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Abstract Farmers may adapt to climate change by growing different crops. This type of 

adaptation may offset the negative effects of climate change on crop yields. However, adaptation 

may be restricted by soil conditions. Even in the case of substantial warming the actual amount 

of adaptation could be small. In this paper, we pair a 10-year panel of satellite-based crop 

coverage in the Midwest with spatially explicit soil data and a fine-scale weather data set. 

Combining a proportion type model with local regressions, we simultaneously address the 

econometric issues of proportion dependent variables and spatial correlation of unobserved 

factors. Based on the estimates of crop choice, we predict the future crop distribution under 

several climate change scenarios. We find that rice and cotton spread northward, the average 

shares of corn and soy decrease in the north and increase in the south. We also find that crop 

shifting patterns vary across quality levels of soils. There is less crop adaptation on better soils 

than on soils with lower quality.	
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Crop Adaptation to Climate Change 

 

1    Introduction 
Crop yields are forecasted to decrease by 30-46% before the end of the century even under 

the slowest (B1) climate warming scenario (Schlenker and Roberts 2009). Farmers may adapt 

to the expected yield changes by growing crops more suited to the new climate. Predicting 

adaptation behavior, i.e. the change in cropping patterns, is therefore an important part of 

evaluating the effect of climate change on food and fiber production. In this paper, we look at 

the potential adaptation to climate change, using currently grown crops, for a group of US 

states situated in a north-south transect along the Mississippi-Missouri river system. Together 

the states comprise a major agricultural region with a considerable diversity of weather and 

soil. The selected states are also among the few for which more than 10 years of fine scale 

satellite-based crop coverage data are available.  

Along the Mississippi River, the dominant crop types are corn, soy, cotton and rice in 

the south and corn and soy in the colder north. Based on temperature alone, adaptation to 

higher temperatures should result in the northward spread of cotton and rice and substitution 

of shorter-season crops (e.g., soy) for longer-season crops (e.g., corn). However, agricultural 

crop coverage is not determined by temperature alone, or even rainfall and temperature taken 

together. Soil properties are a major determinant of which crops can be grown and what the 

crop’s ultimate yield is. It is very plausible that, even in the face of the same level of 

warming, crop shifting patterns will be very different across soils of different qualities. The 

purpose of this paper is to show how weather and soil determine crop location and how, in 

the face of warmer weather, crop adaptation varies across quality levels of soil. 

Modern econometric studies of crop land coverage began with Nerlove’s (1956) 

examination of crop share response to crop prices. His estimating equations are of the form 



	

that coverage is a function of lagged coverage, crop price, input prices and other variables. 

There are many ways to elaborate on this basic model. (1) In many countries (e.g., the United 

States and European Union), the incentive to grow crops in addition to the price is 

government payments. As these programs change year to year and have different marginal 

effects for different farmers, it is not possible to have a fully satisfactory treatment of the 

price variable. If the focus, as was Nerlove’s focus, is on price response, parsing the true 

incentive effects is a serious problem. If the focus is on climate, the standard solution is to 

use year fixed effects to account for both prices and government programs. The year fixed 

effects also would account for differences in input prices. (2) Many authors (Just 1974, 

Chavas and Holt 1990, Lin and Dismukes 2007) think that the risk of growing a crop, perhaps 

the variance or lower semi-variance, is an important determinant of crop choices. So long as 

the risk of growing a crop is taken as constant, which is a good approximation in a short time 

series, crop fixed effects account for this factor. (3) Crop coverages are proportions and 

therefore should sum to one. Indeed there are authors (Lichtenberg 1989, Wu and Segerson 

1995) who use discrete choice models for crop share decisions. Berry’s logit (1994) is an 

appealing discrete choice model for shares that are not zero or one, because it is linear in the 

parameters and errors. However, our crop coverage data has many data points with zero 

coverage. To deal with a great number of zero shares, we	 use	 a	 limited	 dependent	 variable	

regression	with	 a	 transformation	 function	 which	 will	 be	 described	 in	 detail	 later. (4) 

Land use can be correlated across space, either as a spatial lag or spatial error process. A 

spatial lag process is natural in housing developments, where the land use on the next plot 

does influence that on the subject plot. A spatial error process corresponds to unmeasured 

factors that influence yield that vary slowly over space. For instance, the persistence of 

summer fog along a coast might not be captured by measured low temperature, since the fog 

also produced moisture. All adjacent coastal areas would be similarly affected. The spatial 



	

correlation in errors does not cause inconsistency to OLS estimate, but for nonlinear 

regressions, such as logit, tobit, etc., the key problem is that the homoscedasticity assumption 

is violated by the spatial correlation in errors. We use a local regression framework so that all 

parameters and the variances can vary across the landscape and account for unmeasured place 

specific phenomenon. (5) Crop coverage in cross section is determined by climate and soil. 

Studies interested in price response use place fixed effects to account for these factors. 

Because these are the factors that interest us, we use measured climate and soil variables. We 

also include the interaction terms of moisture and heat, because a dry warming is likely to be 

more harmful than warming with moisture. 

Recent literature, particularly Schlenker and Roberts (2009), working at the county 

level, quantified the effects of weather on yield. Their work is noteworthy for the use of a 

great deal of spatial and temporal detail in their weather data. In their studies, the effects of 

soil are subsumed in the place fixed effects. The general tenor of their results is that high 

temperatures are very harmful to yields and so climate change projections for the United 

States result in large yield deficits in response to an increase in the number of hours of 29°c 

plus temperatures for corn, 30°c for soybeans, and 32°c for cotton. Lobel et al. (2011) did a 

very similar analysis for Africa, though they emphasize the interaction of moisture and heat. 

These studies find that warmer climates negatively affect yield.  

One potential response of farmers to climate change is to shift the location of crops, in 

turn planting crops with characteristics better matching the new landscape characteristics. 

This type of adaptation is evident on crop landscape maps. One sees cotton in the warmer, 

wetter south, wheat in drier regions, corn in the wetter parts of the Midwest, and so on. The 

choice of crops to fit climate may offset the negative effects of increasing temperature on 

crop yields, but it may be limited by soil conditions. Where crops of a certain type can be 

grown and what their maximum potential yields may be are determined not only by weather 



	

but also by soils. If all crops suitable to local soils are negatively affected by warming, it is 

possible that farmers are left with no better crop to substitute to. That is, adaptation happens 

only when the substitution crop fits in the local soils and the current crop is harmed so much 

that it is less profitable than the substitution crop. In this paper, we show that, due to soil 

restriction, adaptation makes some difference, but that it does not undo the negative effects of 

higher temperature.  

