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Abstract Noble Energy produces and sells tens of thousands of barrels of oil a day

in the Wattenberg field in northeastern Colorado, one of the largest natural gas

deposits in the United States. This paper describes a new mathematical model that

was built and implemented to support the company’s business decisions regarding

its current and future sales, dispatch, and transportation operations. The corre-

sponding multicriteria optimization model is formulated and solved as a multi-

period, multi-objective mixed-integer program that considers the maximization of

revenue and sales, and the avoidance of temporary production shut-ins and sell-outs

to guarantee long-term contractual obligations with its partnering well owners,

haulers, and markets. A theoretical tradeoff analysis is presented to validate model

decisions with current operational practice, and a small computational case study on

an original data set demonstrates the use of this model to find efficient dispatch

schedules and gain further insights into the tradeoffs between the different decision

criteria.
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1 Introduction

New advances in drilling technologies have made the exploration of oil and natural

gas possible in an increasing number of areas. As a result, many deposits that so far

remained expensive or technically challenging to reach are now producing energy

resources. One such area is the Denver–Julesburg (DJ) Basin situated north of the

Denver metropolitan area on the eastern side of the Rocky Mountains in

northeastern Colorado and southern Wyoming. The DJ Basin is home to the

Niobrara Formation, a massive shale deposit that contains vast quantities of oil and

natural gas trapped in small pockets at depths of about 3,000–14,000 feet. While the

presence of this resource had been known and produced using conventional

techniques for several decades, horizontal drilling has recently unlocked previously

non-producible reserves and led to a significant increase in local energy operations.

This brings along with it new logistical challenges.

As one of the leading independent energy companies in North America, Noble

Energy produces and sells tens of thousands of barrels of oil a day in the DJ Basin’s

Wattenberg field (Matuszczak 1973). This field is currently one of the largest

natural gas deposits known in the United States and allows producers to sell and

transfer gas directly via pipeline to midstream companies, where it is processed and

distributed to utilities and other purchasers. Like in other gas fields, however, there

is no infrastructure to similarly transfer oil to markets directly via pipeline.

Consequently, wells must be equipped with additional equipment to allow for the

temporary storage and subsequent pick-up and transfer of their oil products by truck.

We refer to these storage locations as batteries.

Noble Energy currently operates more than 7,500 wells with roughly 4,300 of

such batteries in the Wattenberg field. These batteries, located near their respective

wells, are spread out over a hundred mile radius in the DJ Basin. On a daily basis,

the company must transport the produced oil from its batteries to several different

purchasers and markets to meet its contractual sales obligations. These deliveries

are performed by third-party trucking and hauling companies, which are currently

assigned manually by dispatch personnel based on daily compiled priority lists.

Anticipating a significant expansion of the oil production in the Wattenberg field in

coming years, the work presented in this paper aims to assist both Noble Energy as

well as other producers and operators with a flexible mathematical model to avoid

potential inefficiencies and systematically represent such oil field operations for

decision analysis, simulation, and optimization purposes. Specifically, we construct

a multi-period, multiobjective mixed-integer program for the simultaneous optimi-

zation of revenue and sales, and the avoidance of temporary production shut-ins and

sell-outs to guarantee long-term contractual obligations with partnering well
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owners, haulers, and markets. We also present a theoretical tradeoff analysis to

validate our model decisions with current operational practice and demonstrate the

use of this model in a small computational case study on an original data set

provided by Noble Energy.

The remaining paper is structured as follows. Section 2 contains some further

background information including an up-to-date review of related models and case

studies in the recent literature. It then gives both an overview of some of the specific

operations at Noble Energy and our resulting problem statement. We discuss our

model decisions and formulation in Sect. 3 and present our theoretical tradeoff

analysis between selected objectives in Sect. 4. Our computational case study is

summarized in Sect. 5, and Sect. 6 concludes this paper with a few final remarks and

an outline of possible further extensions of our work.

2 Background and problem statement

Production, transportation, and distribution planning and scheduling are classical

problem domains of logistics and operations research that have been utilized in the

oil and petroleum industries as early as the 1950s (Butler 1988; Garvin et al. 1957).

While a large number of articles have been written in these areas and several

handbooks have appeared on the general topics of transportation (Barnhart and

Laporte 2006), supply chain management (de Kok and Graves 2003), and

production and logistics (Graves et al. 1993), it is arguably out of scope for this

contribution to give an accurate account of the wealth of literature available. Hence,

we decided to limit the discussion in this paper to related articles mostly from the

last few years; a more comprehensive bibliography of the reviewed literature with

additional references is given in our preliminary report (Engau 2012).

Among the papers that we mention here, we highlight articles that propose new

formulations or models, algorithms or methods, and applications or case studies.

Similar to our present work, the recent papers by Neiro and Pinto (2004, 2005) and

Rocha et al. (2009) describe new models for the planning and scheduling of oil

production, delivery, and petroleum supply chains that can generally be formulated

as large-scale, multi-period, mixed-integer linear or nonlinear programs. Consid-

ering cost minimization as a single optimization objective, however, these models

were either more globally oriented or applied specifically to refinery operations at

the energy company Petrobas.

To also incorporate multiple objectives, Lukac et al. (2008) present the

interesting idea to generalize a traditional oil production–transportation model so

that several producers can operate in multiple modes, which are characterized by

different quantities and variable production costs. The formulation uses a bi-level,

hierarchical decision structure in which the upper level organizes and minimizes

costs from production to meet demands, and the lower level organizes and

minimizes costs from transportation of the products to customers. The resulting

problem is then solved as a dynamic program so as to minimize overall costs from

both production and transportation. In comparison, however, the scope of our new

paper is again more detailed in that we also include other than cost or profit-related
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criteria, which allows us to better understand and further analyze the tradeoffs

between the different decisions and their resulting consequences.

In another approach using multiple objectives, De La Cruz et al. (2003) utilize a

heuristic method from constraint evolutionary optimization to model the distribution

of petroleum products through oil pipelines. Their objectives include the goal to

deliver products on time, and to avoid consecutive shipments of products that may

contaminate each other. Like in our case, limits in supply, transportation, and

demand are included as additional constraints, but the focus to design a new

evolutionary algorithm again is largely different from the purpose of our own paper.

More closely related to the problem of oil spills and motivated from the

Deepwater Horizon incident in the Gulf of Mexico in 2010, Zhong and You (2011)

address the optimal planning of oil spill response operations to minimize total cost

and overall response time. Their model results in a bi-objective mixed-integer linear

program to simultaneously predict the optimal time trajectories of oil volume and

slick area, in addition to transportation profiles, resource utilization, cleanup

schedules, and coastal protection. This paper nicely complements our own objective

to ideally prevent such problems already in advance, by emphasizing environmental

concerns and prominently integrating oil spill avoidance already in the planning of

daily operations. Other papers that do not specifically address energy, gas, or oil

distribution but more generally deal with the multi-objective design of transpor-

tation and routing networks are summarized in two annotated bibliographies by

Current (1993) and Current and Min (1986), which together offer a large variety of

other relevant criteria such as costs, revenues, profits, accessibilities, regional

equity, and certain environmental concerns specific to the respective industries of

interest in each of these different papers.

