Financial Synergies and the Optimal Scope of the Firm: Implications for Mergers and Structured Finance

Karl Borch Seminar Norwegian School of Economics and Business Administration June 2007

Hayne Leland Haas School of Business, University of California, Berkeley

Firm Scope and Synergies

- The optimal grouping of activities into firms, or *optimal firm* scope, has long been an important topic in economics
 - Most studies have focused on operational synergies
 - Economies (or dis-economies) of scope in production
 - Pricing power related to scope
 - Managerial benefits or costs to larger scope
 - Firms that combine activities that have zero operational synergies are often termed "conglomerate" mergers
 - Often explained behaviorally, e.g. managerial empire-building
 - But others have maintained there may be *purely financial* synergies that justify combination.

Objectives of This Paper

- This paper examines the question of *purely financial* synergies in conglomerate mergers
 - Do they exist?
 - Are they always positive (or always negative)?
 - What determines their size?
 - Are their magnitudes likely to be significant?
 - Can they explain activities such as structured finance?
 - Asset securitization
 - Project finance
- Note: financial synergies and operational synergies are not mutually exclusive!

Optimal Scope:

How Should Activities be Grouped into Firms?

- "Activity": indivisible asset(s) producing cash flows
 - Cash flows may be negative (following Scott (1977), Sarig (1985))
 - Ownership can be transferred

• *"Firm"*

- Bankruptcy-remote unit that owns one or more activities (corporation or SPE)
- Issues debt, equity. Debt has senior claim to firm's cash flows
- Firm has limited liability (avoids negative cash flows)

• "Optimal"

- Maximizes total value of activities, including gains to leverage
- The Key Problem we address:
 - Incorporate and lever activities separately, or jointly?

Intellectual Roots of Financial Synergies

- *Modigliani-Miller (1958):* In "pure" world, no taxes etc.:
 - Leverage doesn't matter: no financial synergies
 - ➔ No benefits to mergers that have zero operational synergies
- Lewellen (1971): nonsynergistic mergers, but adds taxes
 - Mergers lower default probability → higher "debt capacity" → greater leverage, tax benefits, value. No formal model
 - Concludes that financial synergies are always positive ->
 purely financial synergies can't explain structured finance!
 - But overlooked potential benefits of separate capital structures
- Two benefits to separation vs. combination (merger):
 - Separate limited liability shelters (Scott 1977, Sarig 1985)
 - Separate capital structures (leverage ratios)
 - Not examined previously—need solvable optimal capital structure model

Structured Finance: A Decision about Scope

- Structured Finance includes *Asset Securitization*, *Project Finance*. Choice to use is choice of *scope*.
- Structured finance has grown rapidly in US (see table below) and in Europe
- Yet finance theory has yet to explain adequately!

	Agency	Non-Agency	Non-Mtge.	
YEAR	MBS	MBS	ABS	TOTAL
2000	2,491.8	669.3	1,071.8	4,232.9
2001	2,830.2	776.4	1,281.2	4,887.8
2002	3,158.3	862.1	1,543.2	5,563.6
2003	3,488.1	1,046.0	1,693.7	6,227.8
2004	3,547.3	1,490.2	1,839.2	6,876.7

All Numbers in \$ Billion Source: The Bond Market Association

Structured Finance

- Key elements of structured finance
 - Assets (or "activity") owned by a firm (the "sponsor") are sold to a Special Purpose Entity /Vehicle (SPE/SPV)
 - Sole purpose of SPE is to collect and disperse activities' cash flows
 - Activities typically require little management
 - Typically SPE is a trust, sometimes a corporation
 - SPE is "bankruptcy remote" from sponsoring firm
 - The SPE issues securities backed by the assets' cash flows
 - Examples: mortgage-backed securities (MBS), asset-backed (ABS)
 - Debt "tranches" with different seniorities, plus "equity" (5% -15%)
 - Funds raised are used to repay sponsor for assets transferred

The Puzzle of Structured Finance

- No obvious <u>operational</u> synergies in asset transfers
- Possible explanations for structured finance
 - Regulatory (reduce capital requirements). But non-bank use, too.
 - Purely Financial:
 - Cheaper financing (but more expensive for remaining assets? Modigliani-Miller suggests that will be the case)
 - Greater leverage (Reason given by many in business, but is total leverage increased? Lewellen says no!)
- Is there a legitimate "purely financial" explanation?