The remainder of the paper is organized as follows. Section 2 summarizes the data on 

land use, soil conditions, weather, and climate change scenarios for the states along the 

Mississippi-Missouri river corridor. Section 3 describes estimation issues and establishes the 

econometric system. Section 4 presents the estimation results. Section 5 simulates crop 

adaptation to climate change. Section 6 concludes. 

2    Data 

Geospatially explicit data on land cover, soil characteristics, weather, and climate change 

scenarios are matched on a 4km by 4km grid to create the primary data set. The states 

included in the analysis are those along the Mississippi-Missouri river corridor for which 

there are at least 10 years of land cover data: Iowa, Illinois, Mississippi, and part of 

Wisconsin, Missouri, and Arkansas. There is currently insufficient land cover data to extend 

our analysis to other states. Summary statistics are provided in Table 1. Each variable in the 

table is described in detail below. 

Land use 

Land cover data is derived from the Cropland Data Layer (CDL) available annually from 

2000 to 2010 (USDA NASS) for the six states. The CDL is generated based on Resourcesat-

1 AWiFS, Landsat 5 TM, and Landsat 7 ETM+ satellites and has a ground resolution of 56 or 

30 meters, depending on the year and sensors used (Mueller & Seffrin, 2006).  



	

We divide land cover into major crops, other crops, non-crop and wild, urban, and 

water bodies. The major crops include corn and soybean for Iowa, Wisconsin, and Illinois; 

and corn, soybean, rice, and cotton for Missouri, Arkansas, and Mississippi. The category of 

non-crop and wild land includes pasture, forest, improved pasture, etc. Conservation reserve 

lands should fall within this category as they do not have crops. We define agricultural land 

as the sum of major crops, other crops, and non-crop and wild land. Because urban and water 

bodies are very difficult to convert into crop land, we do not include them in discussion in 

this paper. Therefore, we define the share of major crops as the area of major crops divided 

by area of agricultural land. 

Figure 1 shows the shares of corn, soybean, rice, and cotton along the corridor. Corn 

grows mainly in the colder north, while soy crops are more widely distributed. Rice and 

cotton concentrate along the river in Missouri and Arkansas. For corn, the average percent 

coverage from 2002 to 2010 is 34.3% in the north (the three northern states: Wisconsin, Iowa, 

and Illinois), while it is only 2.9% in the south (the three southern states: Missouri, Arkansas, 

and Mississippi). For soy, the coverage is 26.4% and 14.1% in the north and the south, 

respectively. There is little cotton and rice in the north, while in the south, cotton takes 4.5% 

of the agricultural land and rice takes 5%. 

Soil Characteristics 

For soil data we focus on two types of variables, both derived from the USDA’s U.S. General 

Soil Map (STATSGO2). First, the underlying soil data include percent clay, sand, and silt, 

water holding capacity, pH value, electrical conductivity, slope, frost-free days, depth to 

water table, and depth to restrictive layer. Soil variable averages are spatially weighted from 

irregular polygons for each grid cell.  



	

Second, we use a classification system generated by the USDA – Land Capability 

Class (LCC). A LCC value of one defines the best soil with the fewest limitations for 

production, and progressively lower LCC classifications signify more limitations on the land 

for agricultural production. The LCC integer scores decline incrementally to eight, where soil 

conditions are such that agricultural planting is nearly impossible. The use of LCC codes add 

explanatory power to the raw soil characteristics because these codes were assigned with 

knowledge of past yields that depend on characteristics not present in our data set. The 

distribution of LCC levels is shown in Figure 2. Together with Figure 1, we see that prime 

agricultural soils are absent in southern Iowa and so largely is the corn-soy complex. 

Similarly, more optimal soils hug the river in Missouri and Arkansas, and so do rice and 

cotton.  

Weather Variables 

For weather data we use PRISM data processed by Schlenker and Roberts (2009) to a 4km by 

4km spatial resolution, with a daily level of temporal resolution. The dataset includes both 

temperature (highs and lows) and precipitation. Figure 3 shows the observed weather 

condition in the planting season (from April to June)2 from 2002 to 2010 and the growing 

seasons (from April to November) from 2002 to 2009. The observed temperatures are warmer 

in the south and the precipitation levels are appreciably larger. Average temperature in the 

growing season ranges from 12° to 25°c from the top of Iowa to the bottom of Mississippi, a 

distance of 1600 km. Total rainfall in a growing season is also variable across this landscape 

with a high of 130 cm and a low of 30 cm, highest in the southeast and lowest in the 

northwest. 

																																																								
2	Planting	season	and	growing	season	vary	across	crops.	In	the	six	states	along	the	Mississippi‐Missouri	
river	corridor,	the	planting	season	is	from	April	to	May	for	corn,	rice,	and	cotton,	and	from	May	to	June	for	
soybean.	The	harvest	season	is	October	for	rice	and	corn,	and	November	for	cotton	and	soybean.	Growing	
season	is	defined	as	the	period	between	planting	season	and	harvest	season.		



	

 Because this study has so many cross-sectional data cells, we are able to use a great 

deal of detail from the weather data. Two time periods of weather data are used for each crop 

year. (1) The planting season data, which farmers know before they actually plant. A cold wet 

spring, for instance, would delay planting and make a shorter season crop more desirable than 

a longer season crop. Compared to corn, soy is more tolerant of being planted late and more 

dependent on daylight hours, so it can make up time easily. When the planting season is late, 

farmers are more inclined to plant soy. (2) Past weather is used as a proxy for expected 

weather. We do not find much gain from including past weather beyond one season, though, 

in terms of predicting current weather, quite a few lags of past weather are statistically 

significant. For parsimony, we limit the lags of past weather to one.  

 Degree days are calculated from daily highs and lows using a fitted sine curve to 

approximate the amount of hours the temperature is at or above a given threshold 

(Baskerville & Emin, 1969). As in Schlenker and Roberts (2009), we bin the weather data 

into degree days at a given temperature and above. We draw on their work and other 

literature to reduce the number of bins to just those at critical thresholds. However, we 

expand the number of classifications of temperature to account for the month in which it 

occurs. We expect, for instance, that hot temperatures are not as harmful in autumn as they 

are in the middle of the growing season.  