Again in the context of our own focus on oil load dispatch and transportation

from multiple batteries to markets, we can highlight the recent study by Shen et al.

(2011) who also deal with an inventory routing problem in which crude oil must be

transported from a single port supply center to multiple customer harbors. Like in

our case, the fleet of tankers must be rented from a third party and dispatched to

satisfy demands over multiple periods, but due to the large number of oil-producing

wells in our case, we must additionally consider the complication of dispatch from

multiple locations. Additionally, and different from this and our own approach that

can be solved as deterministic mixed-integer programs, other formulations also

include stochastic aspects such as uncertain demands that must be remodeled or

analyzed separately using techniques from stochastic optimization (Cao et al. 2010;

Dempster et al. 2000; Leiras et al. 2010; MirHassani 2008; MirHassani and Noori

2011) or discrete-event simulations (Blouin et al. 2007; Cafaro et al. 2010; Cheng

and Duran 2004; Ta et al. 2010; Tahar and Abduljabbar 2010).

For example, Kleywegt et al. (2002) consider a stochastic inventory routing

problem that deals with the centralized coordination, replenishment, and transpor-

tation of inventory from a set of locations to a set of individual customers. Under the

assumption that customers’ daily demands are independent random vectors with a

known probability distribution, the problem is formulated as a Markov decision

process with an inventory state space and an action space that includes decisions

regarding shipments, fleet assignments, and vehicle routings under constraints on
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both hauling and storage capacities. A distinct difference to our own model,

however, is that in our case demands are typically known whereas it is primarily the

production that may vary, or be shut in in the worst case. Hence, it appears that this

in some sense inverse problem provides an interesting new variation also on other

existing models that combine vehicle routing with inventory management and

delivery scheduling, many of which are summarized in the recent survey article by

Coelho et al. (2014). Finally, and specifically for dispatch problems formulated as

mixed-integer programs, two older yet still insightful papers on solution techniques

and formulations are those by Bixby and Lee (1998) and by Ronen (1995).

Like our own contribution, several of the former papers and some other authors

also describe real-world applications or case studies with actual energy or

petrochemical companies. Dating back to the 1980s, Klingman et al. (1987)

describe an operational planning model for supply, distribution, and marketing of

refined petroleum products that was implemented at Citgo, and Van Roy (1989)

presents a solution to a multi-level production and distribution problem at an

unnamed petrochemical company using network and transportation fleet optimiza-

tion. The above paper by Bixby and Lee (1998) contains information about a case

study with Texaco, conducted in the 1990s. Finally, the articles (Neiro and Pinto

2005; Rocha et al. 2009) by two different groups of authors highlight new model

solutions developed more recently in the 2000s with Petrobras. Despite the basic

similarities between all these related efforts, including our own model of the

operations at Noble Energy, all these papers differ in significant detail by their

mathematical representation and choices of known parameters, decision variables,

and optimization criteria. To prepare the discussion of our own modeling choices,

we continue in Sect. 2.1 with a slightly more detailed overview of our company’s

current dispatch and hauling operations which is then followed by our more specific

problem statement in Sect. 2.2.

2.1 An overview of current operations

As already outlined in the introduction, in this paper we focus primarily on the

dispatch, transportation, and distribution of Noble Energy’s oil production in the DJ

Basin’s Wattenberg field. Produced from more than 7,500 wells, which cover an

area of several ten thousand square miles, all gas and oil are first collected at about

4,300 different batteries. These batteries typically consist of a separator to divide

gas and oil into separate streams, meters to measure the produced and transferred

gas and oil products, a vapor recovery unit to capture evaporation from produced oil

for reinjection into the gas line, a compressor to raise the pressure of the gas to

exceed the pressure of the gas in the sales line, and one or more tanks that store the

oil and any other liquid products, including both bottom sediment and water

(BS&W) that subsequently separate from the lighter oil on top. Based on the flow

rate of the produced oil within each battery, most batteries consist of one or two

tanks with an average capacity of 300 barrels of oil (bbl) although there are also

several batteries of higher capacity especially at recently opened, high-producing

wells. In general, the flow rate at each battery shows only little variation but

decreases exponentially over time.
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Lease operators or pumpers are responsible for monitoring each battery,

measuring and controlling oil levels and quality, grading BS&W content based

on industry standards, and ultimately deciding whether to pump the oil for market

delivery or to request haul for treatment at a separate facility or refinery. Based on

the information provided by these individual pumpers, centralized dispatchers

determine a multi-day service schedule of batteries to transport the produced oil to

markets and meet sales obligations with well owners and purchasers. Service means

that one or more trucks are sent to a battery to remove a truckload of oil (typically

180–200 bbl/load), and to deliver that oil to its designated destination. These

deliveries are performed by third-party trucking and hauling companies, which may

be assigned on a flexible basis as needed, based on mutual contracts, or a

combination of both. After obtaining the battery inventory levels, the typical lead

time for dispatching trucks varies to up to 36 hours, and service schedules are

usually updated within a moving time window of at most three to four days.

Although short-term adjustments of pick-ups and deliveries within this window are

still possible, in principle, they are usually avoided due to their requirement of

additional backup contracts with the partnering companies.

In current operations, all loads are delivered to three large markets (pipeline,

railroad, and refinery) and several smaller, independent customers. Split loads, which

occur when a single truck carries oil from two or more different batteries, are currently

avoided because such loads are difficult to plan by dispatchers, create logistical

overheads for pumpers and haulers, and could be rejected as being of uncertain quality

by some markets. However, split loads are a natural way for risk pooling toward spills,

by reducing inventory at multiple batteries rather than only a single location. This is

important for the following reason. Due to the general uncertainties and variabilities

involved in production and dispatch (e.g., production shortfalls at wells, mechanical

failures at batteries, poor weather and delays of trucks, etc.), Noble Energy’s on-hand

inventory on any given day may currently be as high as 50 % of its total battery

capacity. Hence, a major concern is that if all tanks at some battery become full or

close to reaching capacity, the wells feeding into that battery are at risk of being ‘‘shut

in’’ to prevent the tanks from overflowing. Such shut-ins are highly undesirable and

expensive not only due to the additional logistics that is required to turn off and later

reproduce a well, but also because of the potential violation of contracts with its

owners and the resulting loss of general production. To prevent shut-ins and keep

inventory at a sufficient but safe level, therefore, dispatchers currently compare

battery capacities with available inventory or production levels and rates, which are

used to compile priority lists according to which it is determined whether a battery

needs to be serviced promptly, sometime soon, or not for a while. These priority lists,

which are updated on a daily basis using additional information or specific requests

from pumpers, currently form the main dispatch decision tool to determine the set of

batteries that should be serviced during each following day.

