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Abstract

We study how to implement an incentive compatible allocation in the
market through a tax system in a setting where agents make multiple choices
and are heterogeneous in multiple characteristics. An example shows that
the canonical tax system proposed in Mirrlees (1976) is sometimes incapable
of implementing the desired allocation. We derive necessary and sufficient
conditions for a tax system to implement the allocation. These conditions
can be used to check whether a proposed tax system implements the al-
location. We show that such a check is not necessary if the allocation is
bijective. In addition, we show that a monotonic or convex tax system can
always implement the second-best provided i.) taxes are equated to wedges,
ii.) the allocation is second-best to a welfarist planner and iii.) there are no
externalities. The Mirrleesian implementation is effective if it meats these
criteria, and it often does. Our work provides economists with a toolbox to
design the optimal tax schedule. In addition, it sheds new light on sources
of complexity in real-world tax and benefit systems.
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1 Introduction

In two seminal articles Mirrlees (1971, 1976) provides the foundation for the cur-
rent literature on optimal redistributive non-linear taxation. In this model agents
are heterogeneous in earnings ability. A social planner wants to redistribute from
agents with high to agents with low earnings ability, but earnings ability is private
information and hence the first-best is not available. The second-best allocation
is derived in a direct mechanism. Each agent sends a message about his type to
social planner. The social planner assigns bundles of choice variables to each agent
based on the messages. The bundles that form the second-best allocation maxi-
mize the planner’s welfare function subject to economic feasibility and incentive
compatibility constraints. The constraints respectively ensure that the economy
can produce the aggregate consumption, and that each agent weakly prefers his
bundle over all other bundles in the allocation and thus truthfully reveals his type.
This second-best allocation is characterized through the optimal wedges. These
wedges define the difference between the marginal rate of substitution and the
marginal rate of transformation for each type and each choice, and thus the opti-
mal distortion from Laissez-Faire. Mirrlees proposed to implement this allocation
through a non-linear tax system that satisfies two criteria. First, the optimal
marginal tax should equal the optimal wedge. Second, the optimal tax system
should be separable such that the marginal tax rate on a choice depends only on
the consumption of the choice. This Mirrleesian implementation has become the
canonical solution, and has subsequently been applied in many articles throughout
the literature (see e.g. Atkinson and Stiglitz, 1976, Diamond, 1998, Saez, 2001,
Bovenberg and Jacobs, 2005 and Golosov et al., 2013). Surprisingly, to the best
of our knowledge, the general conditions under which this, or any, tax system
implements the second-best allocation have never been derived.

In this paper we study the problem of implementation in more detail. In our
the model agents differ in p, continuously distributed, unobserved characteristics
such as earnings ability, patience and health status, and are assumed to maximize
a utility function with multiple (k + 1) ≥ p decision variables.1 This allows us
to study implementation in a very general setting. A large literature has been
devoted to finding the allocation which maximizes a social welfare function subject
to feasibility and incentive-compatibility constraints. We instead start off from an
allocation that is assumed to be feasible and incentive-compatible and study the
properties of tax systems that implement such an allocation through taxes.

We show that the class of tax systems which implement the allocation may

1Like most papers in public finance we assume that k ≥ p in order to apply the revelation
principle (see Myerson (1979) and Townsend (1979)). A notable recent exception to this rule
is Chone and Laroque (2010) who study the sign of the optimal wedge in the Mirrlees (1971)
model under multi-dimensional heterogeneity with only one independent choice variable.
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be limited, even though we have assumed that the initial allocation is incentive
compatible. Intuitively, incentive compatibility requires that each agent prefers his
bundle over the bundle of all other agents in a direct mechanism. However, in the
market agents can create bundles which are not assigned in the direct mechanism.
For example, an agent can create a budget-neutral joint deviation by increasing his
consumption in one choice while decreasing it for an other. A tax system can only
implement the allocation if such joint deviations are not optimal for any agent.

From the principle of taxation (derived by Hammond (1979), Rochet (1985),
Guesnerie (1995) and Bierbrauer (2009)) we know that for every incentive compat-
ible allocation at least one such non-linear tax system exists. In this tax system
all joint deviations are prohibited, or taxed at a prohibitively high level. Since
joint deviations are prohibited, incentive compatibility implies implementability.
The resulting tax system can be very complex. In order to tax joint deviations
prohibitively, the tax rate of each decision variable has to depend on the value of
all decision variables. In addition, prohibitive taxes (or outright prohibitions) on
a large part of the choice space seem unrealistic in real-world democracies. These
undesirable qualities might explain why most papers in the literature propose to
implement their allocation through a Mirrleesian tax system.