Climate Change Scenarios 

Climate change scenarios are taken from Climate Wizard. 3 Two models are considered: (1) 

Ensemble average, SRES emission scenario: A1B; and (2) Ensemble average, SRES 

emission scenario: A2. Both models predict temperature and precipitation in change and in 

level for the end of the century (2080’s). The comparison baseline is the average temperature 

and precipitation between 1961 and 1990. Future degree days are processed in two steps: 

																																																								
3	Source:	http://www.climatewizard.org/	



	

first, future temperature highs and lows are generated by adding changes to original highs and 

lows; then the degree days are calculated based on the future highs and lows.  

 Figure 3 shows climate change scenarios, along with the observed weather condition 

in the growing season in 2009 and the planting season in 2010. The observed temperatures 

are warmer in the south and the precipitation levels are appreciably larger. Average 

temperature in a growing season ranges from 12° to 25°c from the top of Iowa to the bottom 

of Mississippi, a distance of 1600 km. Total rainfall in a growing season is also variable 

across this landscape with a high of 130 cm and a low of 30 cm, highest in the southeast and 

lowest in the northwest. The A1B model predicts a 4°c increase in temperature on average in 

the north, and a 3.5°c increase in the south. The A2 model predicts a similar warming pattern, 

but 0.5°c warmer than A1B’s prediction. The A1B model also predicts an 18 cm decrease in 

total precipitation in a growing season in the north, and a 5 cm decrease in the south. The A2 

model predicts a similar drying pattern with a very similar magnitude. 

3    The Econometric System 

Within each of our 4km grid cells, ݊, we observe the fraction of land in year ݐ that was 

allocated to crop (or other use) ݅: ௜ܵ௡௧ . There are ܯ crops. If we imagine that each hectare of 

our grid cells has a crop choice, then on that hectare the crop with the highest revenue will be 

chosen. As a result, the fraction of the crop chosen in a grid cell will be a proportion type 

model. 

(1)                                       ௜ܵ௡௧ ൌ ߶൫ሺࢼ૚′ࢄ૚࢚࢔ ൅ ݀ଵ௡௧ሻ, … , ሺ࢚࢔ࡹࢄ′ࡹࢼ ൅ ݀ெ௡௧ሻ൯ 

where ࢚࢔࢏ࢄ is a vector of determinate factors of revenue from planting crop ݅ on plot ݊ at year 

 is a vector of coefficients and ݀௜௡௧ is an error term. ߶ሺሻ is a suitable transformation with ࢏ࢼ ,ݐ

its domain on the unit interval. When all of the shares are strictly within the unit interval, 

using logit as the transformation and rearranging terms gives a linear estimation equation 



	

(Berry 1994): ݈݃݋ሺ ௜ܵ௡௧ሻ െ ሺܵ଴௡௧ሻ݃݋݈ ൌ ࢚࢔࢏ࢄ′࢏ࢼ ൅ ݀௜௡௧. To deal with the fact that many plots 

do not have a certain crop (i.e., many ௜ܵ௡௧ are zeros), we use a ratio transformation and we get 

(2)                                         
ௌ೔೙೟
ௌబ೙೟

ൌ ࢚࢔࢏ࢄ′࢏ࢼ ൅ ݀௜௡௧ 

In order to predict shares as a function of the independent variables, we sum the share 

ratio over ௜ܵ  (recall that the shares sum to one) and solve for ܵ଴௡௧ 

(3)                                          ܵ଴௡௧ ൌ
ଵ

ଵା∑ ൫࢚࢔࢐ࢄ′࢐ࢼାௗೕ೙೟൯
ಾ
ೕసభ

 

Substituting (3) into (2), we get 

(4)                                          ௜ܵ௡௧ ൌ
ାௗ೔೙೟࢚࢔࢏ࢄ′࢏ࢼ

ଵା∑ ൫࢚࢔࢐ࢄ′࢐ࢼାௗೕ೙೟൯
ಾ
ೕసభ

 

The estimation strategy is that first we estimate equation (2) by Tobit, accounting for 

the zero shares. Then we simulate ௝݀௡௧ (݆ ൌ 1,…  by taking draws from a left truncated (ܯ,

normal distribution with mean 0, standard deviation ߪ௝௡௧	and truncation at െ࢚࢔࢐ࢄ′࢏ࢼ. Finally, 

we calculate ௜ܵ௡௧ for each draw and take the averages. 

 Because	 the	scale	of	 this	study	encompasses	more	 than	a	 thousand	kilometers,	

there	 are	 conditions	 that	 are	unaccounted	 for	 in	our	variables	 that	 change	across	 the	

landscape.	 This	 spatial	 correlation	 can	 induce	 heteroscedasticity,	 which	 would	 make	

straightforward	 tobit	 estimation	 inconsistent. We know of two feasible estimation 

strategies. One strategy is to estimate a linear probability model with a Spatial Error Model 

(SEM) correction for the errors. In the linear probability model, OLS would be consistent and 

the SEM would serve to produce the correct standard errors and a more efficient estimate of 

the coefficients. The limitation is that the prediction is not guaranteed to be between 0 and 1. 

The other solution is to estimate local Tobit models, each for only one county and its 

neighbors. The spatial correlation is taken care of because the coefficients and the variances 



	

are free to vary across the landscape. Neighbors of county ݅ are defined to be counties whose 

centroids are within 70 km distance of the centroid of county ݅. 70 km is chosen based on 

Moran’s I tests. The tests show that the spatial correlation in error decrease exponentially and 

beyond 70 km it is lower than	10ିଷ. Within 70 km, a county has 8 neighbors on average and 

each county has about 100 4km grid cells. Therefore, each regression has about 900 

observations.  

