
Energy Economics

Mario Blázquez de Paz

November 27, 2019



Contents

1 Electricity markets. Overview 3

1.1 Borenstein, S., 2002, "The Trouble with Electricity Markets: Understanding Cal-
ifornia's Restructuring Disaster," Journal of Economic Perspectives, 16, 1, 191-211. 3

1.2 Joskow, P., 2008, "Lessons Learned from Electricity Market Liberalization," The

Energy Journal, Special Issue on the Future of Electricity, 9-42. . . . . . . . . . . 4
1.3 Newbery, D., 2005, "Electricity Liberalization in Britain: The Quest for a Satis-

factory Wholesale Market Design,", The Energy Journal, 26, 43-70. . . . . . . . . 5
1.4 Wilson, R., 2002, "Architecture of Power Markets," Econometrica, 70, 4, 1299-1340. 5

1.4.1 Integrated vs unbundled market . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Market Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Electricity auction designs: Uniform and discriminatory price auctions 8

2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Set up and timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Uniform price auction. Equilibrium . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Discriminatory price auction. Equilibrium . . . . . . . . . . . . . . . . . . 10

2.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Exercise 1. Nash equilibrium in uniform and discriminatory price auctions 11
2.2.2 Exercise 2. Uniform Price Auction . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Exercise 3. Discriminatory Price Auction . . . . . . . . . . . . . . . . . . 17

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Transmission 20

3.1 Integration of electricity markets in Europe. The role of the system operator. . . 20
3.2 Transmission tari�s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Bidding zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Theory. Electricity Auctions in the Presence of Transmission Constraints and

Transmission Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Set up of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Timing of the game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.4 Annex. Mixed strategies equilibrium . . . . . . . . . . . . . . . . . . . . . 28

3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.1 Case (t = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Case (t > 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



4 Auction Design in Zonal Pricing Electricity Markets 35

4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.1 Zonal pricing with perfect competition: Holmberg and Lazarczyk (2015) . 35
4.1.2 Zonal pricing with imperfect competition: Blázquez (2019) . . . . . . . . . 36

4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Exercise 1. Zonal pricing with perfect competition: Holmberg and Lazarczyk

(2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Exercise 2. Zonal pricing with imperfect competition: Blázquez (2019) . . 45

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Experiments in Electricity Markets 50

5.1 The game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Equilibrium selection techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Risk dominance method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Robustness to strategic uncertainty method . . . . . . . . . . . . . . . . . 55
5.3.3 Quantal response method . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Regulation of Natural Monopolies 61

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Technological de�nition of natural monopoly . . . . . . . . . . . . . . . . . . . . . 61
6.3 Price regulation by a fully informed regulator . . . . . . . . . . . . . . . . . . . . 63

6.3.1 Optimal linear price Ramsey-Boiteux pricing . . . . . . . . . . . . . . . . 63
6.3.2 Non-linear prices: Simple two-part tari�s . . . . . . . . . . . . . . . . . . 65
6.3.3 Peak-Load Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.1 Natural Monopoly. Linear pricing and Ramsey-Boiteux pricing . . . . . . 69
6.4.2 Peak-Load pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Investments 72

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Forward Contracts 75

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9 Measuring Market Power 76

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

10 Collusion 77

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

11 Renewable Policies 78

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

12 Exams 79

12.1 Exam November 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2



Chapter 1

Electricity markets. Overview

The objective of this chapter is to provide a general overview of the restructuring process of
electricity markets that has taken place in the last years. Electricity markets have been liber-
alized in the last two decades. In this block we study four papers that analyse that process in
detail. Those papers have been written for prominent researchers that has been involve in the
liberalization process of electricity markets in Europe and United States.

Based on those papers, we could identify the main problems in the restructuring process, and
how we could use those lessons to analyse the current challenges in electricity markets.

The authors analyse the restructuring process using di�erent approaches, however there are
many ideas that appear recursively in the papers. Try to identify those key aspects and try to
think how those main aspects a�ect other utilities rather than electricity.

1.1 Borenstein, S., 2002, "The Trouble with Electricity Markets: Under-
standing California's Restructuring Disaster," Journal of Economic Per-

spectives, 16, 1, 191-211.

Question 1: Which are the characteristics of electricity markets that facilitate the exercise
of market power?

• Demand is di�cult to forecast.

• Demand is insensitive to price �uctuations.

• Supply faces binding constraints at peak times.

• Storage is prohibitively costly.

• Demand and supply have to match all the time.

Question 2: Which are the market designs proposed by Borenstein to mitigate market power
in electricity markets?

• Long-term contracts between wholesale buyers and sellers.

• Real-time retail pricing of electricity, which indicates to the �nal consumer on an hourly
basis when electricity is more or less costly to consume.

Question 3: Which is the role of long-term contracting in electricity markets? How long-term

contracting could contribute to mitigate market power?
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• When a �rm has sold some output in advance, it has less incentive to restrict its output
in the spot market in an attempt to push up prices in that market, since it does not receive
the higher spot price on the output it has already sold through a forward contract.

• The incentive of a generating company to exercise market power will depend on its net
purchasing position in the market at a given point in time.

� If a �rm were a large net seller, it would likely have an incentive to restrict output
to raise price.

� If it had sold much of its output under forward contracts,then it would have much
less incentive to restrict its output to increase the spot price.

Question 4: How real time pricing could contribute to mitigate market power?

• Real time pricing would prevent extreme price spikes.

• It would also reduce the �nancial incentive of sellers to exercise market power, since one
�rm's reduction of output would have a smaller e�ect on price than it does when demand
is completely price-inelastic.

• The e�ect of real-time pricing also has very important implications for the negotiation of

long-term contracts. If sellers, at the time of negotiation, believe that real-time pricing
is likely, then they will reduce their forecasts of the average spot prices they would be able
to earn if they did not sell through a long-term contract. As a result, the sellers will be
willing to accept a lower long-term contract price than they otherwise would.

1.2 Joskow, P., 2008, "Lessons Learned from Electricity Market Liberaliza-
tion," The Energy Journal, Special Issue on the Future of Electricity,

9-42.

Question 1: Which are the characteristics of electricity markets that facilitate the exercise
of market power?

• Generator market power arises as a consequence of transmission constraints that limit
the geographic expanse of competition.

• Generation ownership concentration within constrained import areas.

• The non-storability of electricity.

• The very low elasticity of demand for electricity

Question 2: Which are the basic features that guarantees a propermarket design in electricity
markets?

• Transparent organized spot markets for energy and ancillary services (day-ahead and real
time balancing).

• Locational pricing of energy re�ecting the marginal cost of congestion and losses at each
location.

