′ :
2∑
l=1

∂Gl (x,x′)
∂xl

= 0, (35)

∀x′ :
∫
R2

( 2∑
l=1

∂Gl (x,x′)
∂xl

)
dx = 1. (36)

These are the defining properties for the Dirac delta function. We conclude that the
function G indeed solves partial differential equation (31).18

Next, note that the boundary conditions (32) are fulfilled:

∀x′ ∈ R2 : lim
||x||→∞

G
(
x,x′

)
· x̂ = lim

||x||→∞

(x− x′) · x̂
2π ||x− x′||2

= 0. (37)

It thus follows from (33) that the solution to partial differential equation (24) is as
follows:

∀x, l : Bl (x) =
∫
R2
A
(
x′
) xl − x′l

D2 (x− x′)dx′.

Substituting the definitions (25) and (26) for the functions A and Bl leads to optimal-tax
condition:

∀x, l :
∑
j

Tj (x)xjTl
(x) fX (x) =

∫
R2

(
1− α

(
x′
)) xl − x′l

D2 (x− x′)dFX
(
x′
)
. (38)

Using transversality condition (28), this equation can be simplified as follows:

∀x, l :
∑
j

Tj (x)Xj
Tl

(x) = cov

(
α
(
x′
)
,

x′l − xl

D2 (x′ − x)

)
, (39)

where I introduce aggregate demand Xj (x) ≡ xj (x) fX (x) for tax base component
j at value x, and where Xj

Tl
(x) ≡ xjTl

(x) fX (x) equals the sum of the compensated
responses for the individuals pooling at tax base value x.19 The left-hand side in this
equation equals the compensated change in public revenues which is induced by a reform
to the marginal tax rate Tl. It is the sum of the compensated effects on the different
components of aggregate demand, multiplied by the respective marginal tax rates that
apply to these components. This side captures the efficiency effects of the reform.

The right-hand side captures the equity effects. It is a distance-weighted covariance
between the average net marginal social welfare weight of the individuals pooling at tax
base value x with the value of the l − th component of the tax base. If the welfare
18Partial differential equation (31) has multiple solutions. I argue in appendix B why solution 34 in the

one that we are interested in.
19The entities Xj (x) and Xj

Tl
(x) are density functions.
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weights decrease strongly with the value of the tax base component, e.g. if individuals
with higher gross labour income are weighted much less in the social welfare objective,
then this covariance will be strongly negative. Balancing efficiency considerations against
equity considerations, the government will accept larger efficiency losses due to taxation,
thus allowing the absolute value of the left-hand side of the equation to become larger.
For given behavioural responses, high marginal tax rates will be warranted. However,
if the welfare weights decrease less strongly, the absolute value of the covariance will be
smaller, and optimal marginal tax rates will be lower.

The covariance term which captures the equity effects is distance-weighted. What
matters most is the covariance between the welfare weights and the tax base in the
immediate environment of the value of the tax base x under consideration. Figure 8a
shows graphically the values of the distance weights: they become infinitely large in
the immediate environment of x and they decrease rapidly at slightly larger distances.
Although the weights continue decreasing gradually at further distances, they only con-
verge to zero at infinity. Figure 8b shows how the welfare weights are symmetric, in the
sense that they depend only on the absolute value of the distance from the tax base level
under consideration, independent of the direction.

We can reformulate equation (39) in a more familiar form. Denote the population
average of the net marginal social welfare weights as A ≡

∫
X α (x′) fX (x′) dx′. This

quantity equals one in the optimum, by transversality condition (28). The optimal-tax
condition can then be rewritten as follows:

∀x, l :
∑
j Tj (x)X l

Tj
(x)

X l (x) =
cov

(
α (x′) , x′l−xl

D2(x′−x)

)
AX l (x) , (40)

where I use Slutsky symmetry Xj
Tl

(x) = X l
Tj

(x). This is a different way of expressing
the government’s balancing exercise between efficiency and equity. The left-hand side of
this equation is the proportional reduction of the l-th commodity along the compensated
demand schedule. The normalized covariance on the right-hand side is an extension of
the distributional characteristic that was introduced by Feldstein (1972a,b).

This optimal-tax equation resembles closely a well-known result from the literature.
Suppose that the government could not use the nonlinear, non-separable tax function
T , but instead it had to resort to separate linear tax rates tl. Adapting the results of
Atkinson and Stiglitz (1980, p.386-390) to my notations, denoting as X l the population
aggregate demand for the l-th component of the tax base, the optimal tax rates would
be determined by the following equation [TODO: do we really need the bar on X?]:20

∀l :
∑
j tjX

l
tj

X l
=

cov
(
α (x′) , x′l

)
AX l

. (41)

The covariance on the right-hand side is again an extension of the distributional char-
acteristic introduced by Feldstein (1972a,b). Since the different marginal tax rates are
20This result is a bit simpler than the one found by Atkinson and Stiglitz (1980, p.388), since I allow

for a non-zero tax intercept. This implies that net social welfare weights average to one, similar to
transversality condition (28).
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Figure 8: The distance weight 1/D2 (x′ − x) ≡ 1/
[
2π
((
x1′ − x1)2 +

(
x2′ − x2)2)] is a

measure of the inverted distance of a tax base value x′ to the value x. My ex-
tended notion of the distributional characteristic is a normalized covariance of
the average net marginal social welfare weights with the tax base components,
distance-weighted by 1/D2.

(a) The weights are highest if the value x′ is close to x. There is a singularity at x′ = x. At values
removed from x this weight decreases, steeply so at closer distances, and more gradually further away.
They converge to zero at infinite distance, without ever reaching it.

x2′

x2

1/D2 (x′ − x)

x1′

0

x

x1

(b) The distance weights 1/D2 are symmetric, in the sense that they depend only on the length ||x′ − x||
of the vector x′ − x.

||x′ − x||

1/D2 (x′ − x)

0
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now separable and constant, this equation is no longer specific to one value of the tax
base. Moreover, there is no distance weighting in the distributional characteristic. My
result uses a localized distributional characteristic for each component of the tax base,
whereas the result for linear tax rates uses global distributional characteristics. Result
(40) is a direct extension of (41), from linear, separable tax rates to a non-separable,
nonlinear tax function.

4.3. Higher-Dimensional Case
The derivations for the higher-dimensional case are entirely analogous to those in the two-
dimensional case. Again assuming that the tax base space coincides with the real vector
space, X = RL, introduce the L-dimensional distance function DL (v) ≡ LV L (||v||),
with V L (r) the volume of an L-dimensional sphere with radius r. The optimum can
then be formulated as in the following theorem.

Theorem 2. The tax optimum with an L-dimensional tax base with multidimensional
heterogeneity of the agents, in absence of bunching and when the tax base space coincides
with the real vector space, X = RL, complies to the following necessary condition:

∀x, l :

∑
j

(
Tjx

j
Tl

)
fX

 (x) = cov

(
α
(
x′
)
,

x′l − xl

DL (x′ − x)

)
, (42)

with transversality condition: ∫
RL
α (x) fX (x) dx = 1. (43)

Rewriting condition (42), it again follows that the proportionate reduction of ag-
gregate demand along compensated demand curves should equal a distance-weighted
distributional characteristic, as stated in the following corollary.

Corollary 2. If we assume that we can use Slutsky symmetry xjTl
= xlTj

and that the tax
base space coincides with the L-dimensional real vector space, X = RL, then in absence
of bunching the tax optimum complies to the following necessary condition:

∀x, l :
∑
j Tj (x)X l

Tj
(x)

X l (x) =
cov

(
α (x′) , x′l−xl

DL(x′−x)

)
AX l (x) . (44)

The interpretation of these results is entirely analogous to the two-dimensional case.
It is a sufficient statistics formulation that can be applied to a wide range of problems,
e.g. the joint progressive taxation of couples, the mixed nonlinear taxation of non-
transferable commodities, the optimal mixed progressive taxation of labour income and
capital income, and so on. The necessary sufficient statistics can in principle be estimated
empirically.

A disadvantage of formulation (44) is that it obfuscates the underlying economics. It is
not clear how the Atkinson-Stiglitz result, which states that under a number of conditions
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commodities should be taxed at uniform rates, could be derived from this equation, nor
how it would follow that heterogeneous discount rates could lead to non-zero optimal
taxes on capital income. Moreover, if individuals would not report their true incomes,
because they evade taxes or because they shift income between different bases, the form
of the optimal-tax equation in terms of declared incomes would not change at all. To
study such questions, we need to delve deeper into the micro-foundations of the model.
This will be the topic of the next section. But first I will apply the results of this section
to the optimal taxation of couples.

4.4. Application to the Taxation of Couples
To illustrate my result, let us consider the example of the optimal taxation of couples.
Contrary to the example in subsection 3.4, I no longer impose boundaries on the tax
base space. Taxable incomes can become negative, and there is no conceptual difference
between the primary and the secondary earner in the tax code. In order to guarantee
the anonymity of the members of the couple, they are randomly assigned to the first or
the second component of the tax base. The individuals earn gross incomes x1 and x2,
summarized in the vector x. This procedure imposes symmetry on the welfare weights
and sufficient statistics, and thus on the tax function.21

Introduce the following aggregate tax elasticities:

∀l, j = 1, 2 : elj (x) ≡ − (1− Tj (x))
xlTj

(x)
xl

. (45)

Applying condition (44) then tells us that the following conditions are necessary for the
optimum:

∀x :


T1(x)

1−T1(x) e1
1 (x) + T2(x)

1−T2(x) e1
2 (x) = 1

fX (x)

cov
(
α(x′), x′1−x1

DL(x′−x)

)
Ax1 ,

T1(x)
1−T1(x) e2

1 (x) + T2(x)
1−T2(x) e2

2 (x) = 1
fX (x)

cov
(
α(x′), x′2−x2

DL(x′−x)

)
Ax2 .

(46)

The left-hand sides contain the relative reductions of the tax bases. They are a measure
of the distortions that are caused by the tax system. These quantities can in principle
be measured empirically. The same is valid for the density function fX .

The right-hand side contains the localized distributional characteristics of the respec-
tive tax bases. Their values depend on the normative judgments of the government. The
government could for example favour specialization within the couple, where one of both
partners spends more time at home (e.g. caring for family members) while the other
supplies labour in the market. Alternatively, the government could favour equal sharing
of both market and other activities, or it could not care at all about the distribution
21Note that for the range x1 < x2, this setup must produce the exact same optimal tax function as the

setup where distinction is made between the primary and secondary earners, with xP ≥ xS . This
observation will play a central role in subsection 6.1, where I apply the method of images to deal with
restrictions to the tax base space.
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within the family. Possibly the government would want to equivalize incomes, taking
into account scale effects from the size of the family. These important questions are
beyond the scope of this paper.22

5. Connection to Economic Fundamentals
In order to find more insight into optimal-tax equation (42), we need to restate our
results in terms of the economic fundamentals of the problem. In the present section I
do this for the case where the dimension of the type space is equal to the dimension of
tax base space, K = L. I assume that the allocation x (θ, T ) is a continuous, one-to-
one function, strictly monotonous in all characteristics θk. I also assume that the tax
function is smooth. I will extend these assumptions in section 6 about robustness.

