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| want to focus on three specific topics

1) What are the shortcomings of *“traditional’ structural models
In explaining credit spreads and default probabilities?

2) Can jump processes and/or liquidity premiums remedy these
problems?

3) What are the resulting implications for corporate decisions,
with a specific focus on optimal leverage choice.

Let’s start with a typical “traditional” model...
(this has many predecessors, starting with Merton (1974))



Key elements:

1) Asset value process under the risk-neutral measure

dV (O)/V (1) = (r—o5)dt + odW (1)

...a diffusion process with continuous sample path, where

V(t) asset value (value of cash flows) at time t
r  risk-free interest rate, assumed constant through time

o fractional (of value) payout rate to all securities, a constant
o asset volatility, also a constant
dw(t) increment to a Wiener process at time t
V(O) = Vo



2) Debt

Characterized by principal P, coupon flow C, maturity T

Other important parameters are default cost fraction « and
tax rate = (implying the after-tax coupon cost is (1 — 7)C)

Exponential debt model: for debt issued at timet=0

> Debt principal is retired at a proportional rate m = 1/T (e.g. through sinking fund)

> This implies that debt principal and coupon are exponentially declining;
thus remaining principal, coupon of debt issued at t = 0 are e™P, e™C

> This also implies that the average maturity of debt = 1/m =T.

> Retired debt is replaced by newly-issued debt with same principal, coupon,
and maturity; thus total P, C, T remain constant through time.

> Total debt service flow is constant C + mP, unless default



RISK NEUTRAL VALUATION OF DEBT

e The discounted expected value of current debt’s cash flow
under the risk neutral measure is

D=[e"[e™(C+mP)](1-F)dt+(—-a)V,[e e ™f dt
0 0

(D

where F iIs the cumulative distribution function of first passage time

from V to a default barrier Vg, and f Is its density function.

Integrating the first term of (1) by parts gives

D

C+mP I
- (1_j
r+m

e ML dt) + (1— )V, j e M dt
0

0

(2)



o We now use the only mathematical result we will need for the paper.

For processes with constant drift g and volatility o :

The expected present value of $1 received at first passage to default Vg
(from value Vg att = 0), when discounted at an arbitrary rate z, is

© V -y(9.2)
_fe‘” f(t;V,,Vg)dt = [OJ ,
: Vv

B
where

_ 2 _ 22 210.5 3
y(g,z):(g 502)+((g .250) +22072) (3)

O

Using (3), the value of debt in equation (2) is




—Y1 Y1
C+mP \Y/ \Y/
D= 1-| 2 +(A-a)V,| 2
m (VBJ ) +{l-a) B(VJ (4)
where y; =y(g,2)In (3) wheng=r—-oand z=r+m.
NB: when m = 0 (infinite life debt), (4) is the same formula as in Leland (1994).

e We can also readily compute closed form solutions for

> The value of equity E

> The total value of firm leveraged firm v=D + E.

e The endogenous optimal default boundary Vg, satisfies the

oE(V;V;)

smooth-pasting conditions — 5, vy, =0



e The optimal endogenous default barrier Vg is:

(C+mP)y, zCy
~ (r+m) r
1+(l-a)y,+ay (5)

B

wherey =y(g,z) in (3) wheng=r—-¢d andz=r.

e Substituting for Vg into (4) gives closed form solution for D (and E and v).

Default probabilities can be easily calculated:

Cumulative first passage times to Vg, withg=r-o6+ r

where z = asset risk premium =» g = actual asset growth rate



HOW WELL DOES THE MODEL PREDICT? CALIBRATION:

TABLE 2: CALIBRATION OF MODEL PARAMETERS

Rating Sources

A Baa B

Leverage D/v 32.0% 43.3% 65.7% HH; CGH

Average Debt Maturity T 10yrs. 7.5yrs. 5yrs. HH; Duffee, Stohs & Maurer
Asset Volatility o 22% 22% 31% Schaefer & Strebulaev (2004)
Payout Rate & 6% 6% 6% HH (avg. of dividends, coupons 1973-98)
Tax Advantage to Debt ¢ 15% 15% 15% Leland & Toft (1996), Graham (2003)
Default Costs « 30% 30% 30% Consistent with recovery rates, all ratings
Asset Risk Premium 4% 4% 4% Consistent with asset beta about 0.6, all ratings
Recovery Ratio 60% 50% 40% EG (60.6%, 49.4%, 37.5%); HH (51.3% for all)

EG = Elton & Gruber (2001), HH = Huang & Huang (2003), CGH = Collin-Dufresne, Goldstein & Helwege (2003)

Using these parameters, let’s see how well model matches
observed spreads from H&H, E&G, and Duffee over 1985-1995, and
default data from Moody’s over the period 1970-2000.

>> Unlike H&H, we do not choose volatilities to match default rates



HOW WELL DOES THE MODEL DO? NOT WELL!!

FIGURE 1
Term Structure of Credit Spreads - Baa-Rated Debt
Leland 1994 Exponential Model
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FIGURE 1 shows model predicts Baa spreads that are about 1/3 of actual. . .



11

o Confirms most empirical studies that traditional structural models
underestimate spreads. (e.g. Jones, Mason, Rosenfeld (1984), Huang & Huang (2004))

e But a widely-cited article by Eom, Helwege and Huang (EHH, 2004)
claims that the structural model of Leland and Toft (LT, 1996)

——substantially overestimates spreads, even at short maturities.

—This Is very strange! For their parameters, quite similar to those here,
| find LT underestimates spreads. | can’t replicate EHH results.

o A Possible Explanation (EG, HH): Spreads also reflect illiquidity

—But Leland (JOIM, 2004) notes that probabilities of default
should not be affected by bond market illiquidity

—In contrast with bond market prices (and spreads)



Let’s see if the model predicts cumulative default probabilities accurately:

FIGURE 2
Cumulative Default Probability - Baa Rating
Exponential Debt Model
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e For longer horizons (t > 7 yrs.), default probabilities OK:
are bounded above by model when ¢ = 22.5% and below when ¢ = 21.5%

(Recall S&S estimate for Baa firms: ¢ =22%)

...But default probabilities are far too low at short horizons!
(< 50% of actual when t<4yrs.)
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e Observation: Even if illiquidity might explain too-low model spreads,
It can’t explain too-low short-term default predictions.

e The Problem: a pure diffusion process for firm value!
——Spreads and default rates 2 0 ast - 0. (e.g. Lando (2004), pp. 14-15).
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e A Possible Answer: Include jumps in asset value

This is certainly not the first credit-risk model to consider jumps:

Credit risk (Zhou (2001), Duffie and Lando (2001), Hilberink & Rogers (2002),
Giesecke & Goldberg (2003), H & H (2004), Chen & Kou (CK, 2005))

Regime changes (Hackbarth, Miao & Morellec (HMM, 2006))

e But most of these models are quite complex, and require numerical
techniques to find solutions
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e \We consider a very simple mixed jump-diffusion process for asset value:

O\'/_V _ (r—&+ AK)dt + o dW with probability (1- Adt)

= —k with probability Adt, 0 <k <1

e Must adjust the drift of the diffusionto g =r—- 6+ Ak
to compensate for the jump, keep expected returnrate =r - o

o Adjust the volatility of the diffusion to o= (0i%— 1k%)°?
(keeping long-horizon total volatility o constant)

e A jump here represents a relatively rare “disaster”,
——The firm loses a large fraction of its value and liquidates (Enron, Refco?)

——Note that unlike pure diffusion models, the recovery rate is random
since V is random when a jump occurs
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e Are jumps “rare”? Collin-Dufresne, Goldstein, Helwege (CGH, 2003):

“In practice, very few firms ‘jump’ to default. Indeed, since 1937,
we are aware of only four firms that have defaulted on a bond
which had an investment grade rating from Moody’s.”

—We don’t estimate the firm value process—ijust look at
conseqguences if there were a rare jump on debt values,
and default probabilities.