• The integration of spot wholesale markets for energy with the e�cient allocation of scarce
transmission capacity.

• Auctioning of transmission rights to hedge congestion, serve as a basis for incentives for
good performance by system operators and transmission owners, and partially to support
new transmission investment.
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• An active demand side that can respond to spot market price signals.

• Forward contracts to mitigate market power.

Question 3: Could you identify bad practises that induce a lack of investment in trans-

mission capacity? Could an only market mechanism induce the correct investment decision in
transmission capacity

• Fragmented transmission ownership.

• Separation of system operations from transmission maintenance and investment.

• Poorly designed incentive regulation mechanisms (Joskow, 2005).

• Relying primarily on market-based �merchant transmission� investment, that is
where new transmission investments must be fully supported by congestion rents (the
di�erence in locational prices times the capacity of a new link) is likely to lead to ine�cient
investment in transmission capacity (Joskow and Tirole, 2005).

1.3 Newbery, D., 2005, "Electricity Liberalization in Britain: The Quest
for a Satisfactory Wholesale Market Design,", The Energy Journal, 26,
43-70.

Question 1: Can you enumerate some of the ideas proposed by Newbery to increase compe-

tition in electricity markets?

Newbery proposed a market design similar to the one proposed in the previous papers.
His paper is relevant because he also analyses the role of market structure to guarantee that
the electricity markets work properly.

1.4 Wilson, R., 2002, "Architecture of Power Markets," Econometrica, 70,
4, 1299-1340.

1.4.1 Integrated vs unbundled market

Question 1: Wilson de�ne three main points to de�ne the role of the System Operator

(SO), and to determine which market design is the best (integrated systems vs. unbundled
systems). Could you identify them?

• Allocate multiple scarce resources and to account for other constraints that are not priced
explicitly,

• Enabling market participants to contest the prices derived from this optimization by
o�ering better terms, and

• Taking advantage of participants' superior information about local factors a�ecting schedul-
ing and operations of their own plants.

Question 2: Can you identify the main weaknesses of integrated systems?

• In some cases prices are related vaguely to optimized shadow prices on scarce resources.
−→ The di�erence between the injection prices at two locations can be interpreted as the
implied scarcity value of transmission between these locations, but it is only by solving a
large set of equations that one might infer the implicit shadow prices on the transmission
constraints enforced by the engineers. In contrast, unbundled systems are more explicit,
and more important, every price can be contested by competing o�ers.
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• Pricing is especially vulnerable to incentive e�ects. −→ Forward contracts can be di�cult
to be modelled and those could cause incomplete markets.

• Pricing is distorted whenever optimization is imperfect. −→ Lack of information on
suppliers' costs could make prices uninformative.

Question 3: Model comparison. Under which circumstances integrated systems perform

better than unbundled systems?

• When optimization to meet system constraints is more important than participants' �exi-
bility, and

• Shadow prices on system constraints are more accurate measures of opportunity costs than
clearing prices in markets.

1.4.2 Market Microstructure

Question 1: When the transmission line is congested, the dispatch in the market could follow
two approaches. Could you explain the approach proposed in the NordPool and the approach
proposed in California? Which are the main di�erences between both approaches? In the
California market design, the suppliers play a game called the dec game; could you explain the
logic behind that game and its economic implications?

• In the NordPool the SO raises the price charged in the importing zone for withdrawing
power, and to reduce the price paid in the exporting zone for injecting power, until the net
�ow matches the available capacity; the di�erence between these two zonal energy prices is
then the usage fee charged for �ows from the exporting zone to the importing zone� and
equal credit is given for counter�ows. In e�ect, NordPool uses the inframarginal bids in the
supply and demand functions submitted in each zone as o�ers to increment or decrement
energy output.

• Zonal pricing in an unbundled system like California's enables strategies like the following
� called the dec game. A supplier who anticipates intrazonal congestion a�ecting his
injection node can sell a quantity 3Q in the day-ahead energy market at its clearing price
P when he knows that in real time the SO will be forced to invoke the dec he o�ers for the
quantity 2Q at the spot price p∗, which is typically lower than P when decs are invoked,
or at his bid price p, which is even lower (even negative) when his dec is invoked out of
merit order.

The net result is that the supplier collects a pro�t [P − p∗]2Q or even [P − p]2Q on the
extra quantity 2Q that he knew initially he would not produce.

The adverse consequences could be long-term if anticipated pro�ts from the dec game
induce an entrant to build a new plant in the most congested area, the opposite of what is
required for e�ciency.
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Chapter 2

Electricity auction designs: Uniform

and discriminatory price auctions

The aim of this chapter is to study the impact that the structural parameters of the model

(production capacity and demand; but also, production costs, transmission capacity and trans-
mission costs), and the market design (uniform and discriminatory price auction) have on the
equilibrium in electricity auctions.

2.1 Theory

2.1.1 Set up and timing

Set up: There are two players with production capacity k1 and k2, where k1 > k2. The level of
demand, θ is independent of market price, i.e., perfectly inelastic. Moreover, θ ∈ [k2, k1+k2], i.e.,
the demand is large enough to guarantee that at least one player faces a positive residual demand.

Timing: Having observed the realization of demand θ, each player simultaneously and indepen-
dently submits a bid specifying the minimum price at which it is willing to supply up to its
capacity, bi ∈ [bmin, P ], i = 1, 2, where bmin and P are determined by the auctioneer.1 Let
b ≡ (b1, b2) denote a bid pro�le. On basis of this pro�le, the auctioneer calls players into op-
eration. If players submit di�erent bids, the capacity of the lower-bidding player is dispatched
�rst. If the capacity of the lower-bidding player is not su�cient to satisfy total demand, the
higher-bidding player's capacity, is then dispatched to serve residual demand. If the two players
submit equal bids, they are dispatched in proportion to their production capacities.