I start in subsection 5.1 by restating the Euler-Lagrange equation in the type space,
and I formulate the corresponding optimality conditions. Next I account for preference
optimization in subsection 5.2 to find a characterization of the optimum in terms of
economic fundamentals. I apply these findings to the joint taxation of couples in subsec-
tion 5.3 . In subsection 5.4 I extend this characterization, allowing for a type-dependent
individual budget constraint, accounting e.g. for differences in bequests received by dif-
ferent individuals. I demonstrate these results for the optimal mixed taxation of capital
income and labour income in subsection 5.5.

5.1. Euler-Lagrange Formalism in the Type Space
A first step to reformulate the tax optimum in terms of economic fundamentals is to
reformulate Euler-Lagrange equation (12) as a partial differential equation in the type
space. Introduce the Jacobian matrix containing the partial derivatives of the allocation:

J ≡

x
1
θ1 (θ, T ) · · · x1

θK (θ, T )
... . . . ...

xLθ1 (θ, T ) · · · xL
θK (θ, T )

 . (47)

This matrix extends the notion of a gradient to vector-valued functions. The follow-
ing theorem then shows how the Euler-Lagrange equation for the tax optimum can be
reformulated.
22An important question, which I have been unable to solve, is what happens to the right-hand sides of

these equations as the value of a tax base component converges to infinity. Denote for example the
limit of α

(
x1, x2) for x1 →∞ as α1+ (

x2). The right-hand side of the optimal-tax equation for the
l-th component then becomes:

−α1+ (
x2) ∫R2

x′l−xl

DL(x′−x) d
(
1− FX (x′)

)
xlfX (x) .

The fraction in this equation appears to be a localized, multi-dimensional extension of the Pareto-
term [1− F (x)] /xf (x) which occurs in the optimality condition for the one-dimensional problem
(note that the divergence of

∫
R2

[
(x′ − x) /DL (x′ − x)

]
d
(
1− FX (x′)

)
equals −fX (x), just like

the derivative of 1− F (x) equals −f (x)). The precise interpretation of this term, and under which
circumstances it converges to a constant value, as of yet remains unclear.
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Theorem 3. Suppose the type space and the tax base space have equal dimensions, re-
spectively K = L, and suppose that the mapping between both spaces is one-to-one. The
tax optimum, in absence of bunching, then complies to the following partial differential
equation, referred to as the Euler-Lagrange condition in the type space:

∀θ ∈ Θ : (1− α (x (θ, T ))) fΘ (θ) (48)

=
K∑
k=1

∂

∂θk

{[
∇xT · x∇xT ·

(
J −1

)ᵀ]k
(x (θ, T )) fΘ (θ)

}
,

subject to the boundary conditions:

∀θ ∈ Γ (Θ) :
{[

∇xT · x∇xT ·
(
J −1

)ᵀ]
(x (θ, T )) · θ̂

}
fΘ (θ) = 0, (49)

and the government budget constraint:∫
RK

T (x (θ, T )) fΘ (θ) dθ = 0. (50)

Proof. See appendix C.

The derivation of these equations is not so straightforward. The intuition though is
clear. Since the instrument of our optimization is defined in the tax base space rather
than the type space, we can not simply state a traditional Euler-Lagrange equation in
the type space. An additional term, the transpose of the inverse of the Jacobian matrix,
needs to be added to account for the fact that we are working in a different vector space.
The intuition of equation (48) remains the same as before: the social welfare effect of
a tax increase for all individuals of type θ, captured by the left-hand side, should be
exactly compensated by the compensated effects experienced by the individuals in the
immediate environment of type θ, captured by the right-hand side.

The Euler-Lagrange equation (48) in the type space can be seen as a partial differential
equation of the same form as Euler-Lagrange equation (12) in the tax base space:

∀θ : A′ (θ) =
K∑
k=1

∂B′k (θ)
∂θk

.

Assume now that the population density fX (x) is strictly positive for any x ∈ RL,
so the tax base space coincides with the real vector space: X = RL. This means for
example that I do not exclude negative values of the tax bases. Using the same methods
as in section 4, we then find the tax optimum in the K-dimensional type space:

∀θ, k :
[
∇xT · x∇xT ·

(
J −1

)ᵀ]k
(x (θ, T )) =

cov
(
α
(
x
(
θ′, T

))
, θ′k−θk

DK(θ′−θ)

)
A θkfΘ (θ) . (51)

This equation again reflects the balancing exercise between efficiency and equity. The
right-hand side captures the equity aspects of the government’s balancing exercise.
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Rather than being a distributional characteristic of a component of the tax base though,
it is now a distributional characteristic for the k-th component of the type of the in-
dividuals. Is is an indication of how much the government cares about that particular
individual trait. Perhaps it values more highly individuals with a lower ability, individ-
uals who are more willing to work, or those who receive a lower inheritance. Again this
distributional characteristic is localized around the type θ under consideration, weighted
by distance function 1/DK , with a similar interpretation to that formulated in section
4.

The term x∇x (x (θ, T )) on the left-hand side is an indication of how strong be-
havioural responses are when there is a change to the gradient of the tax function.
The inverse J −1 of the Jacobian matrix indicates how the types θ are related to the
tax base values x. If we slightly change the tax base value x that we are studying, then
there is a change in the underlying type θ that is choosing the tax base value under
consideration, determined by the elements

(
xl
θk

)−1
of the inverted Jacobian matrix.23

The product x∇x (x (θ, T ))·
(
J −1)T combines these two terms to give information about

how strong is the change in the type choosing an allocation x, if the tax gradient at that
point changes:

x∇T (θ, T ) ·
(
J −1

)ᵀ
= − dθ

d∇xT (x (θ, T ))

∣∣∣∣ᵀ
x

.

Formally this property follows from the analytic implicit function theorem, which is a
multidimensional extension of the implicit function theorem in one dimension.

Substituting this relation into Euler-Lagrange equation (51) in the type space leads
to an interesting reformulation of our optimal tax condition:

∀θ, k : −
∑
l

Tl (x (θ, T ))
θkfΘ (θ) · dθk

dTl (x (θ, T ))

∣∣∣∣∣
x

fΘ (θ) =
cov

(
α
(
x
(
θ′, T

))
, θ′k−θk

DK(θ′−θ)

)
A θkfΘ (θ) . (52)

The left-hand side contains the proportional change in the k-th component of the type
residing at the value of the tax base under consideration. The term dθk/dTl

∣∣∣
x

tells us
how the k-th component of the type of the individuals choosing tax base x changes when
there is a reform of the l-th component of the tax gradient. The larger is this term, the
less able will be the government to target this trait using this component of the tax
base. The left-hand side in its entirety is an indication of the cost that is associated to
revealing information about that characteristic of the individual.

Optimal-tax condition (52) then shows how the government faces a balancing exercise
between the social advantage of redistribution between individuals with different values
of the trait θk, against the cost of targeting that trait.

Even though equation (52) has an intuitive interpretation, and even though it involves
information about the types that cannot be observed by the government, it is still for-
mulated in terms of summary statistics, which depend on the underlying behavioural
23The inverse function theorem states that the elements of the inverse of the Jacobian matrix are the

inverses of the elements of the original Jacobian matrix.
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model. Indeed, the results that I have formulated until now are stated independently
of what drives individual behaviour.24 We gain more insight in the following subsection
by finding an explicit formulation for the term dθk/dTl

∣∣∣
x

in terms of more fundamental
economic quantities.

5.2. Accounting for Preference Optimization
I will now become more explicit about the model driving individual behaviour. As-
suming that individuals maximize a utility function, it becomes possible to find explicit
formulations for the behavioural effects x∇T (θ, T ) and for the Jacobian J .

Introduce a numéraire commodity c, and denote the individual budget constraint as
follows:

c = B (x|T ) , (53)

where the function B (x|T ) depends on the tax system. A common example would be
the case where individuals earn gross income z, and they consume out of their net-of-tax
earnings. In this case the budget constraint would be c = z − T (z).

I assume that individuals maximize a utility function u (c,x|θ) subject to budget con-
straint (53). Substituting the latter constraint for the numéraire commodity, introduce
the constrained utility function:

U (x|θ, T ) ≡ u (B (x|T ) ,x|θ) . (54)

The individual first-order conditions can then be formulated as follows:

∀l : Ul = ucBl + ul = 0, (55)

where the subscripts denote partial derivatives with respect to the respective arguments,
e.g. Ul ≡ ∂U/∂xl. The individuals thus choose the values of the tax base such that small
variations of their choice do not affect their utility.

Suppose now that there is a small change in the marginal tax rate Tj at base x.
Individuals will update their behaviour such that condition (55) remains fulfilled. Simi-
larly, if an individual experiences an exogenous change in his trait θk, he will update his
behaviour. This observation leads to the following condition:

∀l,∀ν = Tj , θ
k : dUl

dν
= 0. (56)

The total derivative in this equation can be expanded as follows:

∀l,∀ν = Tj , θ
k :

L∑
j=1

Ulj
dxj

dν
+ Ulν = 0. (57)

24One exception is the reformulation of result (39) in the form (40), and more generally from theorem
(2) to corollary (2). I use Slutsky symmetry to arrive at the latter formulation.
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Define the Hessian H of U as the matrix containing its second-order partial derivatives:

H ≡

U11 · · · U1L
... . . . ...

UL1 · · · ULL

 .
This allows rewriting result (57) in matrix notation:

∀ν = Tj , θ
k : dx

dν
= −H−1 · Uxν ,

where I multiply both sides from the left by the inverse of the Hessian.
It now follows that the Jacobian matrix is given by:

J = −H−1 · Uxθ, (58)

and the matrix with compensated effects looks as follows:

∀l : xTl
= −H−1 · UxTl

. (59)

Before applying these results, I will give more explicit formulations for the terms UxTl

and Uxθ. First assume that there is a reform to the marginal tax rate of size dTj at tax
base value xR, keeping constant the liability at xR itself. Denoting by x the value of
the tax base chosen after the reform by someone who originally chooses xR, we obtain
a new budget constraint:

c = B (x|T )−
(
xj − xR,j

)
dTj .

It is clear that when the individual does not change his behaviour, xj = xR,j , his tax
liability remains unaltered. The change in the marginal tax rate applies only to his
responses to the reform. Note that taking the derivative of this budget constraint, for
given value of the tax base, yields the following relation:

dc

dTj

∣∣∣∣∣
x

= −
(
xj − xR,j

)
.

Using definition (54) we now find:

UlTj
= ∂

∂xl

(
uc

dc

dTj

∣∣∣∣∣
x

)
= − ∂

∂xl

(
uc
(
xj − xR,j

))
. (60)

Evaluating this expression in the situation with no tax reform, when xj = xR,j , it follows:

UlTj
=
{
−uc if l = j,

0 if l 6= j.
(61)
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Similarly, again using definition (54):

Ulθk = ulθk + ucθkBl = ulθk − ucθk

ul
uc

= uc
∂ (ul/uc)
∂θk

∣∣∣∣
x
, (62)

where I substitute individual first-order condition (55) in the second step.
Substituting results (58), (59), (61), and (62) into optimal-tax condition (51) then

yields the following necessary condition for the optimum:

∀θ, l : Tl (x (θ, T )) (63)

=− 1
fΘ (θ)

∑
k

∂ (ul/uc)
∂θk

∣∣∣∣
x

cov

(
α
(
x
(
θ′, T

))
,

θ′k − θk

DK
(
θ′ − θ

)) .
This equation is a direct extension of a result obtained by Mirrlees (1976) for the case
with a one-dimensional type space.25 The l-th component of the optimal tax gradient,
Tl, is higher for a particular type θ if there are fewer individuals at that point whose
behaviour is impacted, or if the government particularly values compensation for traits
that can be better targeted using that component of the tax base.