2.2 Problem statement and objectives

The above description gives a basic understanding of the current dispatch and

hauling operation that we decided to mathematically represent for further system
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analysis and optimization. Especially in view of the company’s anticipated

expansion, it was recognized that a manual process may lead to potential

inefficiencies due to its high degree of complexity when different oil markets are

competing and when the number of batteries and available trucking companies and

trucks is either large or limited. Thus motivated, we were interested to formulate a

model that could be used to more systematically analyze and decide on an efficient

truck allocation for oil load dispatch and transportation planning of the produced oil

from batteries to markets. While certain business agreements dictate who can haul

from a particular battery to a particular market, we wanted to ensure that our model

was flexible enough to also incorporate other and more general contractual

agreements with well owners, haulers, and purchasers, and to take into account the

risks of shut-ins as well as production or deliverability shortfalls. Optimal solutions

using our approach should inform dispatchers about best decisions and strategies for

haul and service dates of batteries, choices of haulers and markets, acceptance or

rejection of split loads, avoidance of battery shut-ins, and optimal planning of

inventory.

There are several frameworks that we could have chosen for our model, most

generally including deterministic and probabilistic or stochastic optimization

approaches. Among the latter, classical stochastic programming assumes that the

problem is subject to uncertainties that are probabilistic and quantifiable using

probability distributions or other statistical techniques (Birge and Louveaux 1997;

Infanger 2011), whereas the more recent but already similarly well-established

paradigm of robust optimization considers more general uncertainty sets without

this assumption (Ben-Tal et al. 2009; Bertsimas et al. 2011). However, it was

suggested that neither of these two approaches was truly necessary in our case for

the reason that large demands were contractually guaranteed and variations in

supply or production were relatively small during each sufficiently short but

consistently overlapping planning period. Instead, to also include other than cost or

profit-related criteria and thereby support a better understanding of any potential

tradeoffs between different decisions and their resulting consequences, we agreed to

use a model with multiple criteria that could be analyzed or solved using a wide

variety of available goal, preemptive, or multi-objective programming techniques.

In discussions with Noble Energy, we then arrived at a total of four criteria that

are used to evaluate the solutions of our model. Like the majority of other papers,

we begin with a formulation including the single objective of profitability or cost

minimization, which we express equivalently as maximization of revenue and

subsequently utilize for the control of split loads. As highlighted in our former

discussion, of particular importance also for preventing loss in revenue is the

avoidance of shut-ins which we translated into the two related objectives to

maximize sales or total haul, and the estimated time until batteries reach capacity by

properly balancing inventory levels. The criterion to reliably ensure deliverability of

guaranteed amounts and fulfill the sale, haul, and supply contracts with well owners,

haulers, and purchasers is treated both as an optimization objective, by maximizing

the days of available supply, and as a set of range constraints. Finally, while the

company’s primary concern of stewardship about its operations toward its

stakeholders was not modeled explicitly, such considerations inform the high
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priority of shut-ins for spill avoidance and deliverability to business partners that are

highlighted in our tradeoff analysis in Sects. 4 and 5.

3 Problem formulation and model

Our model formulation is based on a standard transportation-assignment problem in

which we haul oil from a set B of batteries to a set D of destinations or markets. We

denote the set of haulers or trucking companies by C, and we let the dispatch

decision xijk � 0 be the amount of oil in barrels to be hauled from battery i 2 B using

company j 2 C to market k 2 D, for a known sales price or profit from sales of pijk

dollars per barrel. The specific objectives and constraints of our model are described

in the following subsections, and a nomenclature with a comprehensive list of sets,

parameters, and variables used is summarized for convenience in Table 1.

3.1 Modeling contractual agreements

This first set of constraints ensures that our dispatch decisions satisfy contractual

agreements and physical restrictions of batteries, haulers, and markets. We let li, lj,

and lk be any guaranteed amounts of oil in barrels to be picked up from battery i,

hauled using trucking company j, and delivered or sold to market destination k,

respectively, and we use these three parameters in our model as lower bounds. The

value of li is typically zero but included here to permit a nonzero lower bound, if

desired. Similarly, we can include upper bounds vi, uj, and uk to model total supply

from battery i, haul capacity using trucking company j, and total demand of market

k, respectively. The choice of the letter v rather than u for battery supply is on

purpose as it will be generalized to a new inventory variable later (in Sect. 3.4).

Battery constraints: li�
X

j2C

X

k2D

xijk � vi for all i 2 B; ð1aÞ

Hauling constraints: lj�
X

i2B

X

k2D

xijk � uj for all j 2 C; ð1bÞ

Market constraints: lk �
X

i2B

X

j2C

xijk � uk for all k 2 D: ð1cÞ

3.2 Modeling load sizes and split loads

In practice, we typically dispatch a truck only when it can receive a full load, and we

let hijk be the associated haul capacity of those trucks used by company j to deliver

from battery i to market k in barrels (common sizes are 180 to 200 bbl/load). To

restrict our dispatch decisions to full loads, we can introduce a new integer variable

yijk that represents the number of loads that is sent from battery i via hauler j to

market k.
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Full-load constraints (no split loads): xijk ¼ hijkyijk and yijk � 0 integer: ð2Þ

On occasion, however, it is also possible that a single truck is sent to multiple

batteries to only receive partial loads that together give a full load. For this case, we

define a collection A of subsets A � B that contain those batteries that can be

serviced by the same trucking company j along a single route to market k, with

trucks of capacity hjk bbl/load. We then let the haul capacity hjk be independent of a

Table 1 List of index sets, data parameters, and optimization variables

Sets Indices

B Set of batteries i

C Set of trucking companies or haulers j

D Set of destinations or markets k

T Set of time periods in planning horizon t

A Collection of battery subsets admissible for split loads (A � B)

Parameters Units

hijk

Haul capacity per truck of hauler j 2 C from i 2 B to k 2 D

bbl/load

hjk Haul capacity per truck of j 2 C to k 2 D (admissible for split loads) bbl/load

pijk Revenue or profit from selling a load hauled by j 2 C from i 2 B to k 2 D $/load

qijk Revenue reduction or split load cost of haul by j 2 C from i 2 B to k 2 D $/load

li Minimum contractual haul from battery i 2 B (typically zero) bbl

lj Minimum contractual haul using trucking company j 2 C bbl

lk Minimum contractual supply to market k 2 D bbl

ui Maximum storage capacity of battery i 2 B bbl

uj Maximum haul capacity of hauler j 2 C per day bbl

uk Maximum demand capacity of market k 2 D (possibly infinite) bbl

ri Minimum reserve inventory to be kept in battery i 2 B bbl

v0
i

Initial inventory at battery i 2 B at time t ¼ 0 bbl

f 0
i

Initial oil flow at battery i 2 B at time t ¼ 0 bbl/day

fiðtÞ Oil flow into battery i 2 B at time t 2 T bbl/day

ki=ji Flow rate parameters at battery i 2 B –

Variables

siðtÞ Time until shut-in at battery i 2 B at time t 2 T days

diðtÞ Time until sell-out / days of supply at battery i 2 B at time t 2 T days

viðtÞ Ending inventory at battery i 2 B at time t 2 T bbl

xijkðtÞ Barrels of oil hauled from i 2 B by hauler j 2 C to k 2 D at time t 2 T bbl

xiðtÞ Barrels of oil hauled from i 2 B at time t 2 T (required for split loads) bbl

yijkðtÞ Number of loads delivered from i 2 B by j 2 C to k 2 D at time t 2 T loads

yjkðtÞ Loads delivered by j 2 C to k 2 D at time t 2 T (required for split loads) loads

zijkðtÞ Approximate number of hauls from i 2 B by j 2 C to k 2 D at time t 2 T loads
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specific battery and modify constraints (2) to also allow for such split loads from

multiple batteries.