In this paper we present three results. First, we show through a simple coun-
terexample that Mirrlees’ tax system sometimes leads to outcomes far removed
from the desired allocation because it allows for joint deviations. Second, we
derive the necessary and sufficient conditions for a tax system to implement an
allocation. Using standard micro-theory we show that taxes have to be equal to
wedges, and indifference curves have to be more convex than budget constraints in
all linear combinations of the decision variables. Economists can use these imple-
mentability constraints to verify whether a proposed tax system implements the
desired allocation ex-post. That is, after formulating the entire tax-system the it
can be checked whether the tax system satisfies these constraints.

Most optimal allocations in public finance do not have a closed-form solution.
Solutions may be obtained through numerical simulations, but this implies that the
ex-post check can only be performed on the special case that has been simulated.
The ex-post check is useful in such simulations, but does not provide insights in
the general properties of the optimal tax system. Our third result, however, iden-
tifies situations where any tax system that equates marginal taxes to wedges will
implement the allocation. Two classes of problems can be distinguished. First,
if there is a one-to-one correspondence between the type-space and the choice
space incentive compatibility and implementability constraints coincide. Since we
assumed the original allocation was incentive-compatible, implementability is en-
sured. In this case, equating taxes to wedges yields an unique tax system. Second,
an allocation can be implemented by equating marginal taxes to optimal wedges if
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i.) the resulting tax system does not contain internal maxima, ii.) the allocation
is second-best for a welfarist social planner, and iii.) there are no externalities.
In practice most tax systems under consideration do not exhibit internal maxima
because they are monotonic and/or convex over their entire domain. In addition,
our current understanding of optimal non-linear redistributive taxation is mostly
based on models where the planner is welfarist and there are no externalities.2 In
these models we can therefore derive general statements about the tax system by
studying the wedges.

In this paper we make important methodological contributions. Our second
result provides an ex-post check of implementability, while our third result shows
that most problems studied in public finance have a relatively simple tax imple-
mentation. Our results yield additional insights into the complexity of implemen-
tation in other fields of mechanism design such as auction theory and monopoly
pricing because we study the link between direct and indirect mechanisms. They
indicate that a central planner that perfectly observes choices and can tax them
non-linearly might still want to rely on legal prohibitions to reach the second-best
allocation. We therefore provide a limit to the power of the price mechanism. This
also has practical implications since it provides some intuition for the existence of
(possibly optimal) complexities in the tax system in modern welfare states.

The rest of the paper is organized as follows. Section 2 discusses some literature
on issues of joint deviation. Section 3 introduces the model and section 4 contains
an example to illustrate the complexity of implementability. Section 5 provides
the necessary and sufficient conditions that can be used as an ex-post verification
of implementability. Section 6 uses these conditions to describe two classes of
problems where implementability is guaranteed ex ante. Section 7 concludes.

2 Related literature

A large literature has been devoted to deriving the second-best allocation under
multi-dimensional informational asymmetry (see e.g. Mirrlees, 1976, Armstrong,
1996, Armstrong and Rochet, 1999, Saez, 2002, Chone and Laroque (2010) and
Renes and Zoutman, 2013). In addition, second-order incentive constraints have
been studied in, for instance, Myerson (1981), Ebert (1992), Rochet and Chone
(1998) and Hellwig (2007). The issue of how this second-best allocation can be
implemented, that is, what the indirect mechanism looks like, is left often im-
plicit in these papers. In this paper we do not attempt to derive any properties of
the allocation, nor do we study the issue of incentive compatibility in the direct
mechanism. Instead, we start from a given (first - and second-order) incentive-

2A notable exception is Jacobs and De Mooij (2011) which extends the Mirrlees model with
externalities.
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compatible and feasible allocation and study the tax system that implements such
an allocation in the market. We show that incentive compatibility does not nec-
essarily imply implementability, except in the sense of the restrictive tax system
derived in Hammond (1979) that prohibits all joint deviations.