To gain more intuition about the term ∂ (ul/uc) /∂θk
∣∣∣
x
, consider for example the

following Atkinson-Stiglitz (1976) type of model with one-dimensional type n. Suppose
individuals with ability n supply labour `, which yields earn gross labour income z = n`.
They consume a numéraire good c and a taxed good y. They maximize utility u

(
c, y, zn

)
,

subject to budget constraint c = z − p · y − T (z, y), with p the producer price of good
y. We are now interested in the following term:

∂ (uy/uc)
∂n

∣∣∣∣
z,y

= − `
n

1
uc

[uy` − uc` (p+ Ty)] ,

where I substitute the first-order condition uy = (p+ Ty)uc on the right-hand side. It
immediately shows that when preferences are separable between leisure and consump-
tion, such that uy` = uc` = 0, this expression becomes zero. Conditional on the tax base
(z, y), the marginal rate of substitution uy/uc does not reveal any information about the
individual type, and there is no point in taxing good y. Doing so would introduce a dis-
tortion, without introducing the counterbalancing advantage of being able to differentiate
between individuals with different abilities. If, on the other hand, utility is not separa-
ble, then equation (63) tells us that the marginal tax rate on y will be higher when the
term ∂ (uy/uc) /∂n|z,y is larger, as suggested by Corlett and Hague (1953). Optimal-tax
condition (63) shows how this reasoning extends to multi-dimensional characteristics.

5.3. Application to Taxation of Couples
I will now apply the findings of the previous subsection to the optimal taxation of
couples, following a model introduced by Kleven, Kreiner, and Saez (2007). Let each
25The difference with the formulation by Renes and Zoutman (2016a) stems from the fact that the net

social welfare weight α already incorporates the income effects. This makes that formulation (63)
has a more intuitive interpretation.
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couple consist of two individuals with respective labour abilities n1 and n2, with domain[
n1, n1]× [n2, n2]. As before, labour supply of the individuals is denoted by `1 and `2,

and the corresponding gross labour incomes are z1 and z2. The budget constraint for
the household is given as follows:

c = z1 + z2 − T
(
z1, z2

)
.

Utility is separable, and linear in consumption:

u

(
c,
z1

n1 ,
z2

n2

)
≡ c− n1h1

(
z1

n1

)
− n2h2

(
z2

n2

)
.

Define the following elasticities:

εk ≡ 1− Tk
zk

∂zk

∂ (1− Tk)
=

hk
`k

`khk
`k`k

.

The effect of the respective abilities on the marginal rates of substitution then look as
follows:

∂ (uz1/uc)
∂n2

∣∣∣∣
z

= ∂ (uz2/uc)
∂n1

∣∣∣∣
z

= 0,

∂ (uz1/uc)
∂n1

∣∣∣∣
z

= 1
ε1 ,

∂ (uz2/uc)
∂n2

∣∣∣∣
z

= 1
ε2 .

Substituting these results into equations (58), (59), (61), and (62), and applying theorem
3, yields the following divergence equation for the tax optimum:

∀n1, n2 : (α− 1) fΘ
(
n1, n2

)
= ∂

∂n1

(
T1

1− T1

h1
`1

`1h1
`1`1

n1fΘ
(
n1, n2

))
(64)

+ ∂

∂n2

(
T2

1− T2

h2
`2

`2h2
`2`2

n2fΘ
(
n1, n2

))
.

This is exactly the optimality condition found by Kleven, Kreiner, and Saez (2007) in
their proposition 4. Using the methods in the present paper, we can now state the
optimum for the case where the domain of the skills coincides with the real vector space
R2:

∀k : Tk
1− Tk

= 1
εk

cov

(
α′,

n′k − nk

D2 (n′1 − n1, n′2 − n2)

)
1

nkfΘ (n1, n2) . (65)

This solution, to the best of my knowledge, had not been stated before in the literature.
Furthermore, apply theorem 3 to find the following boundary conditions:

∀k : ∀nk = nk, nk :
{

Tk
1− Tk

εknkfΘ
(
n1, n2

)}
= 0.

This again confirms the findings stated by Kleven, Kreiner, and Saez (2007) in their
proposition 4.
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5.4. Type-dependent Budget Constraint
Much of the optimal-tax literature, including the contributions of Mirrlees (1971), Mir-
rlees (1976) and Atkinson and Stiglitz (1976), assumes that the budget constraint does
not depend directly on the individual traits. Still it is interesting to allow for this pos-
sibility. It is possible for example that individuals receive an unobserved inheritance, as
studied by Cremer, Pestieau, and Rochet (2001), or that they receive a skill-dependent
return on their investment, as described by Gerritsen et al. (2015).

Assume thus that the individual budget constraint can be expressed as follows:

c = B (x|θ, T ) .

For example, suppose that individuals have gross labour income z, and they receive an
unobserved bequest b. In this case the budget constraint would be c = z − T (z) + b.

The derivations from subsection 5.2 remain valid. The value (62) of second-order
partial derivative Ulθk changes though:

Ulθk = uc
∂

∂θk

[
ul
uc

(B (x|θ, T ) ,x|θ) +Bl

]∣∣∣∣
x
.

Note that in the argument of the marginal rate of substitution ul/uc, I substitute the
budget constraint for the numéraire. This formulation takes into account the effects
of the changes in the type on the budget constraint. The term within square brackets
indicates how strongly the individual marginal rate of substitution would deviate from
its optimum if there were an exogenous change in his trait θk, if the individual would
not alter his behaviour.

Optimal-tax condition (51) then becomes:

∀θ, l : Tl (x (θ, T )) = − 1
fΘ (θ)

∑
k

∂

∂θk

[
ul
uc

(B (x|θ, T ) ,x|θ) +Bl

]∣∣∣∣
x

(66)

· cov

(
α
(
x
(
θ′, T

))
,

θ′k − θk

DK
(
θ′ − θ

)) .
The intuition is similar to that in subsection 5.2. The l-th component of the tax

gradient is higher for a particular type θ if there are less individuals whose behaviour
is affected. It is also higher if the government cares more about traits which have a
stronger influence on the marginal rate of substitution in the direction of that tax base
component – now taking into account the effect of a change in the type on the individual
budget constraint. If a small change in an individual trait causes a strong deviation
in a particular direction of the tax base, then the government can use that tax base
component more easily to target that particular characteristic.

5.5. Application to Mixed Taxation of Labour and Capital Incomes
I will apply the findings from the previous subsection to the optimal mixed taxation of
capital income and labour income. I will describe a model where individuals differ in two
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dimensions: they have different labour productivities n, and they have different discount
rates ρ. This distinction was also made by Diamond and Spinnewijn (2011), who find
desirability conditions in a model with just two or three values of each characteristic. I
extend their model here to continuous characteristics. Moreover, to be able to demon-
strate my findings for a type-dependent budget constraint, I assume that more patient
individuals obtain higher returns on their savings, and that more able individuals obtain
higher returns.

There are two periods in the model. In the first period, individuals supply labour
`, which yields a gross income z ≡ n`, they consume an amount c1, and they save an
amount a. Their savings yield a gross capital income y ≡ aR (n, ρ), which depends on
the amount saved and on the discount rate and the ability of the individual.

In order to keep the model tractable, I assume that individuals pay a tax T (z, y) at
the end of the first period. It depends on their labour income and their capital income.
Their first-period budget constraint thus looks as follows:

c1 + a+ T (z, y) = z.

Second-period consumption then equals the amount saved, plus the capital income ob-
tained from it:

c2 = (1 +R (n, ρ)) a.

To be able to apply the findings of the previous subsection, I write the intertemporal
budget constraint in terms of the tax bases:

c1 = B (z, y|n, ρ, T ) ≡ z − T (z, y)− y

R (n, ρ) .

Individuals obtain utility from their first-period and their second-period consumption,
and they experience a disutility from their labour supply. I immediately write the utility
function in terms of the numéraire commodity c1 and the values of the tax base:

u
(
c1, z, y|ρ, n

)
≡ v

(
c1
)

+ ρv

([ 1
R (n, ρ) + 1

]
y

)
− w

(
z

n

)
.

Preferences are thus intertemporarily separable, and they are separable between leisure
and consumption. This allows deriving the first-order conditions:

0 = uz
uc1

(B (z, y|n, ρ, T ) , z, y|n, ρ) =
(
1− T ′

)
− 1
n

w`
vc1

, (67)

0 = uy
uc1

(B (z, y|n, ρ, T ) , z, y|n, ρ) = −
(
Ty + 1

R (n, ρ)

)
+ ρ

vc2

vc1

(
1 + 1

R (, nρ)

)
. (68)

The relevant derivatives of the budget constraint are as follows:

Bzn = Bzρ = 0, Byn = Rn
R2 , Byρ = Rρ

R2 . (69)
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and the relevant derivatives of the marginal rates of substitution:

∂

∂ρ

(
uz
uc1

)∣∣∣∣
z,y

= 0, (70)

∂

∂n

(
uz
uc1

)∣∣∣∣
z,y

= 1
n

w`
nvc1

(
1 + w```

w`

)
, (71)

∂

∂ρ

(
uy
uc1

)∣∣∣∣
z,y

= Rρ
R2 + vc2

vc1

(
1 + 1

R (ρ)

)
− ρvc2

vc1

Rρ
R2

[
1 +

(
1 + 1

R (, nρ)

)
vc2c2

vc2

]
, (72)

∂

∂n

(
uy
uc1

)∣∣∣∣
z,y

= Rn
R2 − ρ

vc2

vc1

Rn
R2

[
1 +

(
1 + 1

R (, nρ)

)
vc2c2

vc2

]
. (73)

We now have the necessary elements to derive the optimal-tax equations. First apply
optimal-tax condition (66) to find the optimal marginal tax on labour income:

∀θ : Tz
1− Tz

= 1
nfΘ (n, ρ)

(
1 + w```

w`

)
cov

(
α
(
n′, ρ′

)
,

n′ − n
D2 (n′ − n, ρ′ − ρ)

)
,

where I used first-order condition (67) to rearrange some terms. The first two terms on
the right-hand side of this equation look a bit similar to the result found by Mirrlees
(1971). The first term incorporates properties of the skill distribution, and the sec-
ond term is the inverse of the Frisch elasticity of labour supply (controlling for capital
income). The third term though looks completely different in this case. Rather than
looking at the net social welfare weights of all individuals with higher skills, and weighing
them equally, as in the B-term in equation (8), it now incorporates a distance-weighted
covariance of the net social welfare weights with the tax base. The distance-weighting
is symmetric, and also tax base levels below the tax base under consideration contribute
to the optimal tax on labour income.

For the optimal tax on capital income we obtain the following equation:

∀θ : fΘTy =−
[
∂

∂ρ

(
uy
uc1

)∣∣∣∣
z,y

+Byρ

]
cov

(
α
(
n′, ρ′

)
,

ρ′ − ρ
D2 (n′ − n, ρ′ − ρ)

)

−
[
∂

∂n

(
uy
uc1

)∣∣∣∣
z,y

+Byn

]
cov

(
α
(
n′, ρ′

)
,

n′ − n
D2 (n′ − n, ρ′ − ρ)

)
.