Full-load constraints (with split loads):
X

i2A

xijk ¼ hjkyjk and yjk� 0 integer: ð3Þ

The integer variable yjk� 0 now represents the number of deliveries to market k

using trucking company j. In particular, by choosing A ¼ B, we could allow split

loads from any set of batteries.

3.3 Modeling split load penalties and profit

Although split loads provide additional flexibility and may increase the amount of

total haul, they typically create additional costs for trucking companies that are

returned to operators and thus must be accounted for when computing profit. For

that purpose, we introduce a new set of integer variables zijk and a new set of

constraints:

xijk � hjkzijk and zijk integer: ð4Þ

For a given dispatch decision xijk, the smallest feasible value of zijk now corresponds

to a lower bound on the number of trucks of company j that need to be sent from

battery i to market k. The number of split loads is thus at least as large as the

difference between this value and the actual deliveries yjk, which reduces the rev-

enue or profit term with a penalty factor qijk that generally depends on battery i,

hauler j, and market k. This yields an adjusted revenue or profit from sales:

X

j2C

X

k2D

X

i2B

pijkxijk � qijk

X

i2B

zijk � yjk

 ! !

¼
X

i2B

X

j2C

X

k2D

pijk þ
qijk

hjk

� �
xijk � qijkzijk

� �
; ð5Þ

where we used Eq. (3) to express the variables yjk in terms of xijk. Maximization of

(5) guarantees that zijk will take on the smallest value that makes constraint (4)

feasible, so that this variable corresponds to the desired ceiling value zijk ¼
dxijk=hjke for a minimum number of split loads. To prevent split loads completely,

we can either set qijk to a very large value or again simplify the model by choosing

(2) instead of (3), then removing the variables zijk with its associated constraints (4)

and penalty terms in the objective function (5).

It should be noted that this modeling technique does not provide the exact

number of split loads, which would require to integrate an additional bin-packing

optimization subproblem into the above model. For example, using trucks with

capacities of 180 barrels each to haul from three batteries with current inventories of

300 barrels each, the above model would indicate only six hauls although we would

require at least seven hauls to receive five full loads. To see why this is, first suppose

that we are sending three trucks for one full (non-split) load to each of these three
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batteries. This would leave 120 barrels at every battery and require two more trucks

to pick up from two batteries each for another four hauls, with a resulting total of at

least seven hauls. Due to the combinatorial nature of computing the exact number of

minimum total hauls, however, and for simplicity and model tractability, therefore,

we have chosen the former, simpler approach.

Finally, several other requirements can be incorporated either by adding further

constraints, or by setting suitable sales prices pijk. For example, if a certain battery i

or market k must (or cannot) be serviced by a certain trucking company j, we could

introduce additional constraints to prescribe or prevent a corresponding assignment,

or alternatively set the corresponding profit pijk to a large positive (or negative)

value.

3.4 Modeling oil inventory and flow rates

In constraint (1a), we assumed a constant value vi for the total supply at each battery

i to temporarily simplify the explanation of our model. Realistically, however, the

available supply changes over time and depends both on the production and flow of

oil into the battery, and the amount of oil that is previously hauled. Hence, we

model the oil inventory viðtÞ at each battery i using a difference equation over a

planning period T with discrete time steps t (typically days):

viðtÞ ¼ viðt � 1Þ þ fiðtÞ � xiðtÞ with xiðtÞ ¼
X

j2C

X

k2D

xijkðtÞ ð6Þ

where fiðtÞ denotes the (generally unknown) oil flow into battery i at time t in barrels

(per day), and the dispatch decisions xijkðtÞ may now also vary over time (with the

same unit of bbl/day). Industry experience shows that the flow rates that determine

fiðtÞ vary monotonically and typically decrease flow exponentially as fiðt þ 1Þ ¼
ð1� jiÞfiðtÞ for some flow battery-dependent constant ji that can be estimated from

historical data:

fiðtÞ ¼ f 0
i eki t with ki ¼ lnð1� jiÞ; ð7Þ

where f 0
i ¼ fið0Þ is the measured flow rate into battery i at time t ¼ 0. Extending all

relevant constraints and other variables to the planning period T we now replace vi

by viðtÞ in (1a), and we let ri and ui be an optional minimal reserve inventory to be

kept at battery i and its maximum capacity, respectively. The resulting multi-period

optimization model is given below.

Maximize
x;y;z;v

X

i2B

X

j2C

X

k2D

X

t2T

pijk þ
qijk

hjk

� �
xijkðtÞ � qijkzijkðtÞ

� �
ð8aÞ

subject to lj�
X

i2B

X

k2D

xijkðtÞ� uj for all j 2 C and t 2 T ; ð8bÞ
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lk �
X

i2B

X

j2C

xijkðtÞ� uk for all k 2 D and t 2 T; ð8cÞ

li�
X

j2C

X

k2D

xijkðtÞ ¼ fiðtÞ � viðtÞ þ viðt � 1Þ for all i 2 B and t 2 T ; ð8dÞ

ri� viðtÞ� ui and við0Þ ¼ v0
i for all i 2 B and t 2 T ; ð8eÞ

X

i2A

xijkðtÞ ¼ hjkyjkðtÞ and 0� xijkðtÞ� hjkzijkðtÞ for all A 2 A and i; j; k; t; ð8fÞ

yjkðtÞ� 0 and zijkðtÞ� 0 integer: ð8gÞ

This results in a model with Bj j � Cj j � Dj j � Tj j linear variables, Bj j þ 1ð Þ � Cj j �
Dj j � Tj j integer variables, and 2 � 2 � Bj j þ Cj j þ Dj jð Þ � Tj j þ Aj j þ Bj jð Þ � Cj j � Dj j �
Tj j þ Bj j equality or inequality constraints.

Of course, all lower and upper bounds li, lj, lk and ui, uj, uk, the minimum

inventory levels ri, the trucking capacities hjk, and the sales prices pijk can also be

made time-dependent without further increase in the size of the model, if necessary.

For example, certain trucking companies may not haul or certain markets may not

accept deliveries on certain (weekend) days, or vary in availabilities, prices, or

costs.