A particular class of joint deviations, known as unbalanced or skewed bidding,
has been the studied extensively in the literature on procurement and auctions,
and operations research management.3 The literature focuses on a principal that
needs to procure several goods in a single contract, but who has uncertainty over
the exact quantities required at the time of the procurement procedure.4 In the
principal’s first-best all goods are acquired from the cheapest firm at zero profit
for the firm. However, the principal cannot observe the firm’s cost structure. The
principal therefore uses an reverse auction to select his supplier. The bidding firms
state their price for each good and these are multiplied with score weights, yielding
a scalar score. The firm with the lowest score wins. Using the expected quantities
as score weights would seem to select the cheapest supplier. Unfortunately, if the
expected quantities are slightly misestimated by the principal, the firm can create
a profitable joint deviation. By asking more for the goods that are underweighted
in the score rule and less for the overweighted goods, the bidder can increase
expected payment while keeping his score constant. Even if the bidders do not
wish to increase any price in isolation, such joint deviations are profitable. For
risk neutral bidders the optimal bid contains infinite prices, yielding unbounded
profit and risk. Renes (2011) studies mechanisms to prevent skewed bidding but
finds no general solution when the principal is committed to accepting the bid
with the lowest score. The author notes that legal rules in the US allow the
government to reject unbalanced bids, creating a solution to the problem through
prohibitions. Ewerhart and Fieseler (2003) study the optimal score-rule under
uni-dimensional firm heterogeneity. Using the restriction that unit prices have
to be weakly positive, and thus prohibiting a large part of the choice space of
bidders, they recoup a version of the revelation principle and are able to determine
a second-best allocation. These solutions are the logical equivalent of the principle
of taxation applied to procurement. In both cases a large set of joint deviations
or skewed bids are punished by giving them zero expected profit, and are thus
effectively prohibited.

The New Dynamic Public Finance studies the Mirrlees’ optimal taxation model
in a dynamic setting where earnings ability follows a stochastic process.5 Kocher-
lakota (2005), in line with the principle of taxation, shows that the optimal tax

3See for an overview Cattell et al. (2007) and Renes (2011).
4For simplicity we focus on procurement auctions in this review. However, these are simply

reverse auctions and all issues encountered in procurement are also encountered in sale auctions.
See Athey and Levin (2001) for an example of joint deviations in an sale auction.

5See Golosov et al. (2007) and Kocherlakota (2010) for an extensive overview of the literature.
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system generally contains prohibitive tax rates on specific combinations of choices.
Even in the case of an iid stochastic process Albanesi and Sleet (2006) find that
excessive savings choices should be prohibited by for example setting a borrowing
limit. This ensures the joint deviation of first saving too much and than work-
ing too little is not optimal. Because of these complex interdependencies in the
tax-schedule implementation is very difficult. Farhi and Werning (2013) therefore
investigate how close a tax-system with restricted tax-instruments comes to the
second-best allocation in their simulations. We show that joint deviations can also
occur in non-stochastic models. However, we show that there are important classes
of problems where joint deviations are not an issue and prohibitive tax systems
are not necessary. In future work we hope a similar classification can be applied
to stochastic models.

3 The model

3.1 Agents’ preferences

Our economy is populated by a unit mass of agents that are assumed to maximize
a twice-differentiable utility-function:

u (x,y,n) (1)

where x ∈ X ⊆ Rk is a set of k decision variables, or goods. The numeraire good
y ∈ Y ⊆ R s assumed to be an untaxed normal good, uy > 0, uyy ≤ 0. Decision
variables x and y are observable at the individual level and the social planner can
tax the goods in x through a fully non-linear tax system. Throughout the rest of
the paper we will sometimes refer to the decision variables in {x, y} as goods, even
though they can be both inputs and outputs to the production process.

Agents are heterogeneous in a p-vector of unobserved characteristics, n ∈ N ⊆
Rp . Characteristics in n could be for example earnings ability, patience and health
status. We will refer to an element in n as a characteristic of the agent and to
a specific vector n as the type of the agent. We assume n follows a multidimen-
sional differentiable cumulative distribution function F (n) , with F : N→ [0, 1]
and probability density f (n) ≥ 0 ∀n ∈ N. For simplicity we assume the in-
equality holds strictly on the interior of N.6

Our model may be either static or dynamic, depending on whether decisions
in x occur in the same period or in different periods. However, we do assume that
all characteristics in n are revealed before the first period.

6See Hellwig (2010) for a treatment of uni-dimensional incentive problems where the type-
distribution may have holes and mass points.
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It is assumed that k ≥ p ≥ 1, such that there are at least as many decision
variables in x as characteristics in n. This allows the application of the revelation
principle in our analysis (see Myerson, 1979 and Townsend, 1979) since it guaran-
tees that the choice-space is large enough to reveal all relevant characteristics.

Preferences can be summarized by:

s (x,y,n) ≡ −ux (x,y,n)

uy (x,y,n)
.

s denotes the vector of shadow prices. Element si is the (negative) relative pref-
erence for decision variable xi with respect to the numeraire y. Therefore, si
represents the marginal loss of receiving an extra unit of xi, expressed in units of
the numeraire variable y.