We can learn a number of things. Note first that if the discount rates are not hetero-
geneous, then the covariance on the first line will be zero. Assume that the covariance
on the second line is not zero, e.g. because the government would like to redistribute
away from individuals with high innate abilities. The only reason then why the optimal
marginal tax rate on capital income might differ from zero, in this model, is that the
term within square brackets on the second line differs from zero. This is the case when
an exogenous change in the labour ability n of an individual, somehow causes his savings
no longer to be in optimal in his original bundle. My model is such that preferences
between leisure and consumption do not depend directly on labour ability. One reason is
that I assumed separability between leisure and consumption, thus excluding the motives
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found by Corlett and Hague (1953). Another reason is that I exclude direct dependence
of the discount rate on labour ability (ρ 6= ρ (n)), thus excluding the motives found
by Saez (2002). Still, if the interest rate obtained by the individuals is skill-dependent
(Rn 6= 0), this term will differ from zero because of results (69) and (73), and the optimal
marginal tax on capital income will differ from zero. This complements the findings of
Gerritsen et al. (2015). It is thus important not only to take into account the direct
impact of the traits on individual preferences, but also to take into account the effects
on the individual budget constraint.

If neither of above reasons is true, then the second line will be zero. Still there might
be reasons to tax capital income. If not all individuals have the same discount rate,
then by definition the marginal rate of substitution between the two periods will depend
on it. The term between square brackets on the first line thus differs from zero. If the
covariance between the welfare weights and the discount rates differs from zero, then
the optimal marginal tax rate on capital income will differ from zero, confirming the
findings of Diamond and Spinnewijn (2011). Furthermore, if the rates of return R (n, ρ)
depend directly on the discount rate, such that more patient individuals obtain higher
returns, this further affects the value of the term between square brackets on the first
line, further contributing to a non-zero optimal tax on capital income. Again it turns
out to be important to incorporate the effects of the individuals traits on their budget
constraints.

Note that even when the second line in this optimal-tax equation is zero, and even
when the welfare weights are forced to be independent of the discount rate because
individuals are held responsible for their own preferences (so αρ = 0), even then the
first line on the right-hand side might differ from zero, for the mere reason that the
discount rates ρ are locally correlated with the labour skills n. So, even if we deem the
preference for savings to be irrelevant for moral reasons, still we might end up using it
to differentiate between individuals because it contains imperfect information about the
innate abilities.

6. Robustness
There are a number of circumstances where the assumptions of the above derivations are
violated. For example, I always assumed that the relevant functions and their derivatives
are sufficiently smooth. When characterizing the optimum in section 4, I assumed that
the tax base space spans the entire real vector space. And when connecting to economic
fundamentals in section 5, I assumed that each allocation in the tax base space was
chosen by exactly one type.

There are a number of ways in which these conditions may be violated. A first possi-
bility is that the tax base space is restricted, for example because there are some legal or
physical restrictions on the values that the tax base may take. It may be impossible to
consume negative quantities of certain goods, or it may not be allowed to report negative
values. When characterizing the optimum in section 4, I used the assumption that the
tax base space coincides with the entire real vector space (X = R2), so I could use Green
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functions with boundary conditions for ||x|| → ∞. I will argue in subsection 6.1 that
a restricted tax base space impels us to add some correction terms to the optimality
conditions.

Another possible violation of my assumptions occurs when the type space has a higher
dimension than the tax base space. In this case individuals of different types will in-
evitably pool at the same allocation, even when a strict monotonicity assumption is
maintained for the allocation, i.e. ∂xl/∂θk > 0 for all components. For example, for a
given gross labour income, one might simultaneously observe talented individuals who
prefer to work fewer hours, and less productive individuals who prefer to work more
hours. This possibility is allowed for by the Euler-Lagrange equation in theorem 1 and
the characterization of the optimum in terms of sufficient statistics in equation (44),
where behavioural responses are averaged over the individuals pooling at the tax base
value under consideration, but section 5 explicitly excludes this possibility when it as-
sumes a one-to-one allocation. Subsection 6.2 explains how to deal with this.

Another situation where individuals of different types choose the same allocation, is
when bunching occurs. Consider an infinitesimal volume dx around a tax base value
x. The number of individuals choosing a value in that volume equals f (x) dx. If we
shrink this volume to a single point, dx → 0, then in absence of bunching the number
of individuals in it will converge to zero. Since any real volume contains infinitely many
points, removing a single point will not make a difference when we integrate over that
volume. We say that a volume of measure zero contains a zero mass of individuals.
The situation changes when there is bunching. Suppose for example that 10% of the
population chooses not to work: they choose the corner solution z = 0. Then the number
of individuals bunching on an infinitesimal interval dz around labour income z = 0,
f (0) dz, will converge to 10% as dz → 0. For this to be possible, there needs to be an
infinite spike in the density function at z = 0. We say that there is a mass of individuals
bunching at this point. The density function makes a discontinuous jump at the edge,
and the objective function is no longer sufficiently smooth for my derivations to hold
without modifications. Seade (1977) shows how in this situation the zero-marginal-tax
result at the bottom disappears. I study this possibility in subsection 6.3.

Bunching may also occur at an interior point of the tax base space. Ebert (1992)
gives an example for the labour income tax with a utilitarian government objective,
where individual preferences and the skill distribution coalesce such that the individual
second-order conditions become binding at a some range of skills. Mirrlees (1976) shows
that with a one-dimensional type θ, when a single-crossing condition is fulfilled for
the indifference curves, the individual second-order condition is equivalent to the weak
monotonicity condition dz/dθ ≥ 0. If this condition is binding, so dz/dθ = 0, it follows
that a range of individuals of consecutive skill levels will bunch at the same labour
income.

Bunching differs from pooling. In the case of bunching, the strict monotonicity condi-
tion is violated: individuals of consecutive types choose the same allocation, forming a
mass point. In the case of pooling, the strict monotonicity condition remains satisfied; it
usually occurs when the type space has a higher dimensionality than the tax base space.
There is no infinite spike in the density function, and thus there is no mass point in the
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income distribution.
Kleven, Kreiner, and Saez (2007) show for the nonlinear joint taxation of couples,

that the no-bunching assumption is reasonable for a wide range of social objectives. Still
there are cases where bunching is important. One example is the Rawlsian objective,
where all weight falls on a single individual. Another example where bunching may
occur is the case where most weight is given to a type in the interior of the type space
(e.g. attaching a higher social welfare weight to the working poor than to those out of
work).26

An optimal allocation that includes an interior bunching range, is implemented using
a kinked tax function. That is, the tax function itself remains continuous, but there
is a discontinuity in its gradient. Suppose for example with a one-dimensional labour
income tax base, that at a given point the marginal tax rate jumps from 40% to 45%.
Individuals with a marginal rate of substitution between labour income and consumption
lower than 40% (− (1− T ′) < −60%) will choose a labour income below the kink, while
individuals with a marginal rate of substitution above 45% (− (1− T ′) > −55%) will
choose a labour income above the kink. Those with a marginal rate of substitution
between 40% and 45% will bunch at the kink. There will be a mass of individuals at
that point. Again the objective function is no longer sufficiently smooth and I need to
adapt my derivations. I do so in subsection 6.3.

Another difficulty occurs when the dimension of the type space is lower than the
dimension of tax base space. This is typically the case in the literature that studies
problems involving multidimensional tax bases with one-dimensional types. Examples
include the seminal papers of Mirrlees (1976) and Atkinson and Stiglitz (1976). In
this case the allocation forms a one-dimensional path in a multidimensional tax base
space. A typical complication in this case, when solving the optimal-tax problem using
the mechanism design approach, is that of double deviations. The problem is that the
incentive compatibility constraint that is taken into account, guarantees only that each
individual chooses the bundle that is meant for him among the bundles that are situated
on that one-dimensional path. If the optimum is decentralized though using a tax
system, there is no a priori reason why an individual would not prefer a bundle that
is situated outside the one-dimensional allocation. Most authors, to circumvent the
problem, simply set the tax liability infinitely high at these alternative values (see e.g.
Rochet, 1985). Renes and Zoutman (2016b) show that it suffices that the individual
second-order conditions for the decentralized optimization problem are fulfilled in the
bundles that are assigned to the different types: it suffices that the tax liability increases
strong enough when individuals deviate from the one-dimensional path of the allocation,
to discourage them from doing so.

In my approach, where we are given a tax function with corresponding density func-
tions and marginal behavioural responses, the problem of double deviations becomes
26Armstrong (1996) and Rochet and Choné (1998) study the problem of a monopolist choosing nonlinear

prices for a set of potential qualities of its product. They show that when individuals choose which
qualities to buy, and they have an option not to buy the product at all, then the presence of bunching
cannot be ruled out without making unreasonable assumptions. These results are less relevant for
the present paper, as I rule out the existence of an outside option.
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irrelevant. If we observe an income distribution corresponding to a given tax function,
that means that individuals have already chosen their tax base values, conforming to
their incentives. If we observe that individuals pool on a one-dimensional allocation,
that automatically implies that the second-order conditions given by Renes and Zout-
man (2016a) are fulfilled on that line. Still, I cannot simply ignore the this case: I
need to demonstrate how the multidimensional optimal-tax equation (42) collapses to
the more traditional equations found e.g. by Mirrlees (1976) and Atkinson and Stiglitz
(1976). This will be the topic of subsection 6.4.

6.1. Tax Base Restrictions
The optimal-tax condition in theorem 2 is based on the assumption that the tax base
space coincides with the real vector space: X = RL. As mentioned, the tax base space
might be limited to a subset, e.g. for legal or physical reasons. One typical example is
that one or more components of the tax base are restricted to be non-negative. Another
relevant example is the joint taxation of couples, where both partners should be treated
anonymously. As explained in subsection 3.4, the latter limits the tax base space to a
bisection of the real space.

Theorem 2 is no longer correct when the tax base space is limited to a subset of RL.
The reason is that it is based on a Green function of the form in equation (34). The
problem is that the boundary condition (37) is no longer fulfilled when the boundary is
situated at finite values of the tax base.

Remember how in subsection 4.4 for the joint taxation of couples, I got rid of the
limitation that the income of the primary earner should be higher than the income of
the secondary earner, by randomly assigning the partners in each couple to either the first
or the second position in the definition of the tax base. This led to symmetric sufficient
statistics, and if the welfare weights respected anonymity, it led to a tax function which
was symmetric in the identity of the individuals. Using this procedure, the domain of
the problem was extended to include the entire real vector space, rather than the half
where the primary earner had a higher income than the secondary earner. We were thus
able to solve the problem using theorem 2, based on a Green function with boundary
conditions at infinite levels of the tax base.

The procedure set forth in subsection 4.4 is an application of a more general method,
the method of images. I created an image of the economy under consideration where
the values of zP and zS were switched for all individuals. This method is typically used
in combination with Green functions, e.g. to solve problems in the field of electromag-
netism. I will attempt to explain the solution procedure in economics terms. A more
traditional treatment of the subject can be found e.g. in Lax et al. (1998, p.235-238).

I will focus on a two-dimensional tax base with values x ≡ (z, y), where y can take
any value, but z is restricted to non-negative values (z ≥ 0). The tax base space
thus coincides with a half plane in the real vector space: X ≡

{
x ≡ (z, y) ∈ R2|z ≥ 0

}
.

Theorem 1, stating the Euler-Lagrange equation, remains valid, but we can no longer
use theorem 2 to characterize its solution.