>> Observed default and recovery rates can be explained
by an assumption of such jumps—similar to
“Dark matter”??



Closed form solutions for Debt Value D

-¥(9,%) -¥(9,%) -¥(9.2,)
D:C+mP(1_£Vj " (1—0!)VB(VJ L ARV [ j )
Z Y Ve

VB B ZZ

where g=r-o0+/4K
Z,=r+m+A41
Z, =4,—0
We also have closed-form solutions for Vg, E, and v.

Of course these formulas coincide with earlier formulas when A = 0.
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(2)



Predictions of Default at short horizons are now much better:
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FIGURE 3
Cumulative Default Probability - Baa Rating
7.5-Yr. Debt, Jump Intensity = 0.70% k = .95
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But predicted spreads are still too low:

FIGURE 4
Term Structure of Credit Spreads - Baa Rating
7.5-Yr. Debt, Jump Intensity = 0.70% k = .95
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LIQUIDITY

Longstaff, Mithal, Neis (2004):  Find spreads for CDS are consistently
lower than observed credit spreads

e LMN attribute difference to non-default factors (“liquidity”), and find

—The non-default component ranges from 50 to 72 bps per year,
and*“is nearly constant across rating categories.”

e \We introduce the liquidity premium h (= 60 bps) as an addition
to the required return on debt. (see also Ericsson & Renault (2005))

>> That Is, risk-neutral expected debt cash flows are discounted at r + h.

>> Equity cash flows continue to be discounted at r.

>> Not the same as just adding 60 bps to spread, since Vg will change.



Results with jumps, liquidity premium: Baa-rated debt

FIGURE 5B
Cumulative Default Probability - Baa Rating
7.5-Yr. Debt, Jump Intensity = 0.70%k = .95,h = 60 bps
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The model predicts a recovery rate of 49.5%, vs. the target of 50%.



Default Probability

FIGURE 5B - 1970-2005 Default Data
Cumulative Default Probability - Baa Rating

7.5-Yr. Debt, Jump Intensity = 0.70%k = .95,h = 60 bps
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Credit Spread
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FIGURE 6B
Term Structure of Credit Spreads - Baa Rating
7.5-Yr. Debt, Jump Intensity = 0.70%k = .95,h = 60 bps
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Results with jumps, liquidity premium: B-rated debt

FIGURE 5C
Cumulative Default Probability - B Rating
5-Yr. Debt, Jump Intensity = 1.20% k = 1,h = 60 bps
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The model predicts a recovery rate of 40.5%, vs. the target of 40%.



Credit Spread

FIGURE 6C
Term Structure of Credit Spreads - B Rating
Jump Intensity = 1.20%, k = 1.00, h = 60 bps
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Results with jumps, liquidity premium: A-rated debt

Default Probability

FIGURE 5A
Cumulative Default Probability - A Rating

10-Yr. Debt, & = 0.30%, k = .925, h = 60 bps
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The model predicts a recovery rate of 59.5%, vs. the target of 60%.
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Credit

FIGURE 6A
Term Structure of Credit Spreads - A Rating
A = 0.30%, k =.925, h =60 bps
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APPLICATIONS TO CORPORATE DECISIONS:

Optimal Capital Structure

e \We now drop the assumption that leverage for firms matches
the previously-specified levels (e.g. 43.3% for Baa-rated firms)

—We consider leverage ratios that maximize total firm value
for firms in each different rating category.

e Baa-rated firms: Optimal leverage = 46.7%
—This is not far from the actual Baa average leverage of 43.3%

—If h =0, optimal leverage is 49.9%.
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e A-rated firms:  Optimal leverage = 45.2% (vs. actual 32.0%)

>> A-rated firms appear to be somewhat under-leveraged

>> But the value loss is small (< 0.3% of firm value v)

e B-rated firms: Optimal leverage = 36.7%!! (vs. actual 65.7%)
—Less leverage than Baa because volatility higher, maturity 5 yrs.