 Next, we consider what explanatory variables should be included. The Nerlovian 

adaptive price expectations model (Nerlove 1956) assumed that farmers have rational price 

expectations based on their information set, and described it in three equations. Braulke 

(1982) derived a reduced form from the three equations by removing the unobserved 

variables. Choi and Helmberger (1993) combined this reduced form and farmer’s demand 

functions, and based on their work, Huang and Khanna (2010) described the crop share as a 

function of the lagged share, climate variables, economic variables, risk variables, population 

density, and time trend. Hausman (2012) included most of these explanatory variables, and 

also futures prices, substitute crop share and crop yield. To follow the literature,4 we include 

lagged crop share, lagged substitute crop share, weather in the current planting season and the 

last growing season, and soil conditions as explanatory variables. We include the interaction 

term of heat and moisture to account for the possibility that dry warming is much more 

harmful than warming with moisture (Lobell, et al. 2011) . We also include year fixed effects 

to account for both output and input prices and government programs. This leads to the 

following specification: 

(5)                              
ௌ೔೙೟
ௌబ೙೟

ൌ ௜ߙ ൅ ௜ߚ ௜ܵ௡௧ିଵ ൅ ௜௡௧ିଵࡿࡿ′࢏ࢽ ൅ ௜࣐
௡࢒࢏࢕ࡿ′ ൅ ࢏૚ࣂ

′ ௡௧ିଵࡰࡰࡳ ൅ ࢏૛ࣂ
′ ௡௧ࡰࡰࡼ ൅

௡௧ିଵࡼࡳ′࢏૜ࣂ																																																								 ൅ ࢏૝ࣂ
′ ௡௧ࡼࡼ ൅ ࢏૞ࣂ

′ ࢏૟ࣂ	௡௧൅ࡰࡰࢋ࢘ࡼ
′ ௡௧ିଵࡰࡰࢋ࢘ࡼ ൅ ௧ߤ ൅  ௜௡௧ߝ

																																																								
4	For	reviews	of	share	response	literature,	see	Askari	and	Cummings	(1977)	and	Nerlove	and	Bessler	
(2001)	.	



	

where ௜ܵ௡௧  is the share of crop ݅  planted at grid cell ݊  in year ݐ ௜௡௧ିଵࡿࡿ .  is a vector of 

substitute crop shares planted in year ݐ െ  ௡ is a vector of soil conditions, including all࢒࢏࢕ࡿ .1

the soil characteristics described in the data section. ࡰࡰࡳ௡௧ିଵ is a vector of degree days by 

month in the last growing season (April through November in year ݐ െ  ௡௧ is a vectorࡰࡰࡼ .(1

of degree days by month in the current planting season (April through June in year ݐ). The 

critical temperatures in a planting season include 10 oc and 15 oc. 10 oc is the base temperature 

limit of rice, corn, and soybean development, while 15 oc is the base temperature limit of 

cotton development. The critical temperatures in a growing season include 10 oc, 15 oc, 20 oc, 

25 oc, 29 oc, and 32 oc. Temperatures higher than 29 oc are harmful to corn, 30 oc to soybean, 

and 32 oc to rice and cotton (Schlenker and Roberts 2009). ࡼࡳ௡௧ିଵ is a vector of precipitation 

by month in the last growing season. ࡼࡼ௡௧ is a vector of precipitation by month in the current 

planting season. ࡰࡰࢋ࢘ࡼ  are vectors of interactions of degree days above 30 oc and 

precipitation levels in the same month. All months in the current planting season and the last 

growing season are included. 

4    Estimation Results 

We run separate regressions for each crop and each county. In sum, we have 1022 sets of 

estimates (368 counties; 2 main crops for the northern states and 4 main crops for the 

southern states). We test the significance of soil, precipitation, and degree days. The F-test 

results are shown in Table 2. Soil, precipitation and temperature are significant at the 1% 

significance level in most of the regressions for corn, soy, and cotton, while they are 

significant in half of the regressions for rice. Rice only covers about 4% of the land in the 

southern states, while the land for other use covers about 80% of the land. It is not surprising 

that the coefficients for rice are not statistically significant, given that the dependent variable 

is the ratio of rice share and the share of other land use. In a linear probability model, using 



	

just rice share, all coefficient groups are significant, so the lack of significance is likely 

because of the inability to predict the “other” category. Cotton covers a small portion of land 

as well, however cotton responds more strongly to weather than rice. Therefore, the 

coefficients are significant in the regressions for cotton, while they are not in the regressions 

for rice. 

 Based on the estimates, we predict crop share changes for two scenarios. In one 

scenario, daily temperature increases by one degree for all months in 2009 and 2010. In the 

other scenario, monthly precipitation decreases by one centimeter in all the months, and 

temperature increases as above. We are interested in both short-run and long-run adaptation, 

therefore we check the crop share changes in 2010, which is the year when the weather shock 

happens, and in 2015, allowing the weather shock to take its full effect. The predicted crop 

share changes are summarized in Table 3. In the short run, one-degree warming decreases 

corn share by 0.007 in the north and increase corn share by 0.003 in the south, which means 

0.7% less land (a 2% decrease) in the north and 0.3% more land (a 7% increase) in the south 

is covered by corn. Although corn in the north and corn in the south are affected by warming 

differently, corn in total is affected negatively, because it mainly grows in the north. One-

degree warming also decreases soy share in the north and increase soy share in the south. It 

indicates that 2.1% less land (a 8% decrease) in the north and 2.8% more land (a 18.1 

increase) in the south is covered by soy. One degree warming increases rice share by 0.031 (a 

57.5% increase in the south) and cotton share by 0.023 (a 57.3% increase in the south). It 

suggests that warming favors rice and cotton. By comparing the crop adaption in the north 

and in the south, we find that both average shares of corn and soy decease in the north, while 

all the main crop shares increase in the south. This finding contradicts the general hypothesis 

that warming benefits the north agriculture. It suggests how warming affects crops depends 

on more detailed weather and soil factors.  



	

 Compared to warming alone, dry warming increase other land use more in the north 

and decrease other land use less in the south, as shown in Table 3. It shows that dry warming 

does more damage to crop yields than warming with moisture. Although the averages are 

different, the difference is small and the share change patterns are similar in the two 

scenarios, as shown in Figure 4. This indicates that a one centimeter change in precipitation is 

not large enough to have significant effects on crop adaptation.  

 Table 3 and Figure 4 also show the crop share changes in the long run. The crop share 

changes in the long run are larger on average and the distributions have fatter tails. It suggests 

that it takes time for farmers to fully adjust crop coverage to weather shocks. We	 also	 check	

the	crop	share	changes	in	2020	and	find	that	they	are	very	similar	to	those	in	2015.	This	

suggests	that	five	years	is	long	enough	for	the	farmers	to	complete	the	adaptation. 

To illustrate how crop adaptation varies across landscapes, we map out the long-run 

share changes in Figure 5 and Figure 6 for the one-degree-warmer scenario and the one-

degree-warmer-and-one-centimeter-drier scenario, respectively. The findings are as follows. 