3.2 Incentive compatibility and feasibility

Each agent sends a p-dimensional message about their type to the agent. The cen-
tral planner sends bundles of goods to the agent on the basis of the p-dimensional
message. This allocation of goods is denoted by:

{x∗ (m) , y∗ (m)} ∀m ∈ N.

Here, m is the p-vector message each agent sends to the planner. The function x∗

maps from the message space to the good space, x∗ : N→ X and y∗ maps from
the message space to the numeraire good space, y∗ : N → Y . We assume x∗ (.)
and y∗ (.) are both twice differentiable in all their arguments.

An allocation has to satisfy the economies resource constraint in order to be
feasible. We assume the economies resource constraint takes the form:ˆ

ydF (n) +R =

ˆ
q(x)dF (n) (2)

In this equation, R is the exogenous revenue requirement of the government and
q(.) is the economies production function. The equation states that total produc-
tion should the sum of consumption of the numeraire and exogenous government
expenditure. Derivatives qxi

may be positive or negative depending on whether xi
is an input or an output of the production process. We assume weakly decreasing
returns to scale such that all qxixi

are non-positive.
Each agent sends the message that maximizes his utility. Individuals can send

a message which truthfully reveals their type m = n or they can mimic a different
type by sending a message m 6= n.
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Definition 1 An allocation {x = x∗ (n) , y = y∗ (n)} ∀n ∈ N is incentive compat-
ible and feasible if each agent truthfully reveals his entire type in a direct mecha-
nism:

n = arg max
m

u (x∗ (m) ,y∗ (m) ,n) ∀n ∈ N. (3)

and in addition satisfies equation (2).

Incentive compatibility requires each agent to weakly prefer his bundle over the
bundle designed for any other agent. As such, agents truthfully reveal their type
in the message they send to the planner. Conditions under which this condition
holds are derived in a.o. Mirrlees (1976) and McAfee and McMillan (1988).

The optimal distortion in the economy can be characterized by the wedges each
agent faces on the allocation:

Wi(n) = si(x
∗ (n) , y∗ (n) ,n)− qxi

(x∗ (n)). (4)

These wedges represent the difference between the marginal rate of substitution
of the agent and the marginal rate of transformation (or production price) on the
allocation. If the wedge is positive a good in the allocation is distorted below its
Laissez-Faire value (i.e taxed) and vice versa.

3.3 Market implementation

An incentive-compatible and feasible allocation is the starting point of our analysis.
The aim of this study is to find properties of a tax system that implements such an
allocation in the market. Therefore, we have to go beyond the direct mechanism
and study the choice problem of agents in a market. Agents maximize their utility
function (1) subject to their budget constraint in the market:

y ≤ q (x)− T (x) , (5)

such that how much a consumer can spend on y depends on his choice of x, the
production function q(.) and the tax system, T (.). We assume the tax system is
twice differentiable, but we do not put any other a priori restriction on the tax
function. The tax function may be fully non-linear and can contain arbitrarily
complex interdependencies.

By Walras’ law if the economies resource constraint, (2), and the agents’ budget
constraints, (5), are simultaneously satisfied, the government’s budget constraint
must also be satisfied. Therefore, if the tax system is successful in implementing
a feasible allocation, we do not need to check whether the government budget is
balanced.

A tax system implements an allocation if each agent weakly prefers his bundle
over all other combinations of goods available to him in the market. This concept
is formally defined in definition 2:
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Definition 2 A tax system implements an allocation {x∗ (n) , y∗ (n)} if each agent
selects the bundle on the market that was assigned to him in the allocation:

{x (n) , y (n)} = max
x,y
{u (x,y,n) : y = q (x)− T (x) ,x ∈ X, y ∈ Y }

∀ n ∈ N (6)

The difficulty of implementability can be understood by comparing definitions
1 and 2. In the direct mechanism the agent maximizes his utility by sending out
the optimal p-dimensional message. On the market the agent maximizes his utility
by choosing k goods. Since, k ≥ p the agent can deviate in more directions on the
market than in the direct mechanism. That is, the market allows the agents to
create new bundles that were not assigned in the direct mechanism. Such a strategy
is a joint deviation, because in order to create a new bundle while simultaneously
satisfying the budget constraint an agent has to deviate in at least two goods. A
tax system satisfies definition 2 only if such joint deviation strategies are never
optimal.