——Spread at optimal leverage would be 240 bps, not 505 bps

Tentative conclusion:

——Average B-rated firm in the data base is over-leveraged

—Leverage stats for B-rated firm likely include fallen angels,
whose initial leverage was lower
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CONCLUSIONS

e Structural Models are alive and well!

—With the addition of a simple jump and liquidity cost, they can
explain both observed credit spreads and default probabilities

—Closed form solutions allow easy comparative statics

—Valuations can be used to study optimal financial structure
of firms, as well as other corporate decisions

—Optimal leverage is close to actual leverage for Baa-rated firms

>> A-rated firms appear to be under-leveraged relative to optimal
>> B-rated firms appear to be considerably over-leveraged
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APPENDIX
TARGETS: Following Huang & Huang (2004) and others; data 1985-1996

TABLE 1: TARGET SPREADS, DEFAULT DATA

Credit Spreads Targets Sources
Huang & Huang (HH, 2003), Duffee (1998), Elton & Gruber (EG, 2001)

A Rated
5Yr. 90 bps HH: 96 Duffee: 87 EG: 74
10 Yr. 100 bps HH: 123 Duffee: 96 EG: 79
20 Yr. 115 bps HH: N/A Duffee: 117 EG: N/A

Baa Rated
5Yr. 145 bps HH: 158 Duffee: 149 EG: 121
10 Yr. 150 bps HH: 194 Duffee: 148 EG: 118
20 Yr. 195 bps HH: N/A Duffee: 198 EG: N/A

B Rated
5Yr. 470 bps HH: 470 (Based on Caouette, Altman, Narayanan (1998))
10 Yr. 470 bps HH: 470 (Based on Caouette, Altman, Narayanan (1998))

20 Yr. N/A
Riskfree Rate 8% HH: 8% (Average over period 1985-1995)

Default Probabilities
Data: Moody's Special Comment 2001

A Rated Baa Rated B_Rated
1Yr. 0.01% 1Yr. 0.14% 1Yr. 6.16%
5 Yr. 0.54% 5 Yr. 1.82% 5 Yr. 27.90%
10 Yr. 1.65% 10 Yr. 4.56% 10 Yr. 44.60%

20 Yr. 4.79% 20 Yr. 11.27% 20 Yr. 54.20%



Is there a jump risk premium?

——1.e., 1S there a difference between the risk neutral jump intensity A,
and the “real” (under the physical measure) intensity y of a jJump?

—Yes, if jump risk is imperfectly diversifiable.
——Measure by ratio H = y/A: smaller ratio =» larger jump risk premium.

——Given A, the risk premium doesn’t affect pricing (spreads), but it
must be known to determine the probability of default .

e CGH (2003) show that jump risk will command a risk premium if:

——Multiple firms can default simultaneously, or
——Default of one firm can increase default intensities of others.
—We assume a jump risk premium, but don’t know to need to know cause

Our approach: (alternative jump risk premia approaches are possible!)

e A jump to default is at least “as bad as” a diffusion to default, in that
It should command at least as high a risk premium.
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e \We assume the jump risk premium H is the same as the default risk
premium J for the pure diffusion part of the asset value process

e Let n be the cumulative default probability of the pure diffusion process
at debt maturity using the risk neutral driftg, and

¢ be the cumulative default probability of the pure diffusion process
at debt maturity using the actual (physical) drift (g + 7), where

7 1S the asset risk premium. Then the diffusion risk premium is
J=¢/n <1
e For Baa debt, 4 =0.70% and 7= 4%/ yr. (see Lec.1 Table 2). After 10 yrs.,

— ¢=1.84%, n=5.60% = J=.329
—— Assuming H = J: Predicted real jump intensity y = A*J
=>» Real jump intensity ¥ = 0.7% x .329 = 0.23%
e For B-rated debt, 4 =1.2%. At5 yr. debt maturity, J = 25.6%/35.1% = .729
=> Real jump intensity ¥= 0.88%

—If the jump risk premium is larger, default probabilities will be lower.
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