The output allocated to supplier i, i = 1, 2, denoted by qi(b; θ, k), is given by

qi(b; θ, k) =


min {θ, ki} if bi < bj
ki

ki + kj
θ if bi = bj

max {0, θ − kj} if bi > bj

(2.1)

Finally, the payments are worked out by the auctioneer. When the auctioneer runs a uniform
price auction, the price received by a player for any positive quantity dispatched by the auctioneer
is equal to the higher o�er price accepted in the auction. Hence, for a given realization of demand
θ and a bid pro�le b ≡ (b1, b2), player i's pro�ts, i = 1, 2, can be expressed as

1In this section, we set bmin = 0, but it is important to notice that the setting the minimum bid has important
consequences determining the equilibrium.
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Figure 2.1: Zero production costs. Equilibrium areas

πui (b; θ, k) =


bj min {θ, ki} if bi < bj and θ > ki

bi
ki

ki + kj
θ if bi = bj

bi max {0, θ − kj} otherwise

(2.2)

When the auctioneer runs a discriminatory price auction, the price received by a player for
any positive quantity dispatched by the auctioneer is equal to its own o�er price. Hence, for a
given realization of demand θ and a bid pro�le b ≡ (b1, b2), player i's pro�ts, i = 1, 2, can be
expressed as

πdi (b; θ, k) =


bi min {θ, ki} if bi < bj

bi
ki

ki + kj
θ if bi = bj

bi max {0, θ − kj} otherwise

(2.3)

2.1.2 Uniform price auction. Equilibrium

Proposition 1. In the presence of production capacity constraints and zero production costs, the
characterization of the equilibrium falls into one of the next two categories.

i Low demand (area A). An unique pure strategies exists where the suppliers submit a bid
equal to their production costs.

ii High demand (area B). Multiplicity of pure strategies equilibrium exist where one of
the suppliers submit the maximum bid allowed by the auctioneer and the other supplier
submits a bid that make undercutting unpro�table.

Proof. When the demand is low (area A), both suppliers have enough production capacity to
satisfy the demand. Therefore, they compete �ercely to be dispatched �rst in the auction by
submitting a bid equal to their production cost (bi = bj = c = 0 ∀i, j).

When the demand is high (area B), at least one of the suppliers face a positive residual
demand, and it has incentives to satisfy the residual demand by submitting the maximum price
allowed by the auctioneer. In that case, supplier i can guarantees for itself a pro�t equal to
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P (θn − kj), where P is the maximum price allowed by the auctioneer and (θ − kj) is supplier
i's residual demand. To make undercutting unpro�table, supplier j can submit a bid bi such
that P (θn − kj) = biki. In that case supplier i don't have incentives to deviate, and supplier
j neither, since it sells its total production capacity kj at the maximum price allowed by the

auctioneer. Therefore, bi = P ; bj ∈ [0, bi] =

[
0,
P (θn − kj)

ki

]
∀i, j de�nes a Nash Equilibrium

2.1.3 Discriminatory price auction. Equilibrium

Lemma 1. In a discriminatory price auction with production capacity constrained and zero pro-
duction costs suppliers, when the demand is low (area A), the equilibrium is in pure strategies,
when the demand is high (area B), a pure strategies equilibrium does not exist (�gure 2.1).

Proof. When the demand is low (area A), both suppliers have enough capacity to satisfy total
demand in both markets. Therefore, they compete �ercely to be dispatched �rst in the auction.
Hence, the equilibrium is the typical Bertrand equilibrium where both suppliers submit bids
equal to their marginal cost.

When the demand is high (area B), at least one of the suppliers faces a positive residual
demand. Therefore, a pure strategies equilibrium does not exist. First, an equilibrium such that
bi = bj = c does not exist because at least one supplier has the incentive to increase its bid and
satisfy the residual demand. Second, an equilibrium such that bi = bj > c does not exist because
at least one supplier has the incentive to undercut the other to be dispatched �rst. Finally, an
equilibrium such that bj > bi > c does not exist because supplier i has the incentive to shade
the bid submitted by supplier j.

A pure strategies equilibrium does not exist when the demand is intermediate or high. How-
ever, the model satis�es the properties established by Dasgupta and Maskin (1986) which guar-
antee that a mixed strategies equilibrium exists.

Lemma 2. In a discriminatory price auction with production capacity constrained and zero pro-
duction costs suppliers, in a mixed strategies equilibrium, no supplier submits a bid lower than
bid (bi) such that biki = P (θ − kj). Moreover, the support of the mixed strategies equilibrium
for both suppliers is S = [max {b1, b2} , P ].

Proof. Given that the demand is inelastic, the supplier's pro�t is maximized when it sets the
reservation price. Therefore, the reservation price is the upper-bound of the support.

Each supplier can guarantee for itself the payo� P (θ − kj), since each supplier can always
submit the highest bid and satisfy the residual demand. Therefore, in a mixed strategy equilib-
rium, no supplier submits a bid that generates a payo� equilibrium lower than P (θ−kj). Hence,
no supplier submits a bid lower than bi, where bi solves biki = P (θ − kj).

No supplier can rationalize submitting a bid lower than bi, i = 1, 2. In the case when bi = bj ,
the support is symmetric. In the case when bi < bj , supplier i knows that supplier j never
submits a bid lower than bj . Therefore, in a mixed strategy equilibrium, supplier i never sub-
mits a bid bi such that bi ∈

(
bi, bj

)
, because supplier i can increase its expected payo� choosing

a bid bi such that bi ∈
[
bj , P

]
. Hence, the equilibrium strategy support for both suppliers is

S = [max {b1, b2} , P ]

Using Lemmas one and two, I characterize the equilibrium.
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Proposition 2. In a discriminatory price auction with production capacity constrained and zero
production costs suppliers, the characterization of the equilibrium falls into one of the next two
categories.

i Low demand (area A). The equilibrium strategies pair is in pure strategies.

ii High demand (area B). The equilibrium strategies pair is in mixed strategies.

Proof. When the demand is low (area A), suppliers compete �ercely to be dispatched �rst in the
auction and the equilibrium is the typical Bertrand equilibrium in which both suppliers submit
bids equal to their marginal cost.

When the demand is high (area B), the equilibrium is in mixed strategies. The support of
the mixed strategies equilibrium is de�ned by lemma 2. The cumulative distribution function is
worked out following the next steps:

First, the pro�t function for a given bid b is de�ned by

π1(b) = b [F2(b)(θ − k2) + (1− F2(b))(k1)] (2.4)

where, F2(b) is the probability that supplier 2's bid is lower than supplier 1's bid. Therefore,
with probability F2(b) supplier 1 is dispatched last and it satis�es the residual demand. There-
fore, in that case, supplier 1's pro�ts are π1(b) = F2(b)b(θ − k2). With probability (1 − F2(b))
supplier 2 is dispatched �rst, and it satis�es the total demand. Therefore, in that case, supplier
1's pro�ts are π1(b) = (1− F2(b))b(θ − k2).

By doing some algebra in equation 2.4, we obtain:

π1(b) = −bF2(b) [(k1)− (θ − k2)] + b(k1)⇒

F2(b) =
b(k1)− π1(b)

b((k1) + (θ − k2)
(2.5)

Second, in the lower bound the support, the value of the cumulative distribution function is
zero. Otherwise, one supplier can undercut the other and it increases its pro�t. Therefore, in
the lower bound of the support equation 2.5 becomes π1(b) = b(k1).