The trick to solve this problem is again to create an image of this economy. Assign
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Figure 9: The tax base space X is limited to those points (z, y) ∈ R2 which have non-
negative values of z. The fact that X does not coincide with R2 makes that
we can no longer apply theorem 2. A solution is to create an “image world”, a
mirror image of the true economy around the line z = 0. The tax base space
of this image world has elements

(
zi, yi

)
∈ X i, with non-positive values for zi.

Since the union X ∪X i coincides with R2, we can use theorem 2 to optimize
the tax function on this extended economy. The values of this optimal-tax
function on the set X coincide with the solution for the original problem.

z

y

X ≡
{
(z, y) ∈ R2|z ≥ 0

}

x′ = (z′, y′)

∇T (x′)

x′∇T

xi = (−z′, y′)

∇T
(
xi
)

xi∇T

X i ≡ {(−z, y) | (z, y) ∈ X }

Image of the
Tax Base Space Tax Base Space

0

all units in the population randomly to one of two groups. The first group reports their
true gross income as usual, but the second group reports a negative value of z. For a
member of the second group, if his tax base originally took the value x′ = (z′, y′), he
will now report the image value xi = (−z′, y′). Now let the government optimize a new
tax function on this extended domain. The new tax base space coincides with the entire
real vector space R2, as illustrated in figure 9.

The derivations in section 3 are valid in this case. Implementing a localized reform
similar to those used in subsections 3.1 and 3.2, should still leave social welfare un-
changed. Theorem 1 remains valid, and the Euler-Lagrange equation looks exactly the
same.27 What is more, since the image economy is the exact mirror of the original econ-
omy, the optimal tax function on the extended domain should be symmetric around the
line defined by the equation z = 0. It follows that the entity ∇xT (x′) ·x∇xT (x′) should
be the exact mirror of the entity ∇xT

(
xi
)
· x∇xT

(
xi
)
.

Now consider a point x ≡
(
0, y

)
which lies on the line z = 0. Note that this point

is necessarily equal to its image: x = xi. It follows that the vector ∇xT (x) · x∇xT (x)
27I ignore the fact that the density function is halved, since half of the population is moved to the image

world. The factor 1/2 drops out in all results anyway.
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should be equal to its own image. The only way that this is possible, is that it is parallel
to the line z = 0. It follows that in the optimum, necessarily ∇xT (x) ·x∇xT (x) · x̂ = 0.
This is exactly the requirement of boundary condition (13) in theorem 1.

If we can thus solve this new problem on domain R2, then we have a tax function
which conforms to all conditions of theorem 1. We thus immediately obtain a solution
for the original problem, by using the values of the optimal tax function on the positive
half of R2.

The solution to the original optimal tax problem thus looks as follows:

∀x ∈ X , l :
∑
j

(
Tj (x)xjTl

)
fX (x) (74)

= covX

(
α
(
x′
)
,

x′l − xl

D2 (x′ − x)

)
+ covX

(
α
(
x′
)
,

xil − xl

D2 (xi − x)

)
.

To see more formally that this solution is correct, note that this is the solution that
we would have found if I had used the following Green function in subsection 4.2:

G
(
x,x′

)
≡ x− x′

D2 (x− x′) + x− xi

D2 (x− xi) .

If I can show that this Green function fulfills conditions (31) and (32), then I have
formally shown the validity of solution (74).

The derivations in appendix B lead to the following property:

∑
l

∂Gl (x′,x)
∂xl

= δ2 (x′ − x)+ δ2
(
xi − x

)
.

Since for all elements x in the tax base space X we necessarily have xi 6= x, the second
term on the right-hand side is zero, δ2 (xi − x) = 0, and we find that condition (31) is
fulfilled: ∑

l

∂Gl (x′,x)
∂xl

= δ2 (x′ − x) .
Furthermore, let x =

(
0, y

)
be any point on the boundary z = 0. The unit normal

vector at this point equals x̂ = (−1, 0). We thus find:

G
(
x,x′

)
· x̂ = −Gz

(
x,x′

)
= −

( 0− z′

D2 (x− x′) + 0 + z′

D2 (x− xi)

)
.

From the fact that xi is the mirror image of x′ around the line z = 0, and since the
point x lies on that line, we have DL (x− x′) = DL

(
x− xi

)
. We find:

G
(
x,x′

)
· x̂ = 0.

This shows that condition (32) is fulfilled and I have shown the formal validity of optimal-
tax condition (74).
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The question now is how the correction term on the second line of equation (74) should
be interpreted. Given that the distance function D2 declines strongly at larger distances,
and given that the image point xi lies outside of the domain of the tax base, this term
will be most relevant very close to the boundary. If this term becomes infinitesimal at
larger distances, then its mere function is to enforce the boundary conditions. Whether
this term has a significant effect on the optimal-tax conditions elsewhere is an important
empirical question.

With more complex restrictions to the tax base, e.g. multiple components that should
be non-negative, more images should be added to find the tax optimum. For example,
with the boundaries shown in figure 5 for the taxation of couples, the tax-base space is
restricted to an eight of the real vector space. Seven images will be needed to solve the
problem.

6.2. Pooling
I argued that pooling usually occurs when the dimension K of the type space is higher
than the dimension L of the tax base space. In this situation, multiple individuals will
inevitably end up choosing the same allocations. Note that theorem 2 already accounts
for the possibility of pooling. This subsection concentrates on characterizations of the
tax optimum in the type space. I assume in this subsection that there is no bunching, so
the tax base components are strictly monotonous in all characteristics:

∣∣∣∂zl/∂θk∣∣∣ > 0. I
will first explain the procedure for a one-dimensional tax base, then I will extend it to a
multidimensional base.

6.2.1. One-Dimensional Tax Base

Figure 10 demonstrates the problem for two-dimensional types
(
θ1, θ2) and a one-

dimensional tax base z. One could think of the characteristic θ1 as intrinsic labour
productivity, for example, while θ2 could be an intrinsic disutility from work, and z
would be gross labour income. In the left-hand side of the figure I have connected types
with the same gross labour incomes using lines. Each line represents a single point in
the tax base space. For a given productivity, individuals with a lower disutility of work
will obtain a higher gross income. Conversely, for a given disutility of work, individuals
with a higher productivity will also obtain a higher gross income.

Now pick one type on each of these connected lines that will represent the correspond-
ing tax base value, in such a way that these representative types are connected by a
continuous line, as demonstrated in figure 11. I denote this set of types as Φ. It forms a
one-dimensional representation of the tax base space in the type space.

I will now reformulate Euler-Lagrange equation (6) as a partial differential equation
in the set Φ, following the derivations set forth in subsection 5.1. Define ϕ : Θ → Φ
as the function that maps any multidimensional type θ on the one-dimensional element
ϕ (θ, T ) ∈ Φ which chooses the same value of the tax base. With a slight abuse of
notation, I parametrize this element by a real number: ϕ ∈ R. I will come back to the
choice of this parametrization below. The function ϕ depends on tax function T . The
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Figure 10: An example of pooling, with a two-dimensional type space and a one-
dimensional tax base space. Each value z of the tax base corresponds to
a one-dimensional set of types. For example, types a and b choose the same
value z (a) = z (b) of the tax base, and types c and d choose the same value
z (c) = z (d). The one-dimensional subsets of the type space who choose the
same values of the tax base, are connected using lines.

θ1

θ2

z

a

b

c

d

z (a) = z (b) z (c) = z (d)

Figure 11: Since multiple types end up pooling at the same tax base values, we pick one
type to represent each tax base value, such that the one-dimensional set Φ
of these representative types forms a line in the type space. I parametrize
the coordinates on this line as a scalar ϕ. For each type θ ∈ Θ, the scalar
function ϕ (θ, T ) then indicates which point in the set of representative types
Φ chooses the same value for the tax base.

θ1

θ2

Φ

ϕ (a ′) =
ϕ (a ′′)

a′

a′′

b′

c′

b′′
c′′

ϕ (c ′) =
ϕ (c ′′)

ϕ (
b ′ )

=
ϕ (
b ′′ )
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reason is that different types who pool together at one level of the tax base in presence
of a given tax function, might choose different values of the tax base when another tax
function is in place.

Denote the cumulative distribution function on the set Φ as F Φ (ϕ), with corresponding
density function fΦ (ϕ). Define the function zΦ that maps any element in Φ on the tax
base value in X that it represents:

∀θ : zΦ (ϕ (θ, T ) , T ) ≡ z (θ, T ) .

The procedures set forth in subsection 5.1 then imply that Euler-Lagrange equation (6)
can then be rewritten as follows:

∀θ : ∂
∂ϕ

{
[TzzTz ]

(
zΦ (ϕ (θ, T ) , T )

)
zΦϕ (ϕ (θ, T ) , T ) fΦ (ϕ (θ, T ))

}
= [1− α (z (θ, T ))] fΦ (ϕ (θ, T )) .

The main difference with theorem 3, besides the dimensionality, is that the welfare
weights α and the behavioural responses zTz are now averaged over the multitude of
individuals pooling at the given value of the tax base.

Integrate the latter result and write the average behavioural response at z as an
integral over the type space:

∀θ : Tz (z (θ, T ))fΦ (ϕ (θ, T ))
(∫
Θ

zTz

(
θ′
)

zΦϕ (ϕ (θ, T ) , T )dFΘ|X
(
θ′|z (θ, T )

))
(75)

= −
∫ ∞
ϕ(θ,T )

[
1− α

(
zΦ
(
ϕ′, T

))]
fΦ
(
ϕ′
)

dϕ′.

The interpretation of this result is similar to the interpretation of equation (51) in section
5. The right-hand side represents the distributional advantage of taxation, the left-hand
side represents the cost of redistribution.

One question now is how the function ϕ (θ, T ) should be parametrized. The pooling
functions introduced by Jacquet and Lehmann (2016) are one possibility.28 If preferences
are separable between consumption and leisure, equation (75) corresponds to the result
found by Jacquet and Lehmann (2016) in their proposition 1.

A different possibility is to simply parametrize ϕ (θ, T ) by the gross tax income that it
represents. Substituting z for ϕ in equation (75) recovers optimal-tax equation (7) in the
tax base space. It is not clear at this point why one parametrization should be preferred
over the other. Different parametrizations might lead to different insights, depending
on the problem being studied. The question of the optimal parametrization remains a
topic for further research.
28Jacquet and Lehmann (2016) divide the type vector into a one-dimensional wage, and a vector of

other characteristics. They choose a reference value of these other characteristics. Keeping constant
these other characteristics at the reference value, and varying the wage, they trace out a straight,
one-dimensional path in the type space. Assuming that different wages yield different gross labour
incomes, this one-dimensional path is a representation of the gross incomes. In terms of my approach,
the value of the wage is then used as a parametrization of the different points on this line.
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We can further reinterpret equation (75), using similar derivations as those in subsec-
tion 5.1. Use the implicit function theorem to find:

∀θ : Tz (z (θ, T )) dϕ

dTz

∣∣∣∣∣
z(θ,T )

= 1
fΦ (ϕ)

∫ ∞
ϕ(θ,T )

[
1− α

(
zΦ
(
ϕ′, T

))]
fΦ
(
ϕ′
)

dϕ′, (76)

where I rewrite the integral on the left-hand side as an average at z (θ, T ). This ex-
pression can again be interpreted as an information cost, similar to what we found in
subsection 5.1. Individuals who originally pool at z (θ, T ) are represented by the same
type ϕ (θ, T ). If there is a tax reform, these individuals will respond, and they will
become represented by a different type in Φ. The derivative on the left-hand side of
equation (76) denotes the average of these responses. The larger are these responses,
the more difficult it will be to target specific types, and the lower will be the optimal
marginal tax rate.

