CHARACTERIZATIONS OF STABILITY

Srihari Govindan and Robert Wilson University of Iowa and Stanford University

Motive for Equilibrium Selection

The original Nash definition allows

- 1. <u>Multiple</u> equilibria
- 2. <u>Dominated</u> strategies to be used
- 3. <u>Implausible</u> beliefs in extensive form
- 4. <u>Unstable</u> equilibria that disappear if the game is perturbed

Selection tries to exclude 2-3-4

Some Normal-Form Selections

Perfect	Selten	1975
Proper	Myerson	1978
Lexicographic	Blume-Brandenberger- Dekel 1991	
Stable sets	Kohlberg-Mertens Mertens	1986 1989

Some Extensive-Form Selections

Subgame Perfect Selten 1965
 Extensive-form Perfect Selten 1975
 Sequential Kreps-Wilson 1982
 Quasi-Perfect van Damme 1984

 A basic goal is to <u>unify</u> the Normal-Form and Extensive-Form perspectives

The Kohlberg-Mertens Program

- 1. Specify desirable properties or axioms
 - Assume <u>set</u>-valued selections
 - Genericity of extensive game ⇒ (within a component) all equilibria have the same outcome

2. Define selections that achieve basic criteria

- Invariance, admissibility, backward & forward induction ...
- Mertens-Stability meets ALL their criteria <u>but</u> it depends on a topological construction
- We report results about
 - Hyperstability
 Stability

Hyperstable Set of Equilibria

Definition: Each payoff perturbation of each inflation of the game has an equilibrium whose deflation is near the set

- Inflation appends redundant pure strategies
 - Treats some mixed strategies as pure strategies
- <u>Deflation</u> converts back to equivalent mixture of the original pure strategies
- Inflation/Deflation invoke the Axiom of <u>Invariance</u> to presentation effects

Characterization of Hyperstable Components *Theorem*: A component is hyperstable

if and only if its index is nonzero

 Thus hyperstability is a topological property Verify hyperstability by computing an index

Relation to prior literature:

- Definition: A component of fixed points is <u>essential</u> if each map nearby has a fixed point nearby
- Theorem: A component of fixed points is essential iff its index is nonzero [O'Neill 1953]

So hyperstable components are essential whereas Mertens 1989 imposes essentiality

Main Steps of Proof

To show Index = $0 \Rightarrow$ not-hyperstable

- 1. Index = $0 \Rightarrow \exists map \sigma \rightarrow G(\sigma) = G \oplus g(\sigma)$ to nearby perturbed games such that no σ near the component is an equilibrium of $G(\sigma)$
 - This step extends KM's Structure Theorem
- 2. Using simplicial approximation of map g construct perturbed inflated games $G^*(\sigma)$
- 3. Hyperstability $\Rightarrow (\exists \sigma^*) \sigma^*$ is an equilibrium of G*(σ), where σ = deflation of σ^*
 - $\Rightarrow \sigma$ is an equilibrium of G(σ)
 - \Rightarrow contradiction !

Stable Set of Equilibria

Definition: Each perturbed game obtained by <u>shrinking</u> the simplex of mixed strategies has an equilibrium near the set

- $\ \underline{Shrinking} \ via \ \eta \ means \ each \quad \sigma \to (1 \epsilon) \sigma + \epsilon \eta$
- KM require a *minimal* stable set
- A stable set is <u>truly</u> perfect
 - It is perfect against every tremble η
- Stability excludes dominated strategies
 - But hyperstability allows them

Stability Characterization for 2 players

Theorem: A closed set S contains a KM-stable set *if and only if*

- For each tremble η there exist profiles $\sigma \& \tau$ and $\varepsilon \in (0,1]$, where $\sigma \in S$, such that each pure strategy used in <u>either</u> σ or τ is an optimal reply to <u>both</u> σ and $(1-\varepsilon)\tau + \varepsilon\eta$
 - That is, perturbing τ by tremble η "respects preferences" [Blume-Brandenberger-Dekel 1991]
 - Generalizes the characterization for generic signaling games [Cho-Kreps & Banks-Sobel 1988]
- N players: analog lexicographic condition

Axioms for Stability

Our approach mixes *normal-form* and *extensive-form* criteria

• Our normal-form criterion is

Axiom 1 Weak Invariance Selection should be immune to inflation

- That is, exclude presentation effects

Our <u>extensive-form</u> criterion is

Axiom 2 Strong Backward Induction For an extensive game, trembles should select <u>admissible</u> sequential equilibria

– Formulation of Axiom 2 uses ϵ -Quasi-Perfection

ε-Quasi-Perfect in Extensive Game with Perfect Recall

 Definition: An action at an information set is optimal (for tremble η) if it begins an optimal continuation strategy using beliefs induced by perturbations toward η

■ *Definition*: $\sigma > 0$ is $\underline{\varepsilon}$ -QP if <u>sub</u>optimal actions have cond. probabilities $\leq \varepsilon$ [van Damme 1984]

 Proper ⇒ QP ⇒ Sequential equilibrium
 <u>but</u> QP excludes conditionally dominated strategies

Axiom 2 Using Strong Quasi-Perfect

Require lower bounds on behavior strategies Then:

- **Axiom 2**: Each tremble should select some strong-QP-equilibrium from the set
 - Axiom 2 is stringent: robust to <u>all</u> trembles Requires that selection is "truly" Quasi-Perfect
 - Use of trembles is akin to Mertens' use of a "germ" inducing beliefs
 - Mertens-stable sets satisfy Axioms 1 and 2
 - Could use lexicographic or equiproper instead?

Sufficiency Theorem

Theorem: Axioms 1 & 2 imply that a selected set includes a KM-stable set

- Corollary: If an extensive game is generic then selection yields a stable outcome
- Axiom *Proper* is sufficient for simple games (generic signaling, outside-option, and perfectinformation games) but insufficient generally
- Add Axiom *Homotopy* \Rightarrow Mertens-stable set

Sketch of Proof

- 1. Construct inflated extensive game in which each player chooses either
 - the tremble with minimum probability $\geq \varepsilon$ or
 - plays the original game with the maximum probability of a suboptimal strategy $\leq \epsilon \times \epsilon$
- Each tremble and ε-QP sequence induces a lexicographic equilibrium
- 3. The lexicographic equilibrium satisfies the Characterization Theorem for KM-stable set

Summary Remarks

Hyperstable component ⇔ essential set

- So select <u>within</u> a hyperstable component verified by computing its index
- This is implicit in Mertens' construction
- Stability ⇐ Invariance + (in extensive game) <u>conditionally admissible</u> strategies
 - Here, formulated via Quasi-Perfect
- In both cases, Invariance is the key tool !
 - Enables mixing normal-form and extensive-form criteria