Third, the pro�t for any bid in the support is the same. Otherwise, the suppliers increases
its pro�t by reassigning probabilities. Therefore, π1(b) = π1(b)∀b ∈ [b, P ]. Therefore, equation
2.5 can be rewritten as:

F2(b) =
b(k1)− b(k1)

b((k1) + (θ − k2)
=

(k1)

(k1)− (θ − k2)
(b− b)
b

(2.6)

Following the same approach it easy to derive the cumulative distribution function for supplier
2.

2.2 Exercises

2.2.1 Exercise 1. Nash equilibrium in uniform and discriminatory price auc-
tions

In an electricity market, there are two suppliers, where supplier 1's production capacity is k1 =
8.7, and supplier 2's production capacity is k2 = 6.5. The demand is θ = 10 and the maximum
price allowed by the auctioneer is P = 10.
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1. Uniform price auction I

Question 1. Is the pair of strategies (b1 = 9, b2 = 1) a pure strategies Nash equilib-

rium?

A pair of strategies is a Nash equilibrium if none of the players has incentives to deviate
unilaterally. Therefore, it is necessary to study suppliers' pro�t functions and analyze if some of
them has incentive to deviate.

π1(b1 = 9, b2 = 1) = b1(θ − k2) = 9(10− 6.5) = 31.5

π2(b1 = 9, b2 = 1) = b1k2 = 9(6.5) = 58.5

Supplier 1 has two possible options in case that it deviates: First, it can undercut its rival,
and sell her entire production capacity. Second, it can raise her bid to the maximum possible
bid allowed by the auctioneer.

If supplier 1 undercuts supplier 2, her pro�ts are de�ned by:

π1(b1 = 1, b2 = 1) = b1(k1) = 1(8.7) < π1(b1 = 9, b2 = 1) = 31.5.

Therefore, supplier 1 does not want to undercut supplier 2. Hence, we could have a possible
candidate to be a Nash Equilibrium. However, we still have to verify that supplier 1 does not
want to raises her bid. If supplier 1 raises her bid, her pro�ts are de�ned by:

π1(b1 = 10, b2 = 1) = b1(θ − k2) = 10(10− 6.5) = 35 > π1(b1 = 9, b2 = 1) = 31.5.

Therefore, supplier 1 has incentives to deviate. Hence, the pair of strategies (b1 = 9, b2 = 1)
cannot be a pure strategies Nash equilibrium.

Check that supplier 2 does not have incentives to deviate.

Question 2. Can you modify one of the bids in the pair (b1 = 9, b2 = 1) to obtain a

pure strategies Nash equilibrium?

If supplier 1 raises her bid from 9 to 10, it increases her pro�ts from 31.5 to 35. Moreover,
supplier 1 does not have incentives to undercut supplier 2, since by doing that her pro�ts decrease
from 31.5 to 8.7. Therefore, given that supplier 2 has submitted a bid equal to 1, the best strat-
egy of supplier 1 is to submit a bid equal to 10. Therefore, the pair of strategies (b1 = 10, b2 = 1)
could be a potential pure strategies Nash equilibrium.

To guarantee that it is a pure strategies Nash equilibrium, we have to check that supplier 2
has no incentives to deviate. Supplier 2's pro�ts are de�ned by:

π2(b1 = 10, b2 = 1) = b1(k2) = 10(6.5) = 65.

Supplier 2 cannot increases her pro�ts, since it is selling her entire production capacity at
the maximum price allowed by the auctioneer.

Therefore, we have found a Nash equilibrium in which supplier 1 submits a bid equal to 10,
and supplier 2 submits a bid equal to 1.
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Question 3. Which is the minimum bid that player 2 can submit to sustain the

equilibrium in which player 1 submits the maximum bid allowed by the auctioneer?

In the two previous questions, we have analyzed if a pair of strategies is a Nash equilibrium. In
this question, we try to �nd a general formula that guarantees the existence of a Nash equilibrium.

If supplier 1 submits the maximum bid allowed by the auctioneer, it only can deviate by
undercutting supplier 2. Which is the minimum bid that supplier 2 has to submit to make
undercutting unpro�table? This is the key question to �nd a pure strategies equilibrium in which
supplier 1 submits the maximum bid allowed by the auctioneer. When supplier 1 submits the
maximum bid allowed by the auctioneer, her pro�ts are de�ned by: P (θ−k2). Therefore, supplier
2 has to submit a bid that makes undercutting unpro�table. That bid is de�ned implicitly by:

P (θ − k2) = b1k1.

And implicitly by:

b1 =
P (θ − k2)

k1
=

10(10− 6.5)

8.7
= 4.

Question 4. De�ne the set of strategies for which supplier 1 submits the maximum

bid allowed by the auctioneer.

The pair of strategies that de�ne that equilibrium is:

b1 = P ; b2 ∈ [0, b1]

Question 5. Find graphically that equilibrium, and draw supplier 1's pro�ts and

supplier 2' pro�ts.

A pair of strategies that sustains that equilibrium, and suppliers' equilibrium pro�ts are in
�gure 2.2.

2. Uniform price auction II

In the previous subsection, we studied step by step the way to �nd the set of pure strategies
Nash equilibria in which the supplier with higher production capacity (supplier 1) submits the
maximum bid allowed by the auctioneer. In this subsection, we proceed in the same way to �nd
the set of pure strategies Nash equilbria in which the supplier with lower production capacity
(supplier 2) submits the maximum bid allowed by the auctioneer.

Question 1. Is the pair of strategies (b1 = 1, b2 = 8) a pure strategies Nash equilib-

rium?

A pair of strategies is a Nash equilibrium if none of the players has incentives to deviate
unilaterally. Therefore, it is necessary to study suppliers' pro�t functions and analyze if some of
them has incentives to deviate.

π1(b1 = 1, b2 = 8) = b2k1 = 8(8.7) = 69.6

π2(b1 = 1, b2 = 8) = b2(θ − k2) = 8(10− 8.7) = 10.4

Supplier 2 has two possible options in case that it deviates: First, it can undercut supplier
1to sell her entire production capacity. Second, it can raise her bid to the maximum possible bid
allowed by the auctioneer.

13



If supplier 2 undercuts supplier 1, her pro�ts are de�ned by:

π2(b1 = 1, b2 = 1) = b1(k2) = 1(6.5) < π2(b1 = 1, b2 = 8) = 10.4.