3.5 Model discussion and additional objectives

Thus far, our model formulation (8) allows us to produce an optimal dispatch

schedule for a planning period T to maximize revenue or profit from sales subject to

given contractual obligations and physical specifications of batteries, haulers, and

markets. Specifically, our dispatch decisions xijkðtÞ suggest the amount of oil to be

hauled at time t (typically a certain day) from battery i to market k using trucking

company j. The dependent auxiliary variables yjkðtÞ correspond to the number of full

loads that a certain company j delivers to market k at time t, whereas the variables

zijkðtÞ also include an approximate count (lower bound) of the corresponding

number of split loads at each battery i. The oil inventory variables viðtÞ that connect

the different time periods follow directly from our dispatch decisions and equations

(6) and (8d-8e). Finally, the choice of a finite rather than infinite time interval

T agrees with common operational practice: in response to control measurements of

predicted oil production and inventory and to accommodate any changes or new

requests of contracts, the data set must frequently be updated and long-term

schedules are usually of little relevance for weekly or daily operations. Unlike for

strategic planning, therefore, the above model is solved repeatedly for overlapping

planning periods and in much shorter time intervals to achieve continuity by

regularly comparing and adjusting the mathematical model based on actual, current

operations.
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While our model is focused primarily on operational dispatch, however, it is

important to also address strategic business decisions including the negotiation of

the guaranteed minimum amounts lj and lk with haulers and markets, respectively.

In particular, it appears that we would yield maximum profit if lj ¼ lk ¼ 0 as there

would be no more obligations to fulfill that could constrain an otherwise optimal

dispatch strategy, but this reasoning ignores that the sales prices pijk are also an

immediate consequence of such negotiations and could be significantly smaller

without any contractual guarantees. Similarly, while our model seems to ignore

travel times and distances between batteries and markets that impact the operation

of our partnering haulers and thus shape external costs for trucking the oil, such

considerations are assumed to be included implicitly as bounds on overall haul

capacities and costs or revenue deductions when pricing the profit terms pijk.

In view of the company’s internal operations, another interesting question is the

choice of the minimum reserve levels ri in constraints (8e). From a mathematical or

management perspective, it is again true that no inventory is optimal as it provides

the most flexibility in choosing an optimal dispatch strategy. From an operational

point of view, however, a positive inventory is crucial because of the general

uncertainties and variabilities in oil production and market demand. For example, a

well could unexpectedly begin to produce less oil than expected, and bad weather in

the field or mechanical failures of the pumping equipment could cause a loss in

production and a subsequent shortfall in needed supply. For such reasons, we expect

to keep a significant percentage of total capacity as on-hand inventory.

Although a positive inventory guarantees deliverability in times of production

shortfalls, it also increases the risk of shut-ins in times of unforeseen changes in

hauling capacities or market demand. For example, transportation delays, truck

failures, demand deficiencies, or an unexpected increase in oil production may cause

certain batteries to fill up more quickly than expected and reach capacity before a

truck can be dispatched to haul its oil. Hence, to prevent such a situation we are

generally interested to maximize sales or haul from quickly filling batteries to

maintain an inventory level well below their overall capacity. Our model and

analysis of the resulting tradeoff between the maximization of revenue and these

additional objectives—maximization of sales and total haul, avoidance of shut-ins,

and guaranteed deliverability in the case of unexpected production changes—is

discussed in more detail in the remaining sections of this paper.

4 Tradeoff analysis of shut-in avoidance and deliverability

Model formulation (8) so far considers only the maximization of revenue or profit.

Based on our model discussion, however, we will also consider additional criteria to

ensure that our dispatch schedule is robust toward variabilities in oil production,

transportation, and supply. Specifically, we now extend our initial model by three

additional objectives to ultimately balance the maximization of revenue or profit

with sales or total haul, avoidance of shut-ins, and guaranteed deliverability.
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4.1 Modeling and asymptotic analysis of sales and total haul

We model the maximization of sales and total hauls analogously to the

maximization of profit or revenue in (5) and (8a) in which we simply drop the

associated prices and penalty terms:

Total Haul: Maximize
X

i2B

X

j2C

X

k2D

X

t2T

xijkðtÞ ¼
X

i2B

X

t2T

xiðtÞ; ð9Þ

where xiðtÞ denotes the planned amount of oil to be sold and hauled from battery i.

Under this objective, we expect a relatively constant amount of inventory viðtÞ close

to its set reserved level ri in the inventory Eqs. (6) and (8d). If inventory is constant,

this also suggests that the haul amount xiðtÞ from battery i closely corresponds to its

projected production or flow rate fiðtÞ to keep a constant inventory between reserve

levels ri and battery capacity ui:

ri� viðtÞ ¼ viðt � 1Þ þ fiðtÞ � xiðtÞ� ui for all i 2 B: ð10Þ

However, due to load size requirements and based on split load policies, this does

not necessarily imply that xiðtÞ and fiðtÞ are identical for all i 2 B and t 2 T ; for

example, a well with a low flow rate may produce multiple days or weeks without

haul while building up inventory, and a truck may be dispatched only once the

battery can actually provide a full load. Therefore, we would only expect that

optimal dispatch xiðtÞ and inventory viðtÞ resemble periodic steady-state solutions

that successively decrease in value due to the expected decrease of oil production at

each well over time. In particular, over the full life time of each battery and upon

full depletion of its corresponding wells, we know that

lim
jT j!1

X

t2T

xiðtÞ ¼ lim
jT j!1

X

t2T

fiðtÞ: ð11Þ

From a business perspective, we must plan for the depletion of current wells either

by negotiating new contracts with smaller amounts to continuously meet contractual

obligations, or by opening new wells and batteries to again increase total oil pro-

duction. Without consideration of contract negotiations and the opening of new

wells, however, this suggests that the maximization of sales or haul may not have a

major impact on operational dispatch and lead to service schedules that agree with

the maximization of revenue. This assertion is confirmed in our later computational

results.

4.2 Modeling of shut-in avoidance and deliverability

In view of the resulting inventory levels viðtÞ that follow as a direct consequence

from our dispatch decisions xijkðtÞ, our primary concerns are unforeseen variabilities

in production and transportation that increase our risks of shut-ins and contract

violations due to inventory sell-outs, respectively. The shut-in of a well occurs if our

former model becomes infeasible due to one or more batteries reaching capacity in

constraint (8e). We quantify the associated risk by the time until shut-in siðtÞ, which
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is modeled as the difference in battery capacity ui and current inventory viðtÞ
divided by the expected flow rate fiðtÞ:

siðtÞ ¼
ui � viðtÞ

fiðtÞ
: ð12Þ

This value is merely an approximation for the actual time until shut-in because the

flow rates fiðtÞ may also change and generally decrease over time; in that case, our

measure is conservative and underestimates the actual value which adds additional

robustness to the solution of our model.

Similarly, we quantify the risk of violating contractual agreements due to

production shortfalls by the current time until inventory sell-out, which is modeled

as the days of supply diðtÞ corresponding to the length of time we could continue to

meet planned dispatch xiðtÞ using the currently available inventory levels viðtÞ:

diðtÞ ¼
viðtÞ
xiðtÞ

: ð13Þ

Our objective in both cases is to minimize these risks which is equivalent to the

maximization of siðtÞ and diðtÞ, respectively. The resulting multicriteria optimiza-

tion model can be formulated as follows and remains subject to the same constraints

as model (8):

Maximize
x;y;z;v

(
X

i2B

X

j2C

X

k2D

X

t2T

pijk þ
qijk

hjk

� �
xijkðtÞ � qijkzijkðtÞ

� �
; ð14aÞ

X

i2B

X

t2T

xiðtÞ; and siðtÞ and diðtÞ for all i 2 B and t 2 T

)
: ð14bÞ

4.3 Model discussion and tradeoff analysis

To deal with the multiple objectives in our final model (14), we can use one of

several methods from multiobjective programming or multicriteria decision-making

(Ehrgott and Gandibleux 2002; Figueira et al. 2005). It is well-known that in the

presence of multiple and typically conflicting criteria, a unique best solution does

not usually exist so that a decision-maker—or dispatcher in our case—must choose

from a set of efficient, Pareto optimal solutions to weigh and compromise the

different objectives. There are many techniques that can support this decision-

making process, so that we refrain from recommending a single method to ‘‘solve’’

the above problem. Instead, we only outline some of the more popular techniques

and for illustration describe one of the general approaches that we studied together

with Noble Energy.