First, the two scenarios have similar land cover shifting patterns, which confirms the findings 

in Figure 4. Second, rice and cotton in the south spread toward the north, which is expected, 

because the north becomes more suitable for rice and cotton. Third, the main crops take land 

from minor crops and other uses in the south. This suggests that for south a one-degree 

increase from current temperature is beneficial to the main crops. Finally, by comparing the 

changing pattern of other land cover to the spatial distribution of LCC levels (Figure 2) and 

precipitation (Figure 3 Panel B), we find that land with lower quality soils and more 

precipitation are more likely to be converted into major crop land in face of climate warming.  

To further investigate how soil affects crop adaptation, we construct a counterfactual 

crop share change map for selected counties in Iowa. We choose one county in middle Iowa 

and one in bottom Iowa according to their similarity in weather and their discrepancy in soil. 



	

As shown in Figure 7, Panel A, in the growing season in 2009, the counties have similar 

average temperatures which are around 14°c (14.0°c for middle Iowa and 14.7°c for bottom 

Iowa) and similar precipitation levels, which are around 82 cm (82.7 cm and 82.1 cm, 

respectively), while soils differ significantly (LCC level 2 vs. LCC level 3 and 6). Despite the 

similar weather conditions and the same temperature increases, crop adaptations in the two 

places are different. Changes in shares of corn, soybean, and other land use due to a one 

degree increase in temperature are mapped out in the first and second row in Figure 7, Panel 

B, for the middle Iowa county and the bottom Iowa  county, respectively. The hypothesis is 

that, if bottom Iowa had the same soil as middle Iowa, they would have similar crop 

adaptation. To test this hypothesis, we predict the crop adaptation for the bottom Iowa  

county assuming that they had the same soil as the middle Iowa county. First, we create the 

counterfactual for the bottom Iowa county. We take the average soil properties (average LCC, 

average percent of silt land, and averages of all other soil characteristics) of the middle Iowa 

county, and the actual temperatures and precipitation levels of the bottom Iowa county. 

Together they form the weather and soil conditions of the counterfactual land. Second, we 

predict the crop shares for the counterfactual land. Two things are different from the 

prediction for the actual bottom Iowa county – soils, and coefficients. Remember that 

coefficients are changing across landscapes, because we run local regressions. The changing 

coefficients reflect the fact that crops on landscapes with different soils are affected 

differently by weather and soil. For example, precipitation on silt soil and sandy soil has 

different effects on crop yields, because silt soil holds water more effectively than sandy soil. 

The counterfactual has similar weather and soil to middle Iowa  county, so we use the 

coefficients estimated from the middle Iowa county to predict crop shares on the 

counterfactual land. Next, we assume the temperature is one degree higher in all months in 

the current planting season and the last growing season, and again predict the crop shares for 



	

the counterfactual land. At last, we find the difference in the shares predicted from the last 

two steps, and that is our predicted share change due to the one degree increase in 

temperature. The results are shown in the last row of Figure 7, Panel B. Compared to the first 

row of the same panel, it shows that the counterfactual land of the bottom Iowa  county has 

similar crop share change patterns as middle Iowa county. Figure 8 shows the distributions of 

crop share changes for the middle Iowa  county, the bottom Iowa  county, and the 

counterfactual land. This confirms the hypothesis above. The middle Iowa  county and the 

bottom Iowa  county have different crop share change patterns. However, if the soils in the 

bottom Iowa county were the same as those in the middle Iowa county, the crop share 

changes would be similar to the changes in middle Iowa.  

5    Climate Change Impacts 

Given that farmers need about five years to fully adjust crop types to respond to a weather 

shock, for the following discussion, we focus on crop share changes in the long run. Crop 

adaptations under climate change are summarized in Table 4. Four climate change scenarios 

are compared: (1) A warmer scenario predicted by the A1B model (only temperature changes 

are considered), (2) A warmer-and-drier scenario predicted by the A1B model (both 

temperature and precipitation changes are considered), (3) A warmer scenario predicted by 

the A2 model, and (4) A warmer-and-drier scenario predicted by the A2 model. As shown in 

Table 4, the four scenarios have similar effects on crop shares. In the north, the average 

changes range from -0.0343 to -0.0514 for corn, from -0.0906 to -0.0986 for soy, and from 

0.1249 to 0.15 for other land use. In the south, the average changes range from 0.0559 to 

0.0702 for corn, from 0.1005 to 0.1118 for soy, from 0.0616 to 0.0714 for rice, from 0.0433 

to 0.0572 for cotton, and from -0.2728 to -0.2956 for other land use.  



	

 The distributions of predicted crop share changes are depicted in Figure 9. Compared 

to Figure 4, Figure 9 has wider distributions, which is expected because the A1B scenario has 

larger increases in temperature than a one-unit increase. Spatial variations of crop adaptation 

under the four scenarios are displayed out in Figures 10 through 13. Figure 10 considers 

temperature changes only, predicted by the A1B model, while Figure 11 considers both 

temperature and precipitation changes. The figures show similar land use shifting patterns, 

which suggests that a drying climate within the predicted magnitude does not significantly 

worsen the growth condition for crops. Therefore, we conclude that for the Mississippi-

Missouri river system, the major concern about climate change is warming, not drying. 

Figures 12 and 13 consider the scenarios predicted by the A2 model. They are similar to 

Figures 10 and 11, because the A2 model predicts the same patterns in temperature and 

precipitation changes as the A1B model does, only with slightly larger magnitudes. 

6    Conclusion 

This paper examines crop adaptation to climate change in the context of the six states along 

the Mississippi-Missouri river corridor. We consider the entire distribution of temperatures 

within each day and each 4km grid cell. We also consider the soil conditions at the 4km grid 

level. Based on the estimates of crop choices, we predict future crop share distribution under 

several climate change scenarios. We find that rice and cotton spread north, while the average 

shares of corn and soy decrease in the north and increase in the south. We also find that the 

crop shifting pattern is not determined by temperature alone – soil plays an important role as 

well, as there is less crop adaptation on prime soils than on lower quality soils. Therefore, due 

to the variation in crop adaption on soils of varying quality, a significant makeover of major 

crop distribution is not likely to happen. 

 



	

Reference 
Askari,	Hossein,	and	John	T.	Cummings.	"Estimating	Agricultural	Supply	Response	with	the	
Nerlove	Model:	a	Survey."	International	Economic	Review	(257‐‐292)	18,	no.	2	(1977).	