Therefore, supplier 2 does not want to undercut supplier 1, and we could have a possible
candidate for a Nash equilibrium. However, we still have to verify that supplier 2 does not want
to raises her bid. If supplier 2 raises her bid, her pro�ts are de�ned by:

π2(b1 = 1, b2 = 10) = b2(θ − k1) = 10(10− 8.7) = 13 > π1(b1 = 1, b2 = 8) = 10.4.

Therefore, supplier 2 has incentives to deviate, and the pair of strategies (b1 = 1, b2 = 8)
cannot be a pure strategies Nash equilibrium.

Check that supplier 1 does not have incentives to deviate.

Question 2. Can you modify one of the bids in the pair (b1 = 1, b2 = 8) to obtain a

pure strategies Nash equilibrium?

If supplier 2 raises her bid from 8 to 10, it increases her pro�ts from 10.4 to 13. Moreover,
supplier 2 does not have incentives to undercut supplier 1, since by doing that her pro�ts de-
crease from 10.4 to 6.5. Therefore, given that supplier 1 has submitted a bid equal to 1, the
best strategy for supplier 2 is to submit a bid equal to 10. Therefore, the pair of strategies
(b1 = 1, b2 = 10) could be a potential pure strategies Nash equilibrium.

To guarantee that it is a pure strategies Nash equilibrium, we have to check that supplier 1
has no incentives to deviate. Supplier 1' pro�ts are de�ned by:

π1(b1 = 1, b2 = 10) = b2(k1) = 10(8.7) = 87.

Supplier 1 cannot increase her pro�ts, since it is selling her entire production capacity at the
maximum price allowed by the auctioneer.

Therefore, we have found a Nash equilibrium in which supplier 1 submit a bid equal to 1,
and supplier 2 submits a bid equal to 10.

Question 3. Which is the minimum bid that player 1 can submit to sustain the

equilibrium in which player 2 submits the maximum bid allowed by the auctioneer?

In the two previous questions, we have analyzed when a pair of strategies is or it is not a pure
strategies Nash equilibrium. In this question, we try to �nd a general formula that guarantees
the existence of a Nash equilibrium.

If supplier 2 submits the maximum bid allowed by the auctioneer, it only can deviate by
undercutting supplier 1. Which is the minimum bid that supplier 1 has to submit to make
undercutting unpro�table? This is the key question to �nd a pure strategies equilibrium in which
supplier 2 submits the maximum bid allowed by the auctioneer. When supplier 2 submits the
maximum bid allowed by the auctioneer, her pro�ts are de�ned by: P (θ−k1). Therefore, supplier
1 has to submit a bid that makes undercutting unpro�table. That bid is de�ned implicitly by:

P (θ − k1) = b2k2.

And implicitly by:

b2 =
P (θ − k1)

k2
=

10(10− 8.7)

6.5
= 2.

14



Question 4. De�ne the set of strategies for which supplier 2 submits the maximum

bid allowed by the auctioneer.

The pair of strategies that de�ne that equilibrium is:

b1 ∈ [0, b2]; b2 = P.

Question 5. Find graphically that equilibrium, and draw supplier 1's pro�ts and

supplier 2' pro�ts.

A pair of strategies that sustains that equilibrium, and suppliers' equilibrium pro�ts are in
�gure 2.2.

3. Discriminatory price auction

In the previous two sections, we have studied the uniform price auction, and we have found

two interesting thresholds: b1, and b2, where b1 =
P (θ − k2)

k1
=

10(10− 6.5)

8.7
= 4, and b2 =

P (θ − k1)
k2

=
10(10− 8.7)

6.5
= 2. By using that information, we will characterize the equilibrium

in a discriminatory price auction.

Question 1. Can be a pure strategies Nash equilibrium in the bid interval b ∈
[0,min {b1, b2}]?

It is not possible to sustain a pure strategies Nash equilibrium in that interval, since both
suppliers can increase their pro�ts by submitting the maximum bid allowed by the auctioneer.
Therefore, if b < min {b1, b2}, both suppliers have incentives to deviate by submitting the max-
imum bid allowed by the auctioneer.

Question 2. Can be a pure strategies Nash equilibrium in the bid interval b ∈
[min {b1, b2} ,max {b1, b2}]?

It is not possible to sustain a pure strategies Nash equilibrium in that interval, since the
supplier with higher production capacity (supplier 1) can increase her pro�ts by submitting the
maximum bid allowed by the auctioneer. Therefore, if min {b1, b2} ≤ b ≤ max {b1, b2}, the
supplier for which b is larger has incentives to deviate by submitting the maximum bid allowed
by the auctioneer.

Question 3. Can be a pure strategies Nash equilibrium in the bid interval b ∈
[max {b1, b2} , P ]?

No, since both suppliers have incentives to start a price war undercutting each other until
they reach max {b1, b2}, where the supplier with higher b has incentives to deviate by submitting
the maximum bid allowed by the auctioneer. At that bid, the price war starts again generating
a circle in suppliers' strategies.

Question 4. In questions 1, 2 and 3, we have shown that when the auction is dis-

criminatory, a pure strategies equilibrium does not exist. Can you de�ne the bid

interval in which the suppliers will randomize?

The suppliers never submit a bid lower than b ≤ min {b1, b2}, since both suppliers can submit
the maximum bid allowed by the auctioneer with probability one to increase their pro�ts.
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Structural parameters k1 = 8.7; k2 = 6.5; θ = 10

Market design parameters P = 0; P = 10
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Figure 2.2: Nash equilibrium
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The suppliers never submit a bid in the interval min {b1, b2} ≤ b ≤ max {b1, b2}, since the
supplier with higher production capacity can submit the maximum bid allowed by the auctioneer
with probability one to increase her pro�ts. The supplier with lower production capacity knows
that, and it never submits a bid lower than b1, since it can submit a bid an ε lower than b1 with
probability one to increase her pro�ts.

Therefore, both suppliers will randomize in the interval b ∈ [max {b1, b2} , P ].

Question 5. Find the probability that the suppliers assign to each bid in the support

de�ned in question 4.

The probability distribution function has been calculated in the theory section. The cumu-
lative distribution functions for each supplier are in �gure 2.4.

2.2.2 Exercise 2. Uniform Price Auction

In an electricity market, there are two suppliers where supplier 1's production capacity is k1 = 8.7,
and supplier 2's production capacity is k2 = 6.5, the demand is θ = 10 and the maximum price
allowed by the auctioneer is P = 10.

Question 1: Find the two sets of pure Nash equilibrium if the auctioneer organize a

uniform price auction.