Similarly, using methods and notations from subsection 5.2, we can reformulate equa-
tion (75) as follows:

∀θ : Tz (z (θ, T )) = 1
fΦ (ϕ)

∂ (uz/uc)
∂ϕ

∣∣∣∣∣
z(θ,T )

{∫ ∞
ϕ(θ,T )

[
1− α

(
zΦ
(
ϕ′, T

))]
fΦ
(
ϕ′
)

dϕ′
}
.

Again the term ∂ (uz/uc) /∂ϕ
∣∣∣
z

is an indication of how able the government is to target
specific types. If a characteristic has a large effect on the marginal rate of substitution,
then the government can use small changes in the marginal tax rate to precisely target
the individuals it would like to target.

6.2.2. Multidimensional Tax Base

We now have the necessary tools to study the phenomenon of pooling with a multidi-
mensional tax base. Still assuming that the type space Θ has a higher dimension than
the tax base space X , K > L, the subsets of Θ that connect types who pool at the
same tax base value will have dimension K − L. For example, with four-dimensional
types and a two-dimensional tax base, each point of the two-dimensional tax base would
correspond to a two-dimensional plane in the four-dimensional type space.

Figure 12 demonstrates the situation for a two-dimensional tax base and a three-
dimensional type space, where again types sharing the same value of the tax base form
one-dimensional sets. The set Φ representing the tax base space in the type space is a
two-dimensional plane. The derivations below are valid for any combination K > L.
Denote the cumulative distribution function on the set Φ as F Φ (ϕ), with corresponding
density function fΦ (ϕ).

Define ϕ : Θ → Φ as the vector-valued function that maps any K-dimensional type θ
on the L-dimensional element ϕ (θ) ∈ Φ, which is parametrized as a real vector (ϕ ∈ RL).
Introduce the function xΦ : Φ → X which maps any element ϕ ∈ Φ on the tax base
value x ∈ X that it represents:

∀θ : xΦ (ϕ (θ, T ) , T ) ≡ x (θ, T ) .
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Figure 12: With three-dimensional types and two-dimensional tax base values, there are
one-dimensional sets in the type space who end up choosing the same value
of the tax base. On each of these lines we pick one type, which represents the
corresponding value of the tax base, such that the two-dimensional set Φ of
these representative types forms a plane in the type space. The coordinates
on this plane are parametrized by a vector ϕ. For each type θ ∈ Θ, the
function ϕ (θ, T ) then indicates which point in the set of representative types
Φ chooses the same value for the tax base.

θ1

θ2

θ3

Φ

θ′

θ′′

ϕ (θ′, T )

ϕ (θ′′, T )

Introduce the Jacobian matrix for this function:

J Φ ≡


xΦ,1ϕ1 · · · xΦ,1

ϕL

... . . . ...
xΦ,Lϕ1 · · · xΦ,L

ϕL

 .
Using again the derivations from subsection 5.1, we can now reformulate Euler-Lagrange

equation (12) in the representative space Φ:

∀θ ∈ Θ :
(
1− α

(
xΦ (ϕ (θ, T ) , T )

))
fΦ (ϕ (θ, T )) (77)

=
L∑
l=1

∂

∂ϕl

{[
∇xT · x∇xT ·

[(
J Φ

)−1
]ᵀ]l (

xΦ (ϕ (θ, T ) , T )
)
fΦ (ϕ (θ, T ))

}
.

The solution for this differential equation is entirely analogue to what we found in the
previous subsection:

∀θ :
[
∇xT · x∇xT ·

[(
J Φ

)−1
]ᵀ]

(x (θ, T ))

= 1
fΦ (ϕ (θ, T ))cov

(
α
(
xΦ
(
ϕ′, T

))
,

ϕ′ −ϕ
DK (ϕ′ −ϕ)

)
.

We can rewrite the left-hand side using derivations analogue to those in the previous
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subsection:

∀θ : ∇xT (x (θ, T )) · dϕ

d∇xT

∣∣∣∣∣
ᵀ

x

= − 1
fΦ (ϕ (θ, T ))cov

(
α
(
xΦ
(
ϕ′, T

))
,

ϕ′ −ϕ
DK (ϕ′ −ϕ)

)
,

or accounting for preference optimization:

∀θ : ∇xT (x (θ, T )) ·
(
∂ (ux/uc)

∂ϕ

∣∣∣∣−1

x

)ᵀ

= − 1
fΦ (ϕ (θ, T ))cov

(
α
(
xΦ
(
ϕ′, T

))
,

ϕ′ −ϕ
DK (ϕ′ −ϕ)

)
.

The interpretation of these equations is fully analogue to those in the previous subsec-
tions: the government balances the advantage of redistribution of increasing the marginal
tax rate in a given direction, against the cost of targeting specific characteristics of the
individuals.

6.3. Bunching
When individuals of consecutive types all choose the same level of the tax base, we
say that they are bunching on that point. A range of points in the type space will be
allocated to a single mass point in the tax base space. Ebert (1992) shows that it is
possible to find combinations of social preferences, individual preferences and population
densities such that this situation occurs in the optimum.

Bunching can also occur on a higher-dimensional subset of the tax base space. Say
for example that the tax base is two-dimensional, taxing capital income and labour
income. It is possible that different individuals with different capital incomes, all choose
a corner solution where labour income is zero. The bunching range in this case is a
one-dimensional line in the two-dimensional tax base space.

I show in subsection 6.3.1 how a bunching range in the interior of the tax base space
can only be implemented through a kink in the tax function, and how this should be
taken into account in the Euler-Lagrange formalism. In subsection 6.3.2 I show how
transversality condition (43) continues to apply in this situation. I show how the tax
optimum can then be characterized in presence of bunching in subsection 6.3.3. Finally
in subsection 6.3.4, I treat the possibility of bunching on an edge of the tax base space.

6.3.1. Validity of Euler-Lagrange Equation

Suppose that there is a one-dimensional type θ, a one-dimensional tax base x, and a
numéraire commodity c. Suppose that individuals optimize a utility function u (c, x, θ),
subject to the budget constraint c = x−T (x). If the tax function is differentiable, then
the first-order condition for the individual is as follows:

ux
uc

= −
(
1− T ′ (x)

)
. (78)
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Figure 13: Bunching at tax base value X. The tax function T (x) has a kink at X,
causing individuals of different types θ′ and θ′′, with indifference curves of
different slopes, to choose the same value of the tax base.

xX

x− T
(x)

IC(θ′)

IC(θ′′)

c

Assume that the following single-crossing condition is fulfilled:

∂ (ux/uc)
∂θ

> 0. (79)

Mirrlees (1976) then shows that the second-order condition for the individual optimiza-
tion problem is equivalent to the following weak monotonicity condition:

dx

dθ
≥ 0.

Ebert (1992) shows that it is possible to find combinations of social preferences, in-
dividual preferences and population densities such that the second-order condition is
binding on some range of the type space: dx/dθ = 0. It immediately follows from con-
ditions (78) and (79) that this allocation cannot be implemented using a smooth tax
function. In order to implement it, there needs to be a kink in the tax function. Figure
13 shows how this works: both types θ′ and θ′′, with indifference curves of different
slopes, choose the same value X of the tax base. The problem with a kink in the tax
function is that the Euler-Lagrange equation (12) in theorem 1 is no longer well-defined:
the marginal tax rate Tx is not defined in the bunching point.

It is straightforward to see though that outside of the bunching point, the tax reforms
constructed in subsection 3.1 should still leave social welfare unchanged. It follows
that Euler-Lagrange equation (6) remains valid everywhere, except at the kink in the
tax function. This reasoning is straightforward to extend to higher dimensions: Euler-
Lagrange equation (12) remains valid outside of the bunching ranges.
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Furthermore, as long as bunching does not occur on the edge of the tax base space,
also boundary condition (13) remains valid. In one dimension this is easy to see. There
still is no reason to distort behaviour of the top individual, if there are no individuals
with higher incomes to levy additional taxes from. The condition Tx (x) = 0 remains
valid. Similarly, the condition Tx (x) = 0 remains valid: there is no point in distorting
behaviour of the individuals at the bottom, since there are no individuals with lower
incomes to redistribute to. These findings are summarized in the following proposition.

Proposition 1. The tax optimum with an L-dimensional tax base, if bunching occurs only
on a set K on the interior of the tax base space X , complies to the following partial
differential equation, referred to as the Euler-Lagrange condition:

∀x ∈ X \K : (1− α (x)) fX (x) =
L∑
l=1

∂

∂xl

[
(∇xT · xTl

) fX
]

(x) , (80)

subject to the boundary conditions:

∀x ∈ Γ (X ) :
[
(∇xT · x∇xT · x̂) fX

]
(x) = 0, (81)

and the government budget constraint:∫
RL
T (x) fX (x) dx = 0.

Proof. See appendix D.

6.3.2. Validity of the Transversality Condition

If we wish to use the methods of section 4 to solve the Euler-Lagrange equation for the
part of X where it is still defined, we need to be able to take integrals over the entire
tax base space, including the bunching ranges. I will show here that we can just naively
integrate over the entire tax base space.

Let us first study the situation for a one-dimensional tax base x, with a single bunching
point X. The dimension K of the type space can still be larger than one. Denote the
domain of the tax base as [x, x].

Introduce a tax reform around the bunching point X. Let the marginal tax rate
increase by dTx at an interval [X − dX,X) of width dX below the kink, and let the tax
rate decrease by the same dTx over an interval (X,X + dX] of the same width above
the kink. This reform is shown in figure 14.

This reform has a number of effects. Below the kink, in the interval [X − dX,X), indi-
viduals experience an increase dTx in their marginal tax rate, which causes behavioural
effects of size xTx dTx. Their tax liability thus changes by dTx [TxxTx ] (X − dX). The
number of individuals experiencing this change is fX (X − dX) dX, such that the total
impact on government revenue equals

[
TxxTxf

X ] (X − dX) dTxdX. Similarly, on the in-
terval (X,X + dX], the change in government revenue is −

[
TxxTxf

X ] (X + dX) dTxdX.
Finally, on the bunching point X itself, there is a number of individuals

∫X+dX
X−dX fX (x) dx
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Figure 14: The size of the tax reform around the bunching point X. The marginal tax
rate is increased by dTx over the interval [X − dX,X), and it is decreased
again by dTx over the interval (X,X + dX]. BelowX−dX and aboveX+dX,
the tax liability remains unaltered. The change in the tax liability at X equals
dXdTx.

X − dX xX

dTx

dT (x)

dXdTx
−dTx

X + dX

who experience an increase dXdTx in their tax liability.29 The effect on social welfare
equals dTxdX

∫X+dX
X−dX (1− α (x)) fX (x) dx. Sum all these effects, divide by dTxdX and

require that the result is zero:[
TxxTxf

X
]

(X + dX)−
[
TxxTxf

X
]

(X − dX) =
∫ X+dX

X−dX
(1− α (x)) fX (x) dx. (82)

Since the derivative of the tax function at X is not defined, we can no longer obtain the
traditional Euler-Lagrange equation from this condition.