Mirrlees (1976, sect. 3) defines the canonical tax implementation in the case
of p = 1. The Mirrleesian implementation has two properties. First, taxes are
equated to wedges such that T ′i (x

∗(n)) =Wi(n) for all goods. That is, the marginal
tax on a good is equal to the optimal wedge of the good. This is a very intuitive
property for a tax system since it sets the market price of the good equal to the
individuals’ shadow price. In section 5 we will show that this is always a property
of an optimal tax system. Second, T ′i (x

∗(n)) equals T ′i (xi(n)). That is, the optimal
tax on good i depends only on the consumption of good i and the tax is separable.
This property makes taxing joint deviations at prohibitive levels impossible, since
interdependencies are required to identify joint deviations. As a result it is unclear
if and when the Mirrleesian implementation achieves the desired allocation. In the
next section we show through a counter-example that incentive compatibility is
not sufficient to guarantee implementability through a Mirrleesian tax schedule.

4 Mirrleesian implementation: A counter-example

Figures 1 and 2 give a clear example of a case where a Mirrleesian implementation
does not achieve the desired result.7 The figures describe a situation with two
goods in x and one exogenous characteristic, k = 2 and p = 1. The optimal
allocation assigns one bundle {x∗1 (n) , x∗2 (n) , y∗ (n)} to each type. Since there is
only one hidden characteristic, this allocation forms a line in X1 ×X2 × Y space.
This line is represented by the black lines in figures 1 and 2. The dots represent
the bundle of one particular type. The hyper-plane in the figures shows the budget

7The mathematics behind this example can be found in the appendix.
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constraint of individuals in the unique Mirrleesian implementation where taxes are
equated to wedges and the tax system is separable.

Figure 2 represents the utility function of the agent with the assigned bundle
at the dot, for all combinations {x1, x2, y} that satisfy his budget constraint with
equality in this implementation. In figure 2 we can see that the assigned bundle
(dot) marks the highest utility level on the allocation (line), such that the agent
prefers his bundle over any of the other bundles in the allocation. The allocation
is therefore incentive compatible for this type and has to be either a maximum or
a saddle-point in utility.

However, in the market the agent can deviate from the allocation (line) by cre-
ating a joint deviation. In this example joint deviations yield much higher utility.
So although the allocation is incentive compatible, the Mirrleesian implementation
does not implement it.

The fact that Mirrlees’ tax implementation is not effective in this example does
not mean that the allocation cannot be implemented through taxes. Clearly, the
government can use non-price tools like legal rules to prohibit all choices outside
of the allocation, thereby decreasing the effective choice set of the agent. Equiva-
lently the government could levy prohibitively high tax rates on the off-allocation
choices to the same effect. In this sense, the need to use interdependencies with
prohibitive taxes signals that the limits of the price mechanism as a means to
influence behavior are reached and implementation becomes very restrictive. In
some cases there may be less restrictive implementations. The next section derives
necessary and sufficient conditions for a tax-system to implement the second-best.

5 Conditions for implementability: an ex-post

check

Proposition 1 derives the general conditions under which a differentiable tax system
implements an allocation, by formally solving the problem of definition 2. Note
that we restrict ourselves to differentiable tax systems. As such, it is technically
impossible to prohibit joint deviations in the spirit of Hammond (1979). However,
it is possible to raise the marginal tax rate for joint deviations to arbitrary high
levels. Since the utility function is also differentiable, such a marginal tax rate
acts as a de facto prohibition.

Proposition 1 An incentive compatible and feasible allocation can be implemented
through a twice differentiable tax system T (x) iff ∀n ∈ N:
i.)

y∗ (n) = q (x∗ (n))− T (x∗ (n)) , (7)
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Figure 1: An optimal allocation and a budget constraint.

Figure 2: Utility of an agent faced with the budget constraint in Figure 1.
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ii.)
W(n)i = T ′i (x∗ (n)) , (8)

iii.)

−∂s (x,y (u,x,n) ,n)

∂x
+ q′′ (x∗ (n))− T ′′ (x∗ (n)) l 0. (9)

Proof. The proof can be found in the appendix.
Equation (7) ensures that the amount of taxes paid for any bundle of x∗ (n)

within the allocation is uniquely determined. If the total tax level T (x∗ (n)) is too
high, the tax schedule cannot implement the allocation because people receive too
little y∗ (n) if they choose their assigned quantities x, and vice versa. Equation
(8) is the first order condition for a market implementation. It states that taxes
are equated to wedges. There are always as many marginal tax rates in T ′ as
there are goods in X, for all n ∈ N, such that there is always a unique vector
of marginal tax rates T ′ (x∗ (n)) that satisfies (8) within any possible incentive
compatible allocation. In effect this means that the first order conditions of this
problem can always be met and that the solution is unique on the allocation.