Baskerville,	G.L.,	and	P.	Emin.	"Rapid	Estimation	of	Heat	Accumulation	from	Maximum	and	
Minimum	Temperatures."	Ecology,	1969:	514‐517.	

Berry,	Steven	T.	"Estimating	Discrete‐choice	Models	of	Product	Differentiation."	The	RAND	
Journal	of	Economics,	1994:	242‐262.	

Braulke,	Michael.	"A	Note	on	the	Nerlove	Model	of	Agricultural	Supply	Response."	International	
Economic	Review	23,	no.	1	(1982):	241‐244.	

Chavas,	Jean‐Paul,	and	Matthew	T.	Holt.	"Acreage	Decisions	Under	Risk:	the	Case	of	Corn	and	
Soybeans."	American	Journal	of	Agricultural	Economics	72,	no.	3	(1990):	529‐538.	

Choi,	Jung‐sup,	and	Peter	G.	Helmberger.	"How	Sensitive	are	Crop	Yields	to	Price	Changes	and	
Farm	Programs?"	Journal	of	Agricultural	and	Applied	Economics	25	(1993):	237‐244.	

Hausman,	Catherine.	"Biofuels	and	Land	Use	Change:	Sugarcane	and	Soybean	Acreage	Response	
in	Brazil."	Environmental	and	Resource	Economics	51,	no.	2	(2012):	163‐187.	

Hausman,	Catherine,	Maximilian	Auffhammer,	and	Peter	Berck.	"Farm	Acreage	Shocks	and	Food	
Prices:	An	SVAR	Approach	to	Understanding	the	Impacts	of	Biofuels."	Environmental	and	
Resource	Economics	53,	no.	1	(2012):	117‐‐136.	

Huang,	Haixiao,	and	Madhu	Khanna.	"An	Econometric	Analysis	of	US	Crop	Yield	and	Cropland	
Acreage:	Implications	for	the	Impact	of	Climate	Change."	AAEA	annual	meeting.	Denver,	
Colorado,	2010.	25‐27.	

Just,	Richard	E.	"An	Investigation	of	the	Importance	of	Risk	in	Farmers'	Decisions."	American	
Journal	of	Agricultural	Economics	56,	no.	1	(1974):	14‐25.	

Khanna,	Madhu,	Basanta	Dhungana,	and	John	Clifton‐Brown.	"Costs	of	Producing	Miscanthus	
and	Switchgrass	for	Bioenergy	in	Illinois."	Biomass	and	Bioenergy	32,	no.	6	(2008):	482‐‐493.	

Khanna,	Madhu,	Xiaoguang	Chen,	Haixiao	Huang,	and	Hayri	Onal.	"Supply	of	Cellulosic	Biofuel	
Feedstocks	and	Regional	Production	Pattern."	American	Journal	of	Agricultural	Economics	93,	no.	
2	(2011):	473‐‐480.	

Lichtenberg,	Erik.	"Land	Quality,	Irrigation	Development,	and	Cropping	Patterns	in	the	Northern	
High	Plains."	American	Journal	of	Agricultural	Economics	71,	no.	1	(1989):	187‐194.	

Lin,	William,	and	Robert	Dismukes.	"Supply	Response	Under	Risk:	Implications	for	Counter‐
cyclical	Payments'	Production	Impact."	Applied	Economic	Perspectives	and	Policy	29,	no.	1	
(2007):	64‐86.	

Lobell,	David	B.,	Marianne	Banziger,	Cosmos	Magorokosho,	and	Bindiganavile	Vivek.	"Nonlinear	
Heat	Effects	on	African	Maize	as	Evidenced	by	Historical	Yield	Trials."	Nature	Climate	Change	1,	
no.	1	(2011):	42‐45.	



	

McFadden,	Daniel.	"The	Measurement	of	Urban	Travel	Demand."	Journal	of	Public	Economic	3,	
no.	4	(1974):	303−328.	

McFadden,	Daniel,	et	al.	Demand	Model	Estimation	and	Validation.	Vol.	4.	Institute	of	
Transportation	Studies,	1977.	

Miguez,	Fernando	E.,	Matthew	Maughan,	Germn	A.	Bollero,	and	Stephen	P.	Long.	"Modeling	
Spatial	and	Dynamic	Variation	in	Growth,	Yield,	and	Yield	Stability	of	the	Bioenergy	Crops	
Miscanthus	x	giganteus	and	Panicum	Virgatum	across	the	Conterminous	United	States."	GCb	
Bioenergy,	2012:	509‐520.	

Miguez,	Fernando	E.,	Xinguang	Zhu,	Stephen	Humphries,	German	A.	Bollero,	and	Stephen	P.	
Long.	"A	Semimechanistic	Model	Predicting	the	Growth	and	Production	of	the	Bioenergy	Crop	
Miscanthus	x	giganteus:	Description,	Parameterization	and	Validation."	GCB	Bioenergy	1,	no.	4	
(2009):	282‐296.	

Mueller,	Rick,	and	Robert	Seffrin.	"New	Methods	and	Satellites:	A	Program	Update	on	the	NASS	
Cropland	Data	Layer	Acreage	Program."	Remote	Sensing	Support	to	Crop	Yield	Forecast	and	Area	
Estimates,	ISPRS	Archives	36,	no.	8	(2006):	W48.	

Nerlove,	Marc.	"Estimates	of	the	Elasticities	of	Supply	of	Selected	Agricultural	Commodities."	
Journal	of	Farm	Economics	38,	no.	2	(1956):	496‐509.	

Nerlove,	Marc,	and	David	A.	Bessler.	"Expectations,	Information	and	Dynamics."	Handbook	of	
Agricultural	Economics	1	(2001):	155‐206.	

Schlenker,	Wolfram,	and	Michael	J	Roberts.	"Nonlinear	Temperature	Effects	Indicate	Severe	
Damages	to	US	Crop	Yields	under	Climate	Change."	Proceedings	of	the	National	Academy	of	
Sciences	106,	no.	37	(2009):	15594‐15598.	

Schlenker,	Wolfram,	and	Michael	J.	Roberts.	"Nonlinear	Temperature	Effects	Indicate	Severe	
Damages	to	US	Crop	Yields	under	Climate	Change."	Proceedings	of	the	National	Academy	of	
Sciences	106,	no.	37	(2009):	15594‐15598.	