This relates back to the question of

"Is There an Optimal Financial Scope to the Firm?"

Preview of Conclusions

- Financial synergies to merger can be positive or negative. Two Sources of Synergies:
 - *"LL" Effect* (always < 0): Loss of separate limited liability
 - Leverage Effect (+ or -) : Separation can give higher tax benefits
- Financial synergies are more likely to favor merger when:
 - Correlation of activities is low (better risk diversification)
 - Volatility of individual activities is low (lesser LL effect)
 - Firms have similar volatility, default costs (less loss of advantage to firm's having different leverage ratios)

Opposite cases: separation is better

- Negative synergies can be of greater magnitude (12-25%)
 - Provides rationale for structured finance, including

asset securitization, project finance

A Two-Period Model of Capital Structure

• Value of Debt with Principal P (X = random future value with p.d.f. dF(X))

$$D_{0}(P) = \frac{P\int_{X^{d}}^{\infty} dF(X) + (1-\alpha)\int_{0}^{X^{d}} X dF(X) - \tau \int_{X^{Z}}^{X^{d}} (X - X^{Z}) dF(X)}{1 + r_{T}}$$

where X^d = default level, X^Z = zero tax level, τ = tax rate, α = default cost fraction

• Value of Equity:

$$E_0(P) = \frac{1}{1+r_T} (\int_{X^d}^{\infty} (X-P) dF(X) - \tau \int_{X^d}^{\infty} (X-X^Z) dF(X))$$

• Value of Firm: $v_0(P) = E_0(P) + D_0(P)$ = $V_0 + TS(P) - DC(P)$

where

 V_0 = value of **unlevered** firm TS(P) = expected PV of **tax savings** from leverage

DC(P) = expected PV of default costs

Note: TS(P) - DC(P) = *value of leverage.*

Optimal Capital Structure

• Choose *P* = *P*^{*} to maximize total firm value

 $V_0(P) = E_0(P) + D_0(P)$

- Define $v_0^* = E_0(P^*) + D_0(P^*)$ = $V_0 + TS(P^*) - DC(P^*)$
- Assume future value X is normally distributed N(Mu, Std)
- We get closed form solutions for $D_0(P)$, $E_0(P)$, and $v_0(P)$
- We then numerically optimize $v_0(P)$ to find optimal P^*
 - Excel's Solver does easily
 - Note *P** also maximizes leverage benefits TS(P) DC(P) (since V₀ constant)

An Example (typical firm)

Base case parameters (calibrated for BBB-rated firm)

Normally distributed future cash flows; risk-neutral valuation

Riskfree rate	$r_{f} = 5\%$	(risk neutrality \rightarrow expected asset return μ)
Horizon	T = 5 yrs	(average debt duration)
Annual Volatility	σ = 22%	(Schaefer & Strebulaev 2004)
Default costs	<i>α</i> = 23%	(implied by Moody's 49% recovery rate)
Tax rate	$\tau = 20\%$	(John Roberts, 2000 & 2003)

Implications (see also Appendix 2)

—	Optimal Leverage	L	= (51.82%
	Debt interest rate	r	=	6.23%
	Tax savings of leverage	TS	=	2.32

- Expected default costs **DC** = **0.89**

Capitalized leverage benefits = 8.21%

Mergers and Financial Synergies

• Assume Operational Cash Flows are Additive:

 $X_{\rm M} = X_1 + X_2 \rightarrow X_{\rm 0M} = X_{01} + X_{02}.$

• With separate activity cash flows normally distributed, future cash flows of *merged firm* will also be normal, with

$$Mu_{\rm M} = Mu_1 + Mu_2$$

Std_M(ρ) = (Std₁² + Std₂² + 2 ρ Std₁ Std₂)^{0.5}

- Diversification: lower merged risk when correlation ρ is low.
- Given Mu_i and Std_i , can compute $P_i^*, v_i^*, i = \{1, 2, M\}$
- Then compare v_M^* vs. $v_1^* + v_2^*$.