One of the more common techniques especially for linear and convex

formulations is to aggregate all objectives as a single weighted sum and thus

reduce the multicriteria problem to one with a single objective. For example, we

already used this approach implicitly in objective (5) where we combined revenues

and costs using profit weights pijk, and quantified implicitly the tradeoff between the
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costs and potential increases in profit from split loads using the penalty factors qijk.

Although the choice of suitable weights to properly reflect desirable tradeoffs is

often quite difficult, and despite the well-known fact that this method is not

generally suitable to find good tradeoffs when the set of realizable solutions is not

convex, a full or partial aggregation of all or some criteria is convenient especially if

different criteria are largely concurrent or measured in comparable units. For

example, it could be reasonable to aggregate or average shut-in and sell-out risks

over time; moreover, if a dispatcher can identify batteries at which shut-ins or

production shortfalls are more or less acceptable, one could also use corresponding

priorities wi for a weighted aggregate or average of each risk over all batteries:

Maximize
X

i2B

X

t2T

wisiðtÞ and
X

i2B

X

t2T

widiðtÞ: ð15Þ

The priority weights wi, which could also be different for siðtÞ and diðtÞ or nor-

malized if necessary, are best chosen so that greater values are assigned to high-

priority batteries at which shut-ins must be avoided, and smaller values are given to

batteries that are of less concern.

For problems that are not convex, which is often the case for mixed-integer

programs, a better alternative to weighted sums are weighted distance functions or

certain (modified or augmented) Tchebycheff norms. Hence, for the computational

results in this paper specifically we used a related max-min technique that is

particularly robust if all risks are considered to be of equally high importance so that

tradeoffs against or in favor of certain batteries are not acceptable. In this case, we

can formulate the two new objectives max minfsiðtÞ : i 2 B and t 2 Tg and

max minfdiðtÞ : i 2 B and t 2 Tg that maximize the minimum times until shut-in

and sell-out over all batteries and planning days to yield the overall smallest risk

possible:

Maximize s and d

subject to s� siðtÞ and d� diðtÞ for all i 2 B and t 2 T:
ð16Þ

This reduces problem (14) to a four-criteria problem with one objective each for the

maximization of profit and revenue, sales and total haul, avoidance of shut-ins, and

guaranteed deliverability. Alternatively, and based on additional information on

which batteries are situated close to each other (e.g., similar to the collection A of

subsets of batteries that are admissible for split loads), one could also assign groups

of batteries to clusters that may further mitigate the associated risks from shut-ins or

sell-outs, respectively.

As we already discussed in Sect. 4 and quite typical for multiobjective programs

with more than two criteria, it is often possible to analyze tradeoffs in smaller

subproblems with only two decision criteria (Engau 2009; Engau and Wiecek 2007).

For example, for the model above we expected and could computationally confirm

that the first three objectives are not in major conflict and similarly favor to sell

large amounts (maximization of sales) in an efficient manner (maximization of

profit) while keeping oil inventory low - or ideally at zero - to avoid the shut-in of

wells. Despite this apparent concurrence between these objectives, however, as part
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of our computational experiments we later discuss that there still exists a hidden

tradeoff that stems from the allowance or rejection of split loads based on the

chosen split load penalty. In addition, the guarantee of deliverability conflicts with

especially the first and third of these goals: the maximization of sales may require

the commitment to higher contractual obligations, which may necessitate to hold

more reserve inventory that thereby also increases the risk of subsequent shut-ins.

Of course, the decision and negotiation of contracts is beyond the operational level

and thus not included in our tradeoff analysis.

Hence, in our remaining discussion we now focus on the most important tradeoff

between the avoidance of shut-ins and guaranteed deliverability, motivating no or

full inventory, respectively. In particular, using the same min-max strategy as in

(16) but applied to each pair of shut-in and sell-out times siðtÞ and diðtÞ, it is not

difficult to see that the most conservative decision would be to perfectly balance

these risks at each battery so that siðtÞ ¼ diðtÞ for all i 2 B, or equivalently:

ui � viðtÞ
fiðtÞ

¼ viðtÞ
xiðtÞ

¼) viðtÞ ¼
xiðtÞui

xiðtÞ þ fiðtÞ
: ð17Þ

Using (11), this allows us to compute the average inventory that should be kept

under this strategy:

lim
jT j!1

X

t2T

viðtÞ
jT j ¼ lim

jT j!1

X

t2T

xiðtÞui

ðxiðtÞ þ fiðtÞÞjT j
¼ ui

2
ð18Þ

This asymptotic tradeoff result agrees with Noble Energy’s current operational

practice to keep up to 50 % of its capacity as on-hand inventory and thus validates

some of our basic modeling decisions.

5 Model implementation and computational case study

For our computational case study, we implemented our model using the mathematical

programming modeling language GAMS and solved all resulting optimization

problem instances using IBM/ILOG’s CPLEX 12.3 on a Quad Core Opteron 2.0 Ghz

processor with 64GB RAM. The underlying data was provided by Noble Energy and

includes battery capacities with historical production and inventory levels, minimum

and maximum agreements with haulers and their corresponding truck sizes, and

guaranteed sales to markets with applicable supply and transportation costs. The

battery data consists of over 3,400 locations and thus represents about 80 % of the

company’s total dispatch operation in the Wattenberg field. The historical production

data at each battery included inventory measurements at irregular intervals over a few

months or days for longer-producing or newly-opened wells, respectively, which were

used to fit functions of the form (7) and accordingly predict their flow rates in the

future. Figure 1 gives several histograms that summarize the distributions of battery

capacities ui, relative inventories v0
i =ui, current production rates f 0

i , and estimated

(shortest) times until shut-in (TSI) s0
i ¼ ðui � v0

i Þ=f 0
i at the beginning of our study.

The vertical axis in each case gives frequency in percent.
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These histograms indicate that about 75–80 % of all batteries have a single tank with

a capacity of 300–400 bbl, with almost all of the remaining batteries below 800 bbl. The

relative inventory levels in percent of total capacity for each battery vary between 0 and

90 % with an average of 41 %. The total current inventory is 497,476 bbl compared to a

total capacity of 1,358,991 bbl, providing a relative inventory of 37 % overall. The

production rates vary widely between less than 1 bbl/day and up to over 1,000 bbl/day,

with an average of 8.5 bbl/day and less than 1 % of all batteries receiving 100 bbl/day or

more. The total daily production of these batteries is 28,914 bbl.