What we are interested in now is how to calculate the integral of the entity (1− α (x)) fX (x)
from a value of the tax base x′ below the kink, to a value x′′ above the kink. Note first
what happens if we integrate on the part below the kink:∫ X−dX

x′
(1− α (x)) fX (x) dx =

∫ X−dX

x′

d

dx

[
TxxTxf

X
]

(x) dx

=
[
TxxTxf

X
]

(X − dX)−
[
TxxTxf

X
] (
x′
)
,

where I use the validity of the Euler-Lagrange equation on this range (by proposition
1). Similarly, above the kink:∫ x′′

X+dX
(1− α (x)) fX (x) dx =

∫ x′′

X+dX

d

dx

[
TxxTxf

X
]

(x) dx

=
[
TxxTxf

X
] (
x′′
)
−
[
TxxTxf

X
]

(X + dX) .

Adding the last two equations and using result (82), taking the limit dX → 0:

lim
dX→0

[∫ X−dX

x′
(1− α (x)) fX (x) dx+

∫ x′′

X+dX
(1− α (x)) fX (x) dx

]

= − lim
dX→0

[∫ X+dX

X−dX
(1− α (x)) fX (x) dx

]
+
[
TxxTxf

X
] (
x′′
)
−
[
TxxTxf

X
] (
x′
)
.

29Note that the imprecisions in this derivation disappear as dX → 0. These results follow more formally
from equation (104) in appendix D.
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This shows that we do nothing wrong by naively integrating over the bunching range,
writing e.g.:∫ x′′

x′
(1− α (x)) fX (x) dx =

[
TxxTxf

X
] (
x′′
)
−
[
TxxTxf

X
] (
x′
)
.

This reasoning immediately extends to the multidimensional case. This follows more
formally from condition (104) in appendix D. We can extend corollary 1 as follows:

Corollary 3. The tax optimum with an L-dimensional tax base, with a bunching range
K , complies to the following condition, for any compact volume V ⊆ X with piecewise
smooth boundary Γ (V ) that does not intersect with K , and with x̂ the unit vector normal
to that boundary at point x ∈ Γ (V ):∫

V
(1− α (x)) dFX (x) =

∫
Γ (V )

[
(∇xT · x∇xT · x̂) fX

]
(x) dΓ .

It follows immediately from boundary condition (81) that transversality condition (43)
remains valid: ∫

X
α (x) fX (x) dx = 1.

6.3.3. Solving the Euler-Lagrange Equation

In one dimension, we can now simply integrate Euler-Lagrange equation (80) to find the
following optimal-tax condition:

∀x : xTxTx (x) fX (x) =
∫ x

x

(
1− α

(
x′
))

dFX
(
x′
)

= −
∫ x

x

(
1− α

(
x′
))

dFX
(
x′
)
.

It follows that optimality condition (7) and the ensuing results remain valid everywhere
beside the kinks. Similarly, outside of the kinks, the derivations that lead to the multi-
dimensional optimum (42) remain valid with naive integration at the bunching points.30

We thus find the following proposition.

Proposition 2. The tax optimum with an L-dimensional tax base, with bunching on a set
K , and when the tax base space coincides with the real vector space, X = RL, complies
to the following necessary condition:

∀x ∈ X \K ,∀l :

∑
j

(
Tjx

j
Tl

)
fX

 (x) = cov

(
α
(
x′
)
,

x′l − xl

DL (x′ − x)

)
, (83)

30In a mechanism-design approach this can be understood as follows. In order to correctly account for
bunching, not only the first-order incentive compatibility constraint needs to be taken along in the
constrained objective function, but also the second-order constraint dx/dθ ≥ 0. The multiplier of this
additional term equals zero as long as the second-order constraint is not binding. Thus with strict
inequality dx/dθ > 0, outside of the bunching range, the first-order conditions for the government
optimization problem will be exactly the same as in the situation where the second-order condition
for the individual optimization problem is not taken into account.
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with transversality condition: ∫
RL
α (x) fX (x) dx = 1. (84)

Remember that without bunching points, the optimal tax function is pinned down
when the Euler-Lagrange equation is given, together with the transversality condition
and the government budget constraint. If the Euler-Lagrange equation is no longer valid
in a bunching point, this creates a degree of indeterminacy in the problem. Even if the
marginal tax rates comply to the Euler-Lagrange equation in all other points, it is not
clear what happens in the kink. Since in this paper I have always assumed that the
permissible tax reforms are continuous functions, I assume here that the tax function is
continuous in the kink. This assumption suffices to solve the indeterminacy.

6.3.4. Bunching on the Edge

A special case occurs when individuals bunch on an edge of the tax-base space. Take
for example the situation of figure 9, where the tax base consists of labour income z and
capital income y, so x ≡ (z, y), with the value of z restricted to be positive. If there
is bunching on the edge, so a mass of individuals chooses a corner solution at z = 0,
this does not change the form of the optimal-tax equation at the interior of the tax base
space. The method of images can be applied, and equation (74) remains valid.

Without bunching at the bottom, we know that the boundary condition at z = 0
would be that total tax wedge caused by the tax on labour income, TzzTz +TyyTz , equals
zero. This changes when there is bunching at z = 0. To see this, imagine that there is an
increase dT in the tax liability for all individuals who have labour income z = 0, which
phases out over the infinitesimal interval z = [0,dZ]. The effect on social welfare of the
increased tax liability equals dT

∫ dZ
0
∫+∞
−∞ (1− α (z′, y′)) fX (z′, y′) dy′dz′, while the ensu-

ing change in the marginal tax rate has an effect dT
∫+∞
−∞ (TzzTz + TyyTz ) fX (dz, y′) dy′

on government revenue. Demanding that the total effect of this reform sums to zero and
taking the limit dz → 0 yields:31

lim
dz→0

∫ dZ

0

∫ +∞

−∞

(
1− α

(
z′, y′

))
fX

(
z′, y′

)
dy′dz′

= − lim
dz→0

∫ +∞

−∞
(TzzTz + TyyTz ) fX

(
dz, y′

)
dy′.

The left-hand side of this equation would go to zero in the case without bunching at
z = 0. If there is a mass of individuals bunching in this corner though, this is no longer
the case. It follows that the total tax wedge for the workers with the lowest non-zero
income no longer converges to zero. Assuming that welfare weights are larger than one
at the bottom, we find TzzTz + TyyTz > 0 at the bottom. This extends the findings of
Seade (1977) to multiple dimensions.
31A more formal derivation would be analogue to that of condition (104) in appendix D.
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Figure 15: The type space Θ has only one dimension, while the tax base space X
has two dimensions. The allocation, mapping types θ on tax base values(
x1 (θ) , x2 (θ)

)
, forms a line, i.e. a one-dimensional subset of X .

x1

x2θ

θ

x
(
θ
)

x (θ)

θ′

θ′′

x (θ′)

x (θ′′)

Θ

X

6.4. Lower-Dimensional Allocations
When the type space has a lower dimensionality than the tax base space, K < L, then
the optimal allocation in the tax base space will also be K-dimensional, and as such it
will not be surjective on the real vector space RL. Even if individuals are free to choose
any bundle in RL, the government’s objective (1) is an integral over all types in the
population, and thus, after changing variables, over the actually chosen bundles in the
tax base space. Since the domain of the optimization is no longer the entire real vector
space RL, the optimal-tax condition in theorem 2 is no longer valid. The trick to finding
a necessary condition for the tax optimum is again to find a suitable Green function.

Assume thus that we observe a tax function T , defined on an L-dimensional tax base
space X . We observe an income distribution which is restricted to a one-dimensional
set, a line within X which is the image of a one-dimensional type space Θ. We also
observe marginal behavioural responses x∇T everywhere on this line. Denote the one-
dimensional types as θ, with corresponding tax base values x (θ, T ). Denote the bound-
ary values of the type space as

[
θ, θ
]
. This situation is illustrated for a two-dimensional

tax base in figure 15.
The Green function for this problem is the vector-valued mapping defined by the

following equation:

∀x,x′, l : Gl
(
x,x′

)
≡ δ

(
x1 − x′1

)
. . . δ

(
xl−1 − x′l−1

)
·H

(
xl − x′l

L

)
δ
(
xl+1 − x′l+1

)
. . . δ

(
xL − x′L

)
,

with H the unit step function defined in equation (22), and δ the Dirac delta function.
To see that this is indeed the Green function for our problem, note first that condition
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(31) is fulfilled:

∀x,x′ :
∑
l

∂Gl (x,x′)
∂xl

= δL
(
x− x′

)
,

where I use definition (29) for the multidimensional Dirac delta function and property
(23) of the unit step function. Second, note that G becomes zero at the edges, because
of the unit step function H in its definition:

∀x′, l : Gl
(
x (θ) ,x′

)
= Gl

(
x
(
θ
)
,x′
)

= 0.

Now that we found the Green function for this optimal-tax problem, we can substi-
tute it into equation (33). Use property (18) of the Dirac delta function to reduce the
multidimensional integral to a one-dimensional integral over xl, and find the following
necessary optimal-tax condition:

∀x, l :
∑
j

TjX
j
Tl

=
∫ xl

xl
(1− α) dF l

(
x′l
)
,

with F l the cumulative density function for tax base component xl, and Xj aggregate
demand for component xj . Note that if xl is monotonous, ∂xl/∂θ > 0, then the integral
on the right-hand side is the same for all components of the tax base. What follows is
a traditional Ramsey-style proportional-reduction equation:

∀θ :
∑
j

TjX
j
T1

(θ) = . . . =
∑
j

TjX
j
TL

(θ) =
∫ θ

θ
(1− α) dFΘ

(
θ′
)
,

which corresponds to the solution traditionally found in the literature (see e.g. Jacobs
and Boadway, 2014). Note that the optimal tax function in this case is separable,
confirming the findings of Renes and Zoutman (2016b).

7. Conclusion
I introduced the Euler-Lagrange method to characterize the optimum for problems with
multidimensional tax bases and multiple dimensions of heterogeneity of the agents. I
showed the general applicability of the Euler-Lagrange equation as a first-order condition.
I introduced the localized distributional characteristic, and I used it to provide a number
of characterizations for the optimum, both in terms of sufficient statistics and of economic
fundamentals. I applied my findings to the Diamond and Spinnewijn (2011) optimal
mixed labour and capital income tax problem and to the problem of the optimal joint
taxation of households as described by Kleven, Kreiner, and Saez (2007). Finally, I
showed that the method is robust to a number of potential complications.

A drawback of this paper, that is not easily solved using the formalism at hand, is
that all responses to tax reform are assumed to be local. However, this is not uncommon
in the literature, it is even generally assumed in most papers referred to in the present
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publication. Still it would be interesting to allow for a participation margin – as in
Jacquet, Lehmann, and Van der Linden (2013) – or for more general discrete jumps
– e.g. allowing for a discrete-choice behavioural model. There is also potential for
extensions towards different objective functions, taking into account different normative
convictions, political-economy considerations, or alternative behavioural models.
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A. Proof for the Euler-Lagrange Equation in Theorem 1
The derivations in this section extend the proof for the traditional Euler-Lagrange equa-
tion, formulated in standard texts on the calculus of variations (see e.g. Arfken and
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Weber, 2005, chapter 17). I extend it to our context with private information about the
individual types.

We are maximizing social welfare (1) subject to government budget constraint (2).
If the tax function T is to be optimal, any small perturbation to it should leave social
welfare unchanged. We are thus interested in the effects of perturbations of T .