Equation (9) states that the indifference curve of any linear combination of x’s
with respect to y should be more convex than the budget constraint for the same
linear combination of x. This condition is different from the standard condition of
utility maximization with two goods (see e.g. Mas-Collel et al., 1995) in two ways.
First, in standard micro-economic theory the budget constraint is linear and hence
if the indifference curve is convex, it is automatically more convex than the budget
constraint. Here, the budget constraint is non-linear and therefore sufficiency
requires the indifference curve to be more convex than the budget constraint.
Second, since there are multiple choices, sufficiency requires that the indifference
curve of all linear combinations of x with respect to y are more convex than the
budget-constraint.

Since the conditions derived are both necessary and sufficient, they can be used
to verify whether or not a specific tax system implements an allocation.

6 Sufficient Ex-Ante Conditions for Implementabil-

ity

The necessary and sufficient conditions of proposition 1 can be a useful test to
verify that a specific tax-system implements a specific allocation. However, in
order to perform the check, one needs to derive the entire allocation. In many
cases an explicit solution for the allocation that we are interested in is not available.
Numerical solutions are available, but these. by definition, describe only special
cases. It would therefore be useful to classify problems where the second-order
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implementability constraints (9) are never violated. For such problems, any tax
system where marginal tax rates are equated to wedges implement the desired
allocation. As such, the optimal tax system can be fully characterized by studying
the optimal wedges and we make more general statements about tax systems. In
this section we show that there are at least two such cases.

6.1 A bijective allocation

The combination of (7) and (8) defines the tax schedule on the allocation. If the
allocation perfectly covers the choices space this tax-schedule must implement the
allocation. Since every choice corresponds to the choice of a type, and every type
prefers his bundle over the bundle of the other types, incentive compatibility and
implementability coincide. Proposition 2 provides a sufficient condition for such a
unique tax implementation to exist.

Proposition 2 The tax implementation is unique if the mapping x∗ (n) is bijective

Proof. proof in appendix
The allocation derived in Mirrlees (1971) is an example of a bijective allocation,

provided the ability distribution is unbounded. In the direct mechanism all ability
types are assigned a specific gross income level x. Mirrlees shows that if ability is
continuously distributed in R+, the second-best allocation assigns all gross income
levels to a specific ability type without bunching. Hence, the function x∗ (n),
mapping ability to gross income, is bijective. It follows that the entire tax system
is determined by (7) and (8). The principle of taxation Hammond (1979) extends
this idea. If the allocation is bijective incentive compatibility and implementability
coincide. If all joint deviations are prohibited the allocation must be bijective in
the effective choice space. Hence, implementability is guaranteed. However, as
we have noted before, this restriction of the choice-space might result in a rather
unrealistic tax system.

6.2 Second-best of a welfarist planner

As we have seen in figure 2 a tax system where taxes are equated to wedges may
sometimes place agents on utility saddle-points, with the result that they will
surely deviate from the desired allocation. In the next proposition we show that
an allocation that places individuals in saddle-points allows Pareto-improvements
and thus cannot be the optimum of a welfarist planner if there are no externalities.

Proposition 3 If an allocation maximizes a welfare function SW =
´
W (u) dF (n),

subject to the incentive compatibility constraints and the resource constraint, and
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W ′ ≥ 0 , then any tax T (x) schedule that does not have an internal maximum in
any linear combination of the x’s on the allocation and satisfies (7) and (8) has
to satisfy (9).

Proof. The proof can be found in the appendix.
Intuitively, any tax schedule that does not satisfy (9) allows for Pareto improve-
ments and cannot be second best. By definition there exists at least one deviation
that increases utility for at least one agent if (9) is not met for all agents. In
addition, since the first-order conditions (8) combined with the violation of (9)
imply that the agent is located in a saddle-point, the exact opposite deviation
must increase his utility by approximately the same amount. This can easily be
seen in figure 2. The agents’ utility increases as much if he moves to the right off
the allocation as when he moves to the left. Provided tax revenue is not maximized
in the allocation, tax revenue must weakly increase either for the deviation to the
right, or for the deviation to the left. In figure 1 the tax schedule is monotone and
hence such a deviation exists. Therefore, the allocation in figure 1 could not have
been second-best for a welfarist social planner.