Schlenker,	Wolfram,	and	Michael	J.	Roberts.	"Nonlinear	Temperature	Effects	Indicate	Severe	
Damages	to	US	Crop	Yields	under	Climate	Change."	Proceedings	of	the	National	Academy	of	
Sciences	106,	no.	37	(2009):	15594‐15598.	

Scown,	Corinne	D.,	et	al.	"Corrigendum:	Lifecycle	Greenhouse	Gas	Implications	of	US	National	
Scenarios	for	Cellulosic	Ethanol	Production."	Environmental	Research	Letters	7,	no.	1	(2012):	
9502.	

Taheripour,	Farzad,	Wallace	E.	Tyner,	and	MMichael	Q.	Wang.	"Global	Land	Use	Changes	due	to	
the	US	Cellulosic	Biofuel	Program	Simulated	with	the	GTAP	Model."	Argonne	National	
Laboratory,	http://greet.	es.	anl.	gov/files/luc_ethanol,	2011.	

Wu,	JunJie,	and	Kathleen	Segerson.	"The	Impact	of	Policies	and	Land	Characteristics	on	Potential	
Groundwater	Pollution	in	Wisconsin."	American	Journal	of	Agricultural	Economics	77,	no.	4	
(1995):	1033‐1047.	

 



	

Figures 1: Observed Crop Coverage along the Mississippi-Missouri River System 
 

 
Notes: Graphs display observed coverage shares for corn, soy, rice, cotton, and other land 
use, in the six states along the Mississipppi-Missouri river corridor. They are average shares 
over 2002-2010. 

 
 



	

Figure 2: Distribution of Land Capabilty Classification (LCC) Levels 

 
Notes: Land Capability Class (LCC) 1 is the best soil, which has the fewest limitations. 
Progressively lower classifications lead to more limited uses for the land. LCC 8 means soil 
conditions are such that agricultural planting is nearly impossible. 

 



	

Figure 3: Observed Weather Conditions and Predicted Climate Change Scenarios 
 
Panel A. Temperature  
 
 
 
 

 
 
 
 

 
Distribution is over 4km squares for temperature change to 2080. 
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Panel B. Precipitation 
 
 
 
 

 
 
 

 
Distribution is over 4km squares for precipitation change to 2080 
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Figure 4: Distribution of Crop Share Changes with Unit Change in Temperature and 
Precipitation 

 

 
Notes: x-axes are crop share changes. For example, 0.2 in the first panel means corn share 
increases from ܽ  to ܽ+0.2. SR stands for Short Run, which is the year when the weather 
change happens. LR stands for Long Run, which is five years after the weather change 
happens. For corn and soy, all six states are included. For rice and corn, only the three south 
states are included, because there is no rice and cotton in the north.  
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Figure 5: Crop Share Changes with Unit Increase in Temperature 
 

 
Notes: a 20% change reported here means corn (for example) share increases from ܽ to ܽ+0.2. 

 
 



	

 
Figure 6: Crop Share Changes with Unit Increase in Temperature and Unit Decrease in  

Precipitation

 
   Notes: a 20% change reported here means corn (for example) share increases from ܽ to ܽ+0.2. 



	

 
Figure 7: Counterfactual Analysis 

 
Panel A. Similar in Weather and Different in Soil 

 

 
 
 

 



	

 
Panel B. Crop Share Changes if Better Soil 
 

 
 

Notes: a 5% change reported here means corn (for example) share increases from ܽ to ܽ+0.05. 
 

 



	

 
Figure 8: Distributions of Crop Share Changes if Better Soil  

 

 

 
 

Notes: x-axes are crop shares changes. For example, -0.1 in the first panel means corn share 
decreases from ܽ to ܽ-0.1. 
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Figure 9: Distribution of Predicted Crop Share Changes under Climate Change Scenarios  

 

 
Notes: x-axes are crop share changes. For example, -0.5 in the first panel means corn share 
decreases from ܽ to ܽ-0.5. For corn and soy, all six states are included. For rice and corn, only 
the changes in the three south states are included, because there is no rice and cotton in the 
north.  
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Figure 10: Predicted Crop Share Changes under the A1B Scenario (Temperature Changes Only)  

 
 

Notes: a 20% change reported here means corn (for example) share increases from ܽ to ܽ+0.2. 
 
 



	

 
Figure 11: Predicted Crop Share Changes under the A1B Scenario (Temperature and 

Precipitation Changes) 

 
 

Notes: a 20% change reported here means corn (for example) share increases from ܽ to ܽ+0.2. 
 
 



	

 
Figure 12: Predicted Crop Share Changes under the A2 Scenario (Temperature Changes Only) 

 
 

Notes: a 20% change reported here means corn (for example) share increases from ܽ to ܽ+0.2. 
 
.



	

 
Figure 13: Predicted Crop Share Changes under the A2 Scenario (Temperature and Precipitation 

Changes) 

 
 

Notes: a 20% change reported here means corn (for example) share increases from ܽ to ܽ+0.2. 
 



	

 
 

Table 1: Summary Statistics 

  North        South       
Variable Mean St.dev. Min Max Mean St.dev. Min Max 
Dependent Variable: Percent Acreage (%) (Obs = 174825) (Obs = 91584) 
Corn 0.343 0.179 0 0.983 0.029 0.067 0 0.774 
Soy 0.264 0.142 0 1 0.141 0.189 0 0.955 
Rice -- -- -- -- 0.045 0.100 0 0.841 
Cotton -- -- -- --  0.050 0.122 0 0.982 
Soil Condition  (Obs = 19425) (Obs = 10176) 
Percent clay (%) 26.447 5.295 1.051 48.600 29.832 11.512 0 62.900 
Percent sand (%) 21.560 12.642 0.793 95.300 26.942 14.235 0 84.600 
Percent silt (%) 51.181 10.257 1.155 73.600 42.863 13.739 0 73.598 
Water holding capacity 0.178 0.022 0.006 0.330 0.157 0.027 0 0.220 
pH  6.441 0.511 0.198 7.700 5.591 0.686 0 7.511 
Slope  3.435 4.536 0.037 48 7.203 6.394 0 25.400 
Electrical conductivity 0.018 0.087 0 1 0.004 0.116 0 5.100 
Frost free days 160.041 26.634 0 213.750 207.860 64.116 0 302.704 
Depth to water table  79.960 41.173 0 201 62.777 22.750 13.250 201 
Depth to restrictive layer 182.668 41.990 3.300 201 175.962 48.510 18 201 
Percent of Land in Class 1 (%) 0.006 0.061 0 1 0.008 0.065 0 0.998 
Percent of Land in Class 2 0.700 0.386 0 1 0.307 0.377 0 1 
Percent of Land in Class 3 0.234 0.351 0 1 0.281 0.385 0 1 
Percent of Land in Class 4 0.016 0.106 0 1 0.078 0.231 0 1 
Percent of Land in Class 5 0.001 0.018 0 0.707 0.066 0.191 0 1 
Percent of Land in Class 6 0.027 0.132 0 1 0.051 0.198 0 1 
Percent of Land in Class 7 0.006 0.056 0 1 0.200 0.341 0 1 
Percent of Land in Class 8 0 0 0 0  0 0.013 0 0.770 