For each value of the tax base x, introduce a reform of size εη (x). Here ε is a
small parameter that allows varying the size of the reform, and η (x) is an arbitrary,
nonlinear but smooth tax reform function. The tax gradient at each point thus changes
by ε∇xη (x).

For a given tax function T , I will seek the optimal value of the reform parameter ε
that optimizes social welfare. If the tax function T is optimal, then the optimal value of
ε will be zero for any function η.

I have assumed that when there is a marginal tax reform, the wellbeing of an individual
is affected only by the change in the tax liability at the value of the tax base that he
chose before the reform. Similarly, I have assumed that behaviour is affected only by
the changes in the tax liability and the tax gradient at the original value of the tax base.
Taking into account the reform, the constrained objective function for the government
is as follows:

L (ε) ≡
∫
Θ

[v (θ, T + εη (x))] dFΘ (θ) (85)

+ λ

∫
Θ

[T (x+ xT εη (x) + x∇T · (ε∇xη (x))ᵀ) + εη (x)] dFΘ (θ) .

For the tax function T (·) to be optimal, it is necessary that the effect of a marginal
change to the parameter ε, evaluated in ε = 0, is zero for any reform function η (x):

0 = dL ε

dε

∣∣∣∣
ε=0

=
∫
Θ

{(
1 + vT

λ
+ ∇xT · xT

)
η (x)

}
dFΘ (θ) (86)

+
∫
Θ
{∇xT · x∇T · (∇xη (x))ᵀ}dFΘ (θ) .

I will now change variables in the integral. The law of iterated expectations tells us
that for any function g : Θ → RD, with D some dimensionality, a total expectation can
be rewritten as a total expectation over conditional expectations:∫

Θ
g (θ) dFΘ (θ) =

∫
Θ

∫
Θ
g (θ) dFΘ|X

(
θ|x

(
θ′, T

))
dFΘ

(
θ′
)
, (87)

where I introduce the conditional cumulative density function FΘ|X (θ|x).
The law of the unconscious statistician guarantees that a change of variables from

the type space to the tax-base space is possible in the outer integral without worrying
about the form of x (θ, T ), as long as the distribution function FΘ (θ) is replaced by the
distribution function FX (x). This allows rewriting condition (86):

0 =
∫
X

∫
Θ

{(
1 + vT

λ
+ ∇xT · xT

)
η (x)

}
dFΘ|X (θ|x) dFX (x) (88)

+
∫
X

∫
Θ
{∇xT · x∇T · (∇xη (x))ᵀ}dFΘ|X (θ|x) dFX (x) .
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Use integration by parts to rewrite the second term on the right:∫
X

∫
Θ
{∇xT · x∇T · (∇xη (x))ᵀ}dFΘ|X (θ|x) dFX (x) (89)

=
∫
Γ (X )

∫
Θ

{
∇xT · x∇T · x̂fX (x)

}
η (x) dFΘ|X (θ|x) dΓ

−
∫
X

∫
Θ

∑
l

∂

∂xl

{
∇xT · xTl

fX (x)
}
η (x) dFΘ|X (θ|x) dx.

Substitute this into (88):

0 =
∫
X

∫
Θ

{(
1 + vT

λ
+ ∇xT · xT

)
fX (x) (90)

−
∑
l

∂

∂xl

{
∇xT · xTl

fX (x)
}}

dFΘ|X (θ|x) η (x) dx

+
∫
Γ (X )

∫
Θ
{∇xT · x∇T · x̂}dFΘ|X (θ|x) fX (x) η (x) dΓ .

The fundamental lemma of the calculus of variations states that this expression can
only be zero for all functions η if the integrands between curly brackets are zero for all
tax-base levels x.

B. Two-Dimensional Green Functions
Suppose x 6= x′. We find partial derivatives (using the fact that the surface area of a
circle with radius r equals V 2 (r) = πr2):

∀x 6= x′, ∀l : ∂G
l (x,x′)
∂xl

= 1
2π ||x− x′||2

+ xl − x′l

2π
∂

∂ ||x− x′||

(
1

||x− x′||2

)
∂ ||x− x′||

∂xl

= 1
2π ||x− x′||2

− xl − x′l

π

1
||x− x′||3

∂
√

(x1 − x1′)2 + (x2 − x2′)2

∂xl

= 1
2π ||x− x′||2

−

(
xl − xl′

)2

π ||x− x′||4
. (91)

Sum these components over l to find property (35).
Define S2 (x′, R) as the area enclosed by the circle around the point x′ with finite ra-

dius R. Since the partial derivative ∂Gl (x,x′) /∂xl is zero everywhere outside the point
x′, the following integral over the entire real space equals the integral over S2 (x′, R):

∫
R2

( 2∑
l=1

∂Gl (x,x′)
∂xl

)
dx =

∫
S2(x′,R)

( 2∑
l=1

∂Gl (x,x′)
∂xl

)
dx. (92)
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Using the divergence theorem, we can rewrite the right-hand side of this equation as
follows: ∫

R2

( 2∑
l=1

∂Gl (x,x′)
∂xl

)
dx =

∫
Γ (S2(x′,R))

x− x′

2V 2 (||x− x′||) · x̂dΓ , (93)

where I substitute formulation (34) for the Green function G. Note that everywhere
on the boundary Γ

(
S2 (x′, R)

)
, we have ||x− x′|| = R, so we can move the term

V 2 (||x− x′||) out of the integral:∫
R2

( 2∑
l=1

∂Gl (x,x′)
∂xl

)
dx = 1

2V 2 (R)

∫
Γ (S2(x′,R))

(
x− x′

)
· x̂dΓ . (94)

Again using the divergence theorem on the right-hand side:

∫
R2

( 2∑
l=1

∂Gl (x,x′)
∂xl

)
dx = 1

2V 2 (R)

∫
S2(x′,R)

2∑
l=1

∂
(
xl − x′l

)
∂xl

dx (95)

=
2
∫
S2(x′,R) dx

2V 2 (R) .

Since
∫
S2(x′,R) dx equals the area of any circle with radius R, this proves property (36).

This reasoning extends to any dimensionality L ≥ 2, leading to the results of subsec-
tion 4.3. The Green function generally takes the following form:

G
(
x,x′

)
≡ x− x′

LV L (||x− x′||) ,

which solves the following partial differential equation:

∀x ∈ RL : δL
(
x− x′

)
=

L∑
l=1

∂Gl (x,x′)
∂xl

, (96)

complying to the following boundary condition:

∀x ∈ Γ (X ) ,∀x′ ∈ X : G
(
x,x′

)
· x̂ = 0. (97)

Adding any divergence-free vector field to G also solves the problem, since this leaves
the divergence of G unaltered. Partial differential equation (96) thus has many solu-
tions. For our specific problem, the above formulation is the one that we are interested
in. To see this, note that the vector field B in equation (26) is conservative, being a
gradient of the government budget constraint. We are thus interested in irrotational
Green functions. Suppose now that two different irrotational functions solve divergence
equation (96) subject to boundary condition (97). The difference between these two
functions has divergence zero. Since it is also irrotational, it is a harmonic function.
Since it disappears at the boundary, because of condition (97), it is zero everywhere. It
follows that if two irrotational functions solve partial differential equation (96) subject
to condition (97), they are necessarily equal.
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C. Euler-Lagrange Equation in Type Space
Start from equation (86). Use the chain rule to find the following relation:

∇xη (x) = ∇θη (x) ·J −1. (98)

Substitute this into equation (86):

0 = dL ε

dε

∣∣∣∣
ε=0

=
∫
Θ

(1− α) η (x) dFΘ (θ) (99)

+
∫
Θ

{
∇xT · x∇T ·

(
J −1

)ᵀ
· (∇θη (x))ᵀ

}
dFΘ (θ) .

Use integration by parts to rewrite the right-hand side:∫
Θ

{
∇xT · x∇T ·

(
J −1

)ᵀ
· (∇θη (x))ᵀ

}
dFΘ (θ) (100)

=
∫
Γ (Θ)

{
∇xT · x∇T ·

(
J −1

)ᵀ
· θ̂
}
η (x) fΘ (θ) dθ

−
∫
Θ

∑
k

∂

∂θk

{
∇xT · x∇T ·

(
J −1

)ᵀ
fΘ (θ)

}
η (x) d (θ) .

Substitute this into (99):

0 =
∫
Θ

{
(1− α) fΘ (θ)−

∑
k

∂

∂θk

(
∇xT · x∇T ·

(
J −1

)ᵀ
fΘ (θ)

)}
η (x) dθ (101)

+
∫
Γ (Θ)

{
∇xT · x∇T ·

(
J −1

)ᵀ
· θ̂
}
η (x) fΘ (θ) dθ.

The fundamental lemma of the calculus of variations states that this expression can only
be zero for all functions η if the integrands between curly brackets are zero for all types
θ.

D. Proof of Euler-Lagrange Equation with Bunching
Denote as B ⊂ Θ the set of types who belong to a bunching range. I assume that
there is only one such range, so the set B is connected. This proof readily extends to
a situation with multiple bunching ranges. The tax gradient ∇xT is not defined on the
set B .

Optimality condition (86) can be adapted to this situation:

0 = dL ε

dε

∣∣∣∣
ε=0

=
∫
Θ\B

{(
1 + vT

λ
+ ∇xT · xT

)
η (x)

}
dFΘ (θ) (102)

+
∫
Θ\B
{∇xT · x∇T · (∇xη (x))ᵀ}dFΘ (θ)

+
∫
B

(
1 + vT

λ

)
η (x) dFΘ (θ) .
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Remember that we denote the corresponding bunching range in the tax base space as
K . Note that the setK will generally have Lebesgue measure zero in RL. In order to use
results from multivariable calculus, we should first expand it to a set of non-zero volume
with infinitesimal measure, apply our derivations, and then let that volume shrink to
the true bunching range. For example, if the set K is a point in the tax base space, we
should encircle it by a small sphere, and let the radius of this sphere go to zero. To avoid
needless clutter, I will continue with the set K , implicitly assuming that the above steps
have been followed.

Following the same steps as appendix A, we find optimality condition:

0 =
∫
X \K

∫
Θ

{(
1 + vT

λ
+ ∇xT · xT

)
fX (x) (103)

−
∑
l

∂

∂xl

{
∇xT · xTl

fX (x)
}}

dFΘ|X (θ|x) η (x) dx

+
∫
Γ (X )

∫
Θ
{∇xT · x∇T · x̂}dFΘ|X (θ|x) fX (x) η (x) dΓ

−
∫
Γ (K )

∫
Θ
{∇xT · x∇T · x̂}dFΘ|X (θ|x) fX (x) η (x) dΓ

+
∫
K

∫
Θ

{(
1 + vT

λ

)
fX (x)

}
dFΘ|X (θ|x) η (x) dx.

We can derive a number of properties from this equation. Applying the fundamental
lemma of the calculus of variations to the first three lines, proves proposition 1. Next,
consider the last two lines. A crucial point is that the tax liability must be equal for all
types bunching on the set K . The reform η (x) should thus take a constant value on
the set K ∪ Γ (K ). Since equation (103) must apply for any such value of η (x), we find
the following condition for the bunching range:∫

Γ (K )

[
(∇xT · x∇T ) fX

]
(x) · x̂dΓ =

∫
K

(1− α (x)) dFX (x) . (104)
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