In that case there are multiplicity of pure Nash strategies equilibrium. The �rst set of Nash

equilibria is de�ned by b1 = P ; b2 ∈ [0, b1] =

[
0,

10(10− 6.5)

8.7

]
= [0, 4.02]. The second set of

Nash equilibria is de�ned by b1 =∈ [0, b2] =

[
0,

10(10− 8.7)

6.5

]
= [0, 2].

Question 2: Assume that the players can submit only 11 bids equally split between

1 and 10, and that they have to o�er their entire production capacity at that bid.
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If the auction is uniform, build a matrix with those 11 bids. For each pair of bids,

work out suppliers' payo�s. Find the Nash equilibrium in the uniform price auction

using that payo� matrix.

Those two sets of Nash equilibria are highlighted in yellow in the matrix below.2

Question 3: By using a merit order curve, draw the combination of bids that de�ne

the two sets of pure Nash equilibria.

Those two sets of equilibria can also be represented using merit order curves (�gure 2.2).
The top graph in �gure 2.2 represents the equilibrium in which supplier 2 submits the maximum
price allowed by the auctioneer and supplier 1 submits a bid that makes undercutting unprof-
itable. The bottom graph in �gure 2.2 represents the equilibrium in which supplier 1 submits the
maximum price allowed by the auctioneer and supplier 2 submits a bid that makes undercutting
unpro�table. As can be observed in the payo� matrix and in �gure 2.2, supplier 1 prefers the
equilibrium in which it submits the lower bid, and supplier 2 prefers the equilibrium in which it
submits the lower bid.

Therefore, the relevant question is which supplier will submit the larger bid allowed by the
auctioneer and which supplier will free ride? To address that question some equilibrium selec-
tion techniques can be applied: The risk dominance method proposed by Harsanyi and Selten
(1988), the robustness to strategic uncertainty method proposed by Andersson, Argenton, and
Weibull (2014), and the quantal response method proposed by McKelvey and Palfrey (1998). We
will study those methods in the chapter that studies the equilibrium selection in uniform price
auctions (hawk-dove games).

2.2.3 Exercise 3. Discriminatory Price Auction

In an electricity market, there are two suppliers where supplier 1's production capacity is k1 = 8.7,
and supplier 2's production capacity is k2 = 6.5, the demand is θ = 10 and the maximum price
allowed by the auctioneer is P = 10.

Question 1: Assume that the players can submit only 11 bids equally split between

1 and 10, and that they have to o�er their entire production capacity at that bid.

If the auction is discriminatory, build a matrix with those 11 bids. For each pair

of bids, work out suppliers' payo�s. By using that matrix, can do you �nd a pure

strategies Nash equilibrium?

As can be observed in the payo� matrix above, when the auction is discriminatory it doesn't
exist a pure strategies equilibrium. When the suppliers compete in prices, they end up in a price
war in which they undercut each other until arrive to a price low enough that makes undercut-
ting unpro�table. At that price, one of the suppliers has incentive to deviate by submitting the
maximum bid allowed by the auctioneer. Then, the suppliers start a price war again. Therefore,
the suppliers play their strategies following circles.

Question 2: By using a merit order curve, draw any combination of bids and justify

2It is important to notice that the set of strategies in that matrix are index and they do not correspond to the
real strategies. We use indexes instead of real strategies to avoid the use of decimals and also because this matrix
will be the one implemented in the experiment that we will play later, and it is important to keep the payo�
matrix as "neutral" as possible. Therefore, the index 1 corresponds to the strategy 1, the index 1 corresponds to
the strategy 1.9, the index 2 to the strategy 2.8, and so on until index 10 that corresponds to the strategy 10.
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Structural parameters k1 = 8.7; k2 = 6.5; θ = 10

Market design parameters P = 0; P = 10
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Figure 2.3: (Non-existence) Nash equi-
librium
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the existence (or not existence) of a pure Nash equilibria.

The non-existence of a Nash equilibrium can be also observed in �gure 2.3, where any of the
suppliers that submits the lower bid can increase its pro�t by undercutting the supplier that
submits the maximum bid allowed by the auctioneer.3

Question 3: By using equation 2.6 draw the cumulative distribution functions for

suppliers 1 and 2 that de�ne the mixed strategies equilibrium.

As we have proved above, in a discriminatory price auction a pure strategies doesn't exist.
However, the auction satis�es the properties established by Dasgupta and Maskin (1986) which
guarantee that a mixed strategies equilibrium exists. Figure 2.4 represents the mixed strategies
equilibrium for both suppliers. As can be observed, the supplier with higher production capacity
(and higher residual demand) is the one that submits higher bids with higher probability.

Bibliography

Andersson, O., Argenton C. and Weibull J., 2014, "Robustness to Strategic Uncertainty," Games

and Economic Behavior, 85, 272-288.
(Paper that has been quoted, but it is not necessary to read).

Dasgupta, P., and Maskin E., 1986, "The Existence of Equilibrium in Discontinuous Economic
Games, II: Applications," Review of Economic Studies, 53, 27-41.
(Paper that has been quoted, but it is not necessary to read).

Deneckere, R., and Kovenock D., 1996, "Bertrand-Edgeworth Duopoly with Unit Cost Asymme-
try," Economic Theory, 8, 1-25.
(This paper is very useful to understand the discriminatory price auction).

3For a complete proof of the non-existence of a pure Nash equilibrium check lemma 1 in the theory section.

18



Figure 2.4: Mixed strategies equilibrium
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Chapter 3

Transmission

The purpose of this chapter is to present some of the key aspects in the integration process in
Europe. It also introduces two relevant elements in the design of electricity auctions: the design
of transmission tari�s and the delineation of bidding zones.

In the �rst three sections, we study some of the main documents that study the design of
electricity markets in Europe. In the fourth section, we present a theoretical model to characterize
the equilibrium in electricity markets in the presence of transmission constraints and transmission
tari�s. We conclude the chapter with an exercise.

3.1 Integration of electricity markets in Europe. The role of the system
operator.

This section is based on the next document:

European Commission, 2015, "Options for Future European Electricity System Operation."
(∗) Only the �rst 11th pages.

The European power sector is undergoing important changes. Especially the increasing pen-
etration of renewable energy sources (RES), as part of the transition to a de-carbonised power
system, results in a need to continuously assess and decide upon (the adoption of) alternative
technologies, policies and practices. We study the main points presented in European Commis-
sion (2015) to improve the design of electricity markets.