This proof breaks down in the presence of externalities. The deviation of any
agent can influence the utility of other agents through the externality, such that it
is unclear when a deviation from the saddle-point entails a Pareto-improvement.
This implies that implementability has to be checked ex-post with proposition 1
in this case.

In practice, the restriction that a tax schedule does not contain an internal
maximum is rather weak. As can be seen from proposition 1, the first derivative of
the tax system is defined by the wedge. As such, if none of the wedges change sign
from positive to negative or vice versa the tax system is monotonic and it does
not contain internal maxima. Most models in public finance satisfy this criteria
because each good is usually either taxed or subsidized over the entire domain.

6.2.1 Mirrleesian Implementation

By proposition 3 a convex or monotonic tax system can implement an allocation
provided it is optimal to a welfarist planner. The Mirrleesian planner is wel-
farist, such that a Mirrleesian separable tax system can implement this allocation
provided wedges do not change sign from positive to negative and there is only
one-dimensional heterogeneity. This is summarized in the next corollary

Corollary 1 If p = 1 and the conditions of proposition 3 are met, the Mirrleesian
tax system can implement the second-best.

This result implies that a separable tax system can implement the second-best of
a welfarist planner if there is only one source of heterogeneity. The restriction to
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single dimensional heterogeneity is due to the nature of the second-best wedges. If
heterogeneity is multi-dimensional the wedges are non-separable (almost) by defi-
nition (e.g. Renes and Zoutman, 2013, Armstrong, 1996) such that the separability
found in Mirrlees (1976, sect. 3) will be lost with multi-dimensional heterogeneity.

7 Concluding remarks

Our approach shows several results that are directly relevant to the literature on
the optimal taxation problem and mechanism design in general. The proof of
proposition 3 provides insights into implementation issues that are also relevant
to other fields of mechanism design. A relatively broad class of tax systems imple-
ments the second-best of a welfarist planner because the objective of the planner is
strictly increasing in agent’s utility. In fields such as monopoly pricing and auction
theory the objectives of the principal and the agents are opposed in the sense that
an increase in a monopolist’s profits (at fixed quantities) automatically comes at
the expense of the consumers. As such, the implementation has to be much more
restrictive in these fields (see also Armstrong (1996) and Renes (2011)).

This result highlights a unique feature of the Mirrleesian optimal tax model.
Unlike the design problem of auctioneers and monopolists, the maximization of the
mechanism designer is quite closely aligned with that of the agents he faces. This
means the planner can let the agents maximize their utility with relatively little
restrictions. This alignment also has interesting effects on the restrictions that are
required for implementation. Restrictions will often contain interdependencies,
increasing the complexity of the tax-schedule relatively quickly. These interdepen-
dencies, like wealth tests on income assistance in welfare states, are necessary to
prevent rational people from taking advantage of subsidies that are not targeted
at them.

Future work should focus on the possibility to extend this work to dynamically
stochastic settings and on finding more tight descriptions of the ex-ante conditions.
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A Proofs

For bookkeeping, the Jacobian of first derivatives φ′ (·) of any function φ (·) : Ra →
Rb, is of dimension b×a, while the second derivatives φ′′ (·) are of dimension ab×a.
For any multi-vector functions ψ (z1, z2, . . .) : Ra1×Ra2 . . .→ R the vector of first
derivatives ψzi are of dimension ai × 1 and the matrix of second derivatives ψzizj

are of dimension ai×aj where the dimension of the matrix follows the order of the
subscripts. In addition, let superscript T be the transpose operator. Vectors and
multi-dimensional constructs are denoted in bold-face, scalars are in normal-face.

A.1 Proof of proposition 1

Proof. Due to non-satiation of the utility function we know that the budget
constraint will hold with equality such that we know that:

y∗ (n) = q (x∗ (n))− T (x∗ (n))

Direct substitution of the budget constraint into the utility function allows us
to write the first-order conditions to problem (2) as:

0 = ux + (q′ − T ′)T uy (10)

which directly implies equations (7) and (8).
Now take the second-order derivative of the utility function with respect to x

to get the second-order conditions:

uxx+
(

2uxy + uyy (q′ (x∗)− T ′ (x∗))T
)

(q′ (x∗)− T ′ (x∗))+uy (q′′ (x∗)− T ′′ (x∗))l0

(11)
Differentiate the marginal rate of substitution, s, to x using the definition of s and
using the implicit function theorem to define y (u,x,n) :

∂s (x,y (u,x,n) ,n)

∂x
= −

(
uxx + 2uxys

T
)
− uyyssT

uy
(12)
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Now combining (8) with (12) allows us to simplify (11) and obtain the final codi-
tion:

−
(
∂s (x,y (u,x,n) ,n)

∂x
+ q′′ (x∗)− T ′′ (x∗)

)
uy l 0⇔

−∂s (x,y (u,x,n) ,n)

∂x
+ q′′ (x∗)− T ′′ (x∗) l 0

where the final step follows from the assumption that uy > 0.