Measures of Synergies

Financial synergies are determined by

 $\Delta = v_{M}^{*} - v_{1}^{*} - v_{2}^{*}$

Measure 1:	$\Delta / (v_1^* + v_2^*)$	(% total value)
Measure 2:	Δ / v_2^*	(% of target firm value)
Measure 3:	Δ / E_2^*	(% of target firm equity)

- Capitalizing T-period benefits to infinite horizon:
 - Benefits Δ received every *T* years starting at t = 0 have value $Z\Delta$ where $Z = (1 + r^T)/r^T$. Benefits multiplied by *Z* in what follows.

• Benefits can be decomposed into two sources

- Loss of separate firms' limited liability ("LL Effect), always < 0.
- Gains (or losses) from leverage, the "Leverage Effect"
 - Leverage Effect = changes in (tax savings less default costs)

Mergers of Symmetric Firms

- Mergers of symmetric "typical" firms (with $\rho = 0.20$) provide very small purely financial benefits
 - Measure 1 = 0.60%, Meas. 2 = 1.2%, Meas. 3 = 2.5%
 - Insufficient to overcome likely merger fees
 - Is this disappointing?
- But mergers of identical firms are not always optimal!
- **Separation** is desirable ($\Delta < 0$) if
 - Volatilities are high (negative LL Effect important)
 - Correlation is high (diversification and Leverage Effect small)
 - Propositions 1 & 2 of paper make this more precise

Mergers of Asymmetric Firms

- Now consider activities that *differ* in characteristics
 - Firm 1 has *base case parameters*
 - Firm 2 differs only in *volatility*
 - Figure 6 shows how results depend on activity 2's volatility
 - Figure 7 shows Leverage vs. *LL* effects
- Very different volatilities \rightarrow keep separate!
- Same for very different default costs → keep separate!
 Figure 9 in paper

Merger Benefits as a Function of Firm 2 Risk

Figure 6. Merger benefits with asymmetric volatility.

The lines plot three different measures of the value of merging two firms of equal asset value, as a function of the annualized volatility of Firm 2. The annualized volatility of Firm 1 is 22%. The assumed debt maturity and time horizon are T = 5 years, the risk-free interest rate is r = 5%, the effective corporate tax rate is $\tau = 20\%$, default costs are $\alpha = 75\%$, and the correlation between cash flows is 0.

Decomposition of Merger Benefits and Counter-Example to Lewellen

Figure 7. Decomposition of merger benefits with asymmetric volatility.

The lines plot the loss of separate limited liability (*LL*) effect, the Leverage effect, and their combined total effect (Measure 1) from merging two firms of equal asset value as a function of the annualized volatility of Firm 2. It is assumed that the debt maturity and time horizon is 5 years, the risk-free interest rate is 5%, the effective corporate tax rate is 20%, the default costs of both firms is 23%, the annualized volatility of Firm 1 is 22%, and the correlation of cash flows is 0.20. The assumed debt maturity and time horizon are T = 5 years, the risk-free interest rate is r = 5%, the effective corporate tax rate is $\tau = 20\%$, default costs are $\alpha = 23\%$, and the correlation between cash flows is 0.20. Note that Measure 1 values here are identical to Measure 1 values in Figure 6.

18

Benefits to Securitization: An Example

Base case: "Average" firm securitizes 25% of assets that have volatility 4.0%, ρ = 0.50 with other assets whose vol. = 28.6%. Leverage ratio: Before, 52%. After, 83%/51%. Yield spread: Before, 123 bp. After, 4 bp. / 251 bp.