The TSI among all batteries are similarly widely spread, with a minimum of 8 hours

for the fastest filling batteries, an average of 6 months, and a maximum of several

hundred years for several low-producing batteries. The corresponding histograms

give an idea of the percentage of batteries whose TSI falls within a year, a quarter, or

the next two weeks. For example, the first and second of these plots show that about

one third of all batteries have shut-in times of less than a month, with the quarter’s

peak at about four weeks for 10 % of all batteries. Limited to a period of two weeks as

seen on the third plot, a little below 1 % of all batteries have shut-in times of four days

or less, still corresponding to more than 30 batteries that need to be serviced with

highest priority.

Hence, to reflect actual operations in practice, for our computational analysis we

reduced the full data set to only those batteries with a currently short TSI, including all

batteries that were very close to capacity (even if their flow rate was relatively small)

or that received oil with a very large flow rate (even if their current inventory level was

still low). Specifically, we included all of those batteries with either an estimated TSI

within the next 4 days, a current inventory level of at least 90 %, or an initial flow of

180 bbl or more per day. This resulted in a subset of 34 batteries to represent about 1 %

of the full data set available, but including all those batteries of highest priority for

dispatch. Figure 2 shows the characteristics of this data set and includes capacities and

inventories (trimmed at 16,000 bbl for the largest batteries), flow rates and estimated

TSI for all 34 selected batteries. The used data in comparison to the full data set, and

the correspondingly scaled amounts for hauls and supplies are summarized as

aggregated totals in Tables 2 and 3.

In view of Table 3, it is clear that the lower bound on market supply is dominated

by the minimum contracted hauls, and that the practically infinite market demand is

restricted by the maximum available hauling capacity. Because the total flow of all

batteries falls in between these lower and upper bounds, we can expect our model to

be feasible over a sufficiently short time period, in which daily production is not

reduced by too much. Specifically, based on the available flow profiles provided by

the company, the computed flow rate parameters ki in (7) were in the order of 0.01

and thus small enough to justify the assumption of a constant daily production.

5.1 Maximization of revenue, total haul, and time until shut-in

Using the above data sets, we first look at the results when solving model (8) for

maximum revenue or profit, over a two-week period. For the revenue computation,

oil prices were estimated at $103.15/bbl to correspond to the average WTI crude oil

price index for the first quarter in 2012, and adjusted by TSH (transportation,
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shipment, and handling) fees provided by Noble Energy for the respective hauls to

markets. The resulting model was solved three times: first to prevent any split loads

with a large penalty term, and second to allow split loads with a penalty value

computed as qijk ¼ pijkhijk=4. This choice implies that each split load reduces profit

from that load by 25 %. Third, for comparison we also computed the maximum

(ideal) revenue with split loads but no penalties, by setting qijk ¼ 0. Problem sizes

and running times are reported in Tables 4 and 5, and the resulting optimal revenues

with their corresponding amounts of haul and average and minimum times until

shut-in (TSI) and sell-out (TSO) are listed in Table 6. In Table 4, the slightly larger

numbers of variables and constraints in our computational GAMS model compared

to its algebraic formulation (8) follows from our use of several auxiliary variables

for ease of model implementation.

The solution statistics in Table 5 indicate that the choice of split load penalty has

a significant impact on the required number of iterations and overall solution time.

Whereas the problem solves relatively quickly for small or no penalties also for an

increasing number of batteries, the poor algorithmic performance when choosing a

large penalty is partially due to the difficulty in finding an initial feasible solution

but primarily due to numeric difficulties, which of course could be avoided by

removing any split load variables and penalties from the model, if desired.

Moreover, the results in Table 6 clearly illustrate that both revenue and total haul

increase if we allow split loads at a penalty, or for free. In particular, we found that

the maximum values of $7,454,030 (or $7,693,380) for revenue and 78,480 (or

81,000) bbl for total haul also coincide with the corresponding single-objective ideal

values, indicating that there is no direct tradeoff between these two concurrent

objectives as they can reach their best values simultaneously. Because the haul

objective does not depend on the split load penalties and thus may be as high as

81,000 bbl also for the solution in the second row of Table 6, this shows that there

must exist a hidden tradeoff that stems from the rejection of certain split loads at this

chosen penalty. Specifically, to further quantify this tradeoff we found that a split

load penalty of more than 33 % revenue results in no more split loads and thus

Table 2 Aggregated totals of battery data in full and used data sets (in barrels)

Batteries Inventory Capacity (Rel inv) (%) Flow rate Avg TSI

Full data set 3,406 497,476 1,358,991 (37) 28,914 193.66

Used data set 34 11,321 49,719 (23) 5,369 4.09

Percentage (%) 1 2 4 19

Table 3 Aggregated totals of truck and market data in full and used data sets

Haulers Min haul Max haul Markets Min supply Max supply

Full data set 6 19,800 57,240 5 15,300 Infinite

Used data set 6 3,780 10,980 5 2,880 Infinite

Percentage (%) 100 19 19 100 19
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matches the optimal solution using full loads only, in the first row of Table 6,

whereas a split load penalty of less than 13 % always yields the maximum haul of

81,000 bbl.

To visualize the dispatch schedules and gain some additional insight about the

corresponding inventories over the selected two-week planning period, we can study

the corresponding inventory profiles. Depicted in Fig. 3 for a typical high-flow five-

tank and mid-flow single-tank battery (batteries 8 and 31 in Fig. 2), the first and

second plot show the respective development of their inventory, the flow of oil into

each battery, and the haul out of it. For example, for the single-tank battery with a

300 bbl capacity and an initial inventory and flow of 245 bbl and 28 bbl/day,

respectively, we see that we dispatch a single truck at time periods 1, 6, and 13 to

keep inventory roughly between 50 and 200 bbl, or 17 and 67 % of total capacity.

The situation is more complex for the larger battery with 1,500 bbl capacity and an

initial inventory and flow of about 225 and 554 bbl/day. Because this battery tends

to reach capacity every three days, the optimal solution indicates a much more

irregular dispatch schedule and tends to keep a higher (relative) inventory between

300 bbl (20 %) and full capacity (100 %). In particular, days at which the battery

reaches full capacity are followed by days at which it is serviced up to nine times,

Table 4 Problem sizes for instance Bj j ¼ 34, Cj j ¼ 6, Dj j ¼ 5, Tj j ¼ 14, and Aj j ¼ 1 (A ¼ fBg)

Computational model (GAMS) Algebraic model formulation (8)

Linear vars Integer vars Constraints Non-zeros Linear vars Integer vars Constraints

15,713 14,700 18,819 177,462 14,280 14,700 16,946

Reduced MIP model (after probing/presolve) Reduced LP model (after presolve)

Linear vars Integer vars Constraints Non-zeros Linear vars Constraints Non-zeros

14,785 14,670 15,414 101,297 14,755 1,134 72,317

Table 6 Optimal objective values for revenue maximization over a two-week period

Split loads Penalty Revenue Total haul Avg TSI Min TSI Avg TSO Min TSO

No Large 7,454,030 78,480 7.77 0 4.62 0

Yes Small 7,533,704 79,560 7.31 0 5.08 0

Yes None 7,693,380 81,000 8.02 0 4.37 0

Table 5 Iterations, nodes, cuts, solution times for root and branch-and-cut, and final gap

Split loads Penalty Iterations Nodes Cuts Root (s) B&C (s) Total (s) Gap (%)

No Large 134,998 18,494 1,371 10.31 899.77 910.07 9.66

Yes Small 4,500 440 736 13.82 20.77 34.59 5.28

Yes None 2,155 0 382 0.00 3.58 3.58 0.11
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for a total haul of over 1,600 bbl including its full-capacity inventory in addition to

parts of its same-day production.