	

 
 

Table 1: Summary Statistics (continued) 

Weather Variables                  
Planting Season (April through June from 2002 to 2010) (Obs = 174825) (Obs = 91584) 
Temperature (Daily Average, Celsius) 15.848 1.540 11.975 20.336 21.044 1.134 16.867 23.960 
Precipitation (Total, CM) 32.678 9.969 5.640 74.760 36.311 5.018 16.410 51.130 
Growing Season (April through November from 2002 to 
2009 ) (Obs = 155400) (Obs = 81408) 
Temperature (Daily Average, Celsius) 16.020 1.623 11.975 22.377 21.270 1.279 16.867 24.868 
Precipitation (Total , CM) 74.022 14.814 32.540 127.290  86.839 9.109 56.730 120.550 
Climate Change Scenarios (Obs = 19425) (Obs = 10175) 
A1B  
Planting Season (April through June)  
Temperature (Daily Average, Celsius) 4.381 0.340 3.868 5.544 3.609 0.261 3.016 4.095 
Precipitation (Total, CM) -3.987 1.060 -7.518 -1.288 1.640 1.925 -3.346 5.533 
Growing Season (April through November) 
Temperature (Daily Average, Celsius) 4.151 0.178 3.110 4.829 3.523 0.204 3.016 4.270 
Precipitation (Total , CM) -17.592 4.334 -31.222 -6.461  -4.752 4.811 -23.613 6.639 
A2 
Planting Season (April through June) 
Temperature (Daily Average, Celsius) 5.018 0.385 4.393 6.281 4.096 0.263 3.533 4.602 
Precipitation (Total, CM) -3.563 1.674 -8.547 -0.426 1.925 1.696 -2.058 5.969 
Growing Season (April through November)  
Temperature (Daily Average, Celsius) 4.788 0.208 3.769 5.585 4.010 0.202 3.533 4.741 
Precipitation (Total , CM) -17.794 4.106 -30.350 -6.087  -4.313 4.305 -21.719 8.605 

 
 



	

 
Table 2: F-tests for Soil, Precipitation and Temperature 

 Regressions with 1% Significance Level   Corn Soy Rice Cotton
Soil 93% 89% 54% 82% 
Precipitation 76% 72% 45% 72% 

  Temperature 93% 90% 66% 92% 
Regressions with 5% Significance Level   Corn Soy Rice Cotton

Soil 97% 92% 57% 85% 
Precipitation 82% 81% 49% 80% 

  Temperature 95% 92% 67% 93% 
Regressions with 10% Significance Level   Corn Soy Rice Cotton

Soil 97% 93% 60% 89% 
Precipitation 85% 84% 54% 83% 

  Temperature 95% 93% 67% 93% 

Number of Regressions in Total   368 368 143 143 
 

 
 



	

 
Table 3: Crop Share Changes with Unit Changes in Temperature and Precipitation 

      Corn Soy Rice Cotton Other 

North
Unit 
Changes Short-Run 

Temperature Increase Only -0.0074 -0.0209 -- -- 0.0283
Temperature Increase and Precipitation Decrease -0.0067 -0.0257 -- -- 0.0324
Long-Run 
Temperature Increase Only -0.0010 -0.0181 -- -- 0.0192

  Temperature Increase and Precipitation Decrease -0.0052 -0.0264 -- -- 0.0316
Average Shares 0.3780 0.2623 0 0 0.3597

  No. of Obs. 19425 19425 19425 19425 19425

South
Unit 
Changes Short-Run 

Temperature Increase Only 0.0026 0.0279 0.0307 0.0179 -0.0790
Temperature Increase and Precipitation Decrease 0.0044 0.0306 0.0225 0.0199 -0.0774
Long-Run 
Temperature Increase Only 0.0237 0.1044 0.0545 0.0379 -0.2204

  Temperature Increase and Precipitation Decrease 0.0243 0.1065 0.0451 0.0415 -0.2173
Average Shares 0.0349 0.1537 0.0534 0.0312 0.7268

  No. of Obs. 10176 10176 10176 10176 10176
 

Notes: the numbers reported are share changes. For example, -0.0074 means corn share increases from 0.0378 (3.78% of land is 
covered by corn) to 0.3706. 
 



	

Table 4: Crop Acreage Changes under Climate Change Scenarios 

      Corn Soy Rice Cotton Other 
North A1B Scenarios Long-Run 

Temperature Increase Only -0.0514 -0.0986 -- -- 0.1500
  Temperature Increase and Precipitation Decrease -0.0479 -0.0970 -- -- 0.1450
A2 Scenarios Long-Run 

Temperature Increase Only -0.0381 -0.0925 -- -- 0.1306
  Temperature Increase and Precipitation Decrease -0.0343 -0.0906 -- -- 0.1249
Average Shares 0.3780 0.2623 0 0 0.3597

  No. of Obs.   19425 19425 19425 19425 19425
South A1B Scenarios Long-Run 

Temperature Increase Only 0.0559 0.1087 0.0700 0.0466 -0.2813
  Temperature Increase and Precipitation Decrease 0.0551 0.1118 0.0616 0.0443 -0.2728
A2 Scenarios Long-Run 

Temperature Increase Only 0.0678 0.1009 0.0714 0.0551 -0.2952
  Temperature Increase and Precipitation Decrease 0.0702 0.1005 0.0677 0.0572 -0.2956
Average Shares 0.0349 0.1537 0.0534 0.0312 0.7268

  No. of Obs.   10176 10176 10176 10176 10176
 
Notes: the numbers reported are share changes.  

 
 