A.2 Proof to proposition 2

Equations (7) and (8) uniquely define the tax schedule for x∗ (n) on its domain
N. If x∗ (n) is bijective there is an unique inverse mapping n∗ (x) for all x ∈
X. Therefore, equations (7) and (8) define the tax schedule for x∗ (n∗ (x)) on its
domain x ∈ X. Hence, the tax schedule is defined on the entire choice space. Note
that we do not need to check for second-order conditions (9) in this case, because
we have assumed that the allocation x∗ (n) is (second-order) incentive compatible
for all n ∈ N. Therefore, the unique tax schedule that implements this allocation
must also be implementable.

A.3 Proof to proposition 3

Suppose on the contrary that that (9) is not satisfied for some agent of type n.
Consider a deviation from the second-best allocation α∆x where α > 0 and ∆x
is a k × 1 vector with length one. The utility gain of such a deviation can be
approximated by a second-order Taylor expansion:

u (x∗ (n) +α∆x, q (x∗ (n) +α∆x)− T (x∗ (n) +α∆x) ,n)− u∗ =(
uTx + uy (q′ − T ′)

)
α∆x +

1

2
α2∆xT

(
uxx +

(
2uxy + uyy (q′ − T ′)T

)
(q′ − T ′) + uy (q′′ − T ′′)

)
∆x =

1

2
α2∆xT

(
uxx +

(
2uxy + uyy (q′ − T ′)T

)
(q′ − T ′) + uy (q′′ − T ′′)

)
∆x =

1

2
α2uy∆xT

(
−∂s (x,y (u,x,n) ,n)

∂x
+ q′′ (x∗)− T ′′ (x∗)

)
∆x

where the first order terms equal zero by the first-order condition (8). Due to
symmetry of the matrix of second order conditions for sufficiently small α the
deviation strategy α∆x and −α∆x yield approximately the same utility. In ad-

dition, if
(
−∂s(x,y(u,x,n),n)

∂x
+ q′′ (x∗)− T ′′ (x∗)

)
is not negative semi-definite there
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is at least one deviation strategy ∆x̂ which yields a positive utility gain. The
change in tax revenue due to such a deviation can also be found by means of a
second-order Taylor expansion:

T (x∗ (n) +α∆x̂)− T (x∗ (n)) ≈ αT ′∆x̂+
1

2
α2∆x̂TT ′′∆x̂.

The first-order term will always be non-negative for either strategy −∆x̂ or ∆x̂. If
for either choice it’s positive, the first-order term dominates the second-order term
for sufficiently small α and hence, the deviation results in higher tax revenue. If the
first-order term is zero, we need to consider the second-order term. If it’s negative
apparently the tax schedule contains an internal maximum on the allocation in ∆x̂
which violates our assumption. Therefore, if the first-order term is zero the second
term must be non-negative. Hence, tax revenue always weakly increases in either
−∆x̂ or ∆x̂. Therefore, one of these deviations must be a Pareto-improvement
and we run into a contradiction. If a Pareto-improvement over the allocation can
be found within a particular implementation, then the original allocation could
not have been second-best.

B Example

In figure 1 and 2, welfare function and resource constraint are equal to:

u = log(y)− 1

1.5

(x1
n

)1.5
− 1

1.5

(x2
n

)1.5
W =

ˆ
[u(n) + E(x1.x2)] dF (n)

E(x1, x2) =
1

1.5

((
x1(n)

n

)1.5

+

(
x2(n)

n

)1.5

−
(
x1(n)

n

)1.5

∗
(
x2(n)

n

)1.5
)

ˆ
N

y(n)dF (n) =

ˆ
N

x1(n) + x2(n)dF (n)

We assume that the type-space is uni-dimensional and the types are uniformly
distributed over a closed interval on the real line. The first-order approach to this
problem yields the allocation shown in the figures 1 2. This second-best allocation
can only be implemented by the central planner if he uses interdependencies to
map out the off-allocation consumption choices/coordinates. The planner can than
determine what off-allocation points have to be taxed prohibitively to ensure that
each individual prefers his own bundle over any other choice.
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