Especially the third plot in Fig. 3 also indicates that the computed dispatch

schedules tend to clear inventory toward the end of the fixed planning period, to

collect maximum additional revenue as the model does not impose any other

constraints to be satisfied in later periods. By periodically updating the model and

purposely running it for a slightly longer period than planned, however, such

tendencies will usually not impact operational dispatch whose planning periods are

typically no longer than 3 or 4 days. In particular, the initial priority list of batteries

to be included in such a model should be updated at least as often as their average

time until shut-in or sell-out, which equals about 4–5 days for the solutions in Table

6. Without explicit consideration of TSI and TSO as optimization objectives,

however, their minimum values must be expected to be zero in general as especially

high-flow batteries like the one in Fig. 3 may reach capacity and haul full-capacity

inventory, which necessarily implies that both of these times in the following

periods are zero. This is again confirmed by the results in Table 6.

Hence, to analyze some of the other concurrence or tradeoff relationships

between the maximization of revenue or haul, and the times to shut-in or sell-out,

we also computed the single-objective ideal values when maximizing the minimum

TSI or TSO alone. The respective maximum values that we obtained with split loads

were 1.38 and 1.13 days for TSI and TSO, respectively, and the same rounded value

of 0.62 days if split loads were not allowed. We then formed an aggregated

objective function to maximize all four objectives simultaneously, and found a new

solution that produced maximum (ideal) values for revenue ($7,693,380), total haul

(81,000 bbl), and TSI (1.38 days), and average TSI and TSO of 8.43 and 3.96 days,

respectively. This shows that again there is no tradeoff between maximization of

revenue, haul and TSI when allowing unrestricted split loads, as all objectives can

reach their best values simultaneously. The corresponding inventory profiles for the

same two batteries as in Fig. 3 are depicted in Fig. 4 and confirm our expectation

that when maximizing TSI without tradeoff consideration to TSO, optimal dispatch

tends to clear out inventory at high-flowing batteries and thereafter match hauls to

the battery’s daily production.

5.2 Discussion of tradeoff between times until shut-in and sell-out

To conclude this brief discussion of our selected computational results, we lastly

consider the tradeoff between times until shut-in (TSI) and sell-out (TSO), or

equivalently, the tradeoff between avoidance of shut-ins and deliverability that we

analyzed theoretically in Sect. 4. From our previous results, we have observed that

revenue or profit, sales or total hauls, and TSI can be maximized simultaneously if

split loads are allowed, and give rise to only a relatively small tradeoff if split loads

are forbidden or penalized. In addition, we have also already mentioned that without

split loads TSI and TSO attain the same maximum value of 0.62 days, whereas their

optimum (ideal) values with split loads are roughly twice as high at 1.38 and 1.13

days, respectively.
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Computing the corresponding Pareto curve for the bicriteria problem with TSI

and TSO as objectives, that is plotted on the left of Fig. 5, we can see the above

values at the lower right and upper left end points where maximum TSI and TSO are

attained when the respective other objective is reduced to zero. Hence, the tradeoff

between TSI and TSO becomes clearly visible and gives rise to a particular tradeoff

solution in the approximate center of the Pareto curve, which was obtained using the

combination of a min-max and weighting method. Interestingly, in agreement with

our decision to use equal weights for TSI and TSO in our theoretical tradeoff

analysis in Sect. 4, this point corresponds to the equal weighting of TSI and TSO

with objective values of $4,102,774 for revenue, 77,940 bbl for total haul, and 0.72

and 0.63 days for TSI and TSO, respectively. The corresponding inventory profile

for the same high-flow battery from Figs. 3 and 4 is depicted in Fig. 5 and shows

how the resulting dispatch schedule keeps a sufficient yet safe inventory level

around 600 bbl, which also approximately matches both the average flow and

production over the full planning period. In particular, the generally smaller and

better controlled inventory of this compromise solution is also apparent from the

aggregated profile of the set of all 34 selected batteries, which verifies the potential

success of our model to find efficient dispatch schedules that also achieve more

desirable tradeoffs between our different decision criteria.

6 Conclusion

In order to meet the continuously growing demand for oil products and natural gas,

many energy companies face increased logistical challenges while looking to

expand or develop their production in previously unaccessible locations, such as the

Wattenberg field in northeastern Colorado. Based on insight and real-life data from

one of the most successful companies producing in this area, this paper specifically

addresses the collection and subsequent shipment of the company’s produced oil

from a large set of geographically distributed storage location or batteries to several

different purchasers and customer markets. Due to the lack of a pipeline

infrastructure, the company currently uses a heterogeneous fleet of trucks that

must be contracted from third-party hauling companies and allocated in a flexible

manner so to maximize revenue and sales, and to avoid the risk of production shut-

ins that occur when batteries reach their capacity before they are scheduled for

service.

To support dispatchers with this task, we have created a multicriteria

optimization model that represents the current oil load dispatch and hauling

operations at Noble Energy for the computation of efficient, multi-period planning

schedules and for systematic decision and tradeoff analysis. After a detailed

description of all model decisions and our resulting formulation with the ability to

incorporate split loads, which means that trucks can be sent for partial loads to

multiple batteries, we have demonstrated how to use its solutions to visualize and

analyze dispatch schedules and resulting inventory profiles, and to subsequently

quantify selected tradeoffs between the different decision criteria. In particular, we

have discussed the tradeoffs associated with split loads that revealed hidden
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opportunity costs among revenues, sales, and shut-ins, and we have highlighted the

effect of minimum inventories to compromise shut-in avoidance with guaranteed

deliverability. Having used a multicriteria approach to find dispatch schedules that

can achieve such a compromise, this paper clearly highlights the advantages of

multi-objective over single-objective solutions.

Possible extensions of our work and model that can be considered in the future

include decisions on current parameters such as battery capacities and minimum

reserve levels, the formulation of new or other objectives for shut-in avoidance and

deliverability, and stochastic simulations to further analyze some of the inherent

operational variability. While our current choices of parameters is informed by a

statistical analysis and estimates from real but deterministic data, a similarly careful

stochastic representation is likely to enable additional insights and possibly extend

the feasible planning period from a few days to a longer time. This will not only

create additional reliability and robustness of battery dispatch and service schedules,

but also facilitate the contract negotiation of the company with its hauling partners

and markets. Finally, we believe that the model in this paper is flexible enough to

also be generalized to related operations in the energy industry and other sectors,

and thus offers a host of opportunities for further research and interesting new

applications.
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