Benefits: 13.6% of assets securitized (costs ~ 6%?).
2/3rd from leverage effect,
1/3rd from Sarig effect.

• Now Lower SPV Default Costs: to 5%

Leverage rises from 83% to 88% But benefits rise only from 13.6% to 14.4%. . . .Contrary to Gorton & Souleles (2005),

Lower default costs don't seem to be major source of benefits

Conclusions

- Financial synergies can be positive or negative. Two sources of synergies:
 - LL Effect (always < 0):</p>
 - Loss of separate limited liability (more important at high vols.)
 - Leverage Effect (+ / -) :
 - Negative if separate leverage ratios highly different
- Financial synergies are more likely to be positive (i.e. favor merger) when:
 - Correlation of activities is low (diversification)
 - Volatility of individual activities is low (*LL* Effect minimal)
 - Firms have similar volatility, default costs (leverages the same)
 - **Opposite cases: Synergies are negative and separation is preferred**

Conclusions (p. 2)

- 3. Negative synergies can be of greater magnitude (12-25%)
 - Provides rationale for *asset securitization*, *project finance*, when volatilities of structured assets differ from firm's other activities
 - Primary explanation is different:

Asset Securitization (low risk):Leverage effectProject Finance (high risk):LL effect

- 4. A rule of thumb (though not exact):
 - Positive synergies \rightarrow greater leverage with merger
 - Negative synergies \rightarrow greater leverage when separation
- 5. Paper also examines other issues:
 - **Optimal size** of target firm
 - Effects of mergers on leverage
 - Differential benefits to debt & equity holders (if debt noncallable)

Appendix 1 Table I Base-case Parameters

This table shows the parameter values chosen for the base case.

Variable	Symbols	Values
Annual Risk-free Rate	r	5.00%
Time Period/Debt Maturity (yrs)	Т	5.00
T-period Risk-free Rate	$r_T = (1 + r)^T - 1$	27.63%
Capitalization Factor	$Z = (1 + r_T)/r_T$	4.62
Unlevered Firm Variables		
Expected Future Operational Cash Flow at T	Ми	127.63
Expected Operational Cash Flow Value (PV)	$X_0 = Mu / (l+r)^T$	100.00
Cash Flow Volatility at T	Std	49.19
Annualized Operational Cash Flow Volatility	$Std/(X_0T^{0.5})$	22%
Tax Rate	au	20%
Value of Unlevered Firm w/Limited Liability	${V}_0$	80.05
Value of Limited Liability (after tax)	$(1 - \tau)L_0$	0.05

Appendix 2

Table IIOptimal Capital Structure

This table shows the optimal leverage for the firm and the resulting gains to leverage given the base-case parameters and a default cost $\alpha = 23\%$ (consistent with a recove rate on debt of 49.3%). The annual volatility of the firm is $\sigma = 22\%$, the time horizon is T = 5 years, the risk-free interest rate is r = 5%, and the tax rate is $\tau = 20\%$.

Variable	Symbols	Values
Default Costs	α	23%
Optimal Zero-coupon Bond Principal	<i>P</i> *	57.1
Default Value	X^{d}	67.7
Breakeven Profit Level	X^Z	14.9
Value of Optimal Debt	D_0 *	42.2
Value of Optimal Equity	E_0*	39.2
Optimal Levered Firm Value	$v_0^* = D_0^* + E_0^*$	81.47
Optimal Leverage Ratio	D_0^*/v_0^*	51.8%
Annual Yield Spread of Debt (%)	$(P*/D_0*)^{1/T}$ - 1 - r	1.23%
Recovery Rate	R	49.3%
Tax Savings of Leverage (PV)	TS_0	2.32
Expected Default Costs (PV)	DC_0	0.89
Value of Optimal Leveraging	$v_0^* - V_0 \text{ (or } TS_0 - DC_0)$	1.42
Capitalized Value of Optimal Leverage	$Z(v_0 * - V_0) / V_0$	8.21%

23