The main goals that should lead any proposed changes to system operations and plan-

ning:

1. Security of supply (secure for everybody)

2. Market facilitation (a�ordable and competitive pricing)

3. Integration of RES (environmentally sustainable).

The system planning and operations that should be taken into account in the new regu-
lation scenario are the next ones:

1. Long-term network planning (years),

2. System operation before real-time (months, day-ahead, intra-day),

3. Real-time system operation (< 15 minutes)

20



According with the European Commission, the long-term planning and system operator be-
fore real time operations should be centralized. The bene�ts from centralization are mainly
related to:

• Network planning,

• and system operations functions such as capacity calculation, congestion management,
adequacy assessment and balancing.

To facilitate the governance of the system operator in the integration of electricity markets
in Europe, the European commission proposed the next parties which will assume di�erent roles:

• The European Commission to formulate general energy policy and directives

• European regulatory body (current ACER) with the power to independently check
the formulation and execution of methodologies, processes and procedures in line with the
general policy

• Regional Operation Centres (ROC) to execute prescribed tasks according to the for-
mulated methodologies, processes and procedures; responsible for execution

• European entity (current ENTSO-E) for development and implementation of methods
and tools for LT planning and SO. In consultation with ACER (who sets up guidelines by
request of the EC) this body develops the framework (e.g. grid codes) for execution of the
tasks by ROCs and ensures overall alignment between them, and with national TSOs.

The European entity for the development and implementation of methods and tools (current
ENTSO-E) is responsible for development of the way of working of the foreseen ROCs in line
with guidelines and/ or regulation. This is then monitored and enforced by the regulatory body
(current ACER).

The European Commission propose the next geographical partition for TSO coordination
(�gure 3.1):

• CWE+CEE,

• Nordic + Baltics,

• UK + Ireland,

• Iberia and

• Italy + SEE.

3.2 Transmission tari�s

This section is based on the next documents:

ENTSO-E, 2016, "ENTSO-E ITC Overview of Transmission Tari�s in Europe: Synthesis 2014."
(∗) Only the �rst 21st pages.

Nord Pool, 2007, "TSO Congestion Rent. How to Calculate the Congestion Rents."

Nord Pool, 2010, "Point Tari� System."
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Figure 3.1: Geographical partition for TSO coordination

In the presence of transmission constraints the equilibrium prices di�er across markets gen-
erating congestion rents.1 In a perfect competition scenario, the congestion rents are
enough to �nance the investments in transmission capacity. However, in the presence of uncer-
tainty or lumpy investments it is necessary to introduce tari�s to �nance the investments in
transmission capacity.

In the majority of the European countries, the tari� structure is based on a point of con-
nection tari� system (ENTSO-E, 2016; Nord Pool, 2010). The users of the grid are charged
for injection or outtake of electricity at a connection point in the transmission grid. The point
of connection tari� consists of two parts, a power charge and an energy charge.

The power charge covers costs for expansion, operation and maintenance of the transmis-
sion grid. It is based on annual capacity subscription for injection and outtake of electricity at
each connection point. The cost the subscriber has to pay is the product of the annual capacity
subscription and the power charge in the connection point.

The energy charge is based on the transmission losses in the transmission grid caused by
injection and outtake of electricity in di�erent connection points. It is dependent on how the
generation or load are distributed in the grid.

The power charge and the energy charge have a geographical (latitude, north/south) and a
time component (day/night, winter/spring, peak/o�-peak) that provide a long-term locational
signal on where it is optimal to add generation and load capacity from a grid perspective.2

3.3 Bidding zones

This section is based on the next document:

1The congestion rents are derived from the possibility to buy electricity in the cheap market and to sell it in
the expensive market. Nord Pool (2007) explains the algorithm to work out the congestion rents. It also explains
that in the Nord Pool, the TSO uses those rents to �nance the investments in transmission lines (Finland and
Sweden), or to reduce the price charged to consumers (Norway and Denmark).

2For a complete review of the tari� system in Europe and comparisons among countries see ENTSO-E (2016).
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Figure 3.2: Bidding zones in Europe

Ofgem, 2014, "Bidding Zones Literature Review."

A bidding zone is the largest geographical area within which market participants are able to
exchange energy without capacity allocation.

Bidding zones in Europe are currently de�ned according to di�ering criteria (�gure 3.2).

• The majority are de�ned by national borders (eg, France or the Netherlands);

• however, some are larger than national borders (eg, Austria, Germany and Luxembourg or
the Single Electricity Market for the island of Ireland)

• and some are smaller zones within individual countries (eg, Italy, Norway or Sweden).

How bidding zones can be delineated? Delineating bidding zones according to the location
of network constraints may be undertaken in a number of ways.

• Nodal pricing: The equilibrium price across markets di�ers when the transmission line is
congested.

• Zonal pricing: The equilibrium price across markets is the same even when the transmission
line is congested.

Why does bidding zone con�guration matter?

• An optimal delineation of bidding zones should promote robust price signals for e�cient

short-term utilisation

• and long-term development of the power system,

• whilst at the same time limiting system costs, including balancing costs and re-dispatch
actions undertaken by TSOs.

The delineation of bidding zones has important impacts on market e�ciency, liquidity,
issues with market power, investment signals for new generation, distributional impacts
and the cross border �ows. We analyse one by one those impacts.
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1. Impact on e�cient use of the network. The con�guration of bidding zones has im-
portant implications for system operation, providing short run signals to users of the
network that impact on the utilisation of available capacity and ultimately the overall e�-
ciency of the system. These short run signals also have a long-term impact, in�uencing
the long-term investment decisions of market players.

• Delineating bidding zones according to network constraints would allow these con-
straints to be managed by capacity allocation rather than re-dispatch (ie, ex- post
modi�cations of generation schedules undertaken by the SO), lowering constraint

management costs for the SO.

• In export-constrained regions, the average wholesale price of electricity is likely to
fall. Conversely, the average wholesale price of electricity is likely to rise in those
areas at the other side of the constraint, where demand is higher. There is therefore
a distributional impact to be considered through any recon�guration of bidding
zones.

2. Impact on market liquidity and hedging. The conventionally perceived impact on
market liquidity arising from the con�guration of bidding zones is that of falling levels

of liquidity as the number of zones increases. This is a direct result of the smaller
size of the markets, with fewer market players and as such a lower level of churn.

Lower liquidity consequences:

• Lower liquidity could mean a less clear indication of the future value of power from
the market, which adds a layer of risk which could lead to ine�cient investment, or
e�cient investment not taking place.

• A fall in liquidity could also mean an increase in the cost of risk, due to lack of
trading partners; this could well have a knock on e�ect on investment.

3. Impact on investment. The con�guration of bidding zones is crucial to provide long-run
signals that may a�ect investment decisions. The more the bidding zones con�guration re-
�ects the physical network constraints, the greater the e�ciency of the price signals for
cross-zonal network development and the price signals for generation and load investments.

There are many practical considerations that should take into account to guarantee the
correct investment decisions:

• Lumpiness and economies of scale of transmission investments.

• Uncertainties about future generation investments and demand growth.

• Di�culty of decentralising charges for reliability and quality of service.

• Transmission charges.

4. Impact on market power. The precise impact of the number of bidding zones on market
power is unclear in the literature.

• Fewer, larger bidding zones imply a large number of market players in any market
and as such greater competition and liquidity.

• Larger bidding zones may create potential market power in re-dispatch markets,
if it is assumed that larger bidding zones implies greater need for managing congestion
through re-dispatch.
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5. Impact on cross-border �ows.

• If bidding zones are not delineated according to network constraints, there is an in-
herent risk to the e�ciency of power �ows across borders.

• Prices in zones that are delineated according to network congestions are more re�ective
of local conditions whereas larger zones that su�er from internal network congestion
do not tend to accurately re�ect local conditions in their uniform wholesale prices,
potentially resulting in sub-optimal interconnector �ows.

• Optimal interconnector usage between countries would be more likely if both sides
of the interconnector use zonal pricing, as long as the zones are con�gured according
to network constraints.

3.4 Theory. Electricity Auctions in the Presence of Transmission Constraints
and Transmission Costs

This section is based on the paper:

Blázquez, M., 2018, "Electricity Auctions in the Presence of Transmission Constraints and Trans-
mission Costs," Energy Economics, 74, 605-627.

3.4.1 Set up of the model

There exist two electricity markets, market North and market South, that are connected by a
transmission line with capacity T . When suppliers transmit electricity through the grid from
one market to the other, they face a symmetric and linear transmission tari� t.

There exist two duopolists with capacities kn and ks, where subscript n means that the
supplier is located in market North and subscript s means that the supplier is located in mar-
ket South. The suppliers' marginal costs of production are cn and cs for production levels less
than the capacity, while production above the capacity is impossible (i.e., in�nitely costly).
Suppliers are symmetric in capacity kn = ks = k > 0 and symmetric in production costs
cn = cs = c = 0. The level of demand in any period, θn in market North and θs in market
South, is independent across markets and independent of market price, i.e., perfectly inelastic.
Moreover, θi ∈ [θi, θi] ⊆ [0, k + T ], i = n, s.

The capacity of the transmission line can be lower than the installed capacity in each market
T ≤ k, i.e., the transmission line could be congested for some realization of demands (θs, θn).
When T > k, the transmission line is not congested and the equilibrium is as in Fabra et al.
(2006).

3.4.2 Timing of the game.

Having observed the realization of demands θ ≡ (θs, θn), each supplier simultaneously and in-
dependently submits a bid specifying the minimum price at which it is willing to supply up to
its capacity, bi ≤ P , i = n, s, where P denotes the "market reserve price", possibly determined
by regulation. P can be interpreted as the price at which all consumers are indi�erent between
consuming and not consuming, or a price cap imposed by the regulatory authorities (von der
Fehr and Harbord, 1993).

Let b ≡ (bs, bn) denote a bid pro�le. On basis of this pro�le, the auctioneer calls suppliers
into operation. If suppliers submit di�erent bids, the capacity of the lower-bidding supplier is
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dispatched �rst.

The output allocated to supplier i, i = n, s, denoted by qi(b; θ, T ). Given the parameters of
the model, suppliers' output functions are:

qn(b; θ, T ) =

{
θn + θs if bn ≤ bs
θn − T if bn > bs

(3.1)

qs(b; θ, T ) =

{
θs + T if bs < bn

0 if bs ≥ bn
(3.2)

Finally, the payments are worked out by the auctioneer. When the auctioneer runs a dis-
criminatory price auction, the price received by a supplier for any positive quantity dispatched
by the auctioneer is equal to its own o�er price, whenever a bid is wholly or partly accepted.
Hence, for a given realization of demands θ ≡ (θs, θn) and a bid pro�le b ≡ (bs, bn), supplier i's
pro�ts, i = n, s, can be expressed as

πdn(b; θ, T ) =

{
bn(θn + θs) if bn ≤ bs
bn(θn − T ) if bn > bs

(3.3)

πds (b; θ, T ) =

{
bs(θs + T ) if bs < bn

bs(0) if bs ≥ bn
(3.4)

3.4.3 Equilibrium

As we have discussed in chapter 2, when the auction is discriminatory, the equilibrium is in
mixed strategies. Then, we present the support of the mixed strategies equilibrium, the cumula-
tive distribution function, the expected bid, and the expected pro�t.3 First, we present the case
where the transmission tari�s are zero (t > 0), then the case, where the transmission tari�s are
positive (t > 0).

Case (t = 0). The characterization of the equilibrium is given by the next set of equations:

Support of the mixed strategies equilibrium. The lower bound of the support for the

supplier located in the high-demand market is de�ned by: bn =
P (θn − T )

k
and the lower bound of

the support for the supplier located in the low-demand market is de�ned by bs =
P (θn + θs − k)

θs + T
.

Therefore, the support of the mixed strategies equilibrium for both suppliers is de�ned by

b ∈ S =
[
max

{
bi, bj

}
, P
]

=

[
P (θn − T )

k
, P

]
(3.5)

The cumulative distribution functions are de�ned by:

3In the annex in this chapter is described the procedure to work out the mixed strategies equilibrium analyti-
cally.
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Fs(b) =


0 if b < b
θn + θs
θs + T

b− b
b

= Cn(θ, k, T )
b− b
b

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
θs + T

θs + T

b− b
b

= Cs(θ, k, T )
b− b
b

if b ∈ (b, P )

1 if b = P

(3.6)

Given that bn > bs, it is easy to show that Fs(P ) is continuous in the upper bound of the
support, and that Fn(P ) is discontinuous in the upper bound of the support:

Fs(P ) =
θn + θs
θs + T

P − P (θn − T )

θn + θs
P

= Cn(θ, k, T )
P − P (θn − T )

θn + θs
P

= 1

Fn(P ) =
θs + T

θs + T

P − P (θn − T )

θn + θs
P

= Cs(θn, k, T )
P − P (θn − T )

θn + θs
P

< 1

The expected bid is determined by:

Es(b) = Cs(θ, k, T )b [ln(b)]Pb

En(b) = Cn(θ, k, T )b [ln(b)]Pb + (1− Fn(P ))P (3.7)

Given that Fn(b) is discontinuous in the upper bound of the support, to work out supplier
n's expected bid is necessary to multiply the maximum bid allowed by the auctioneer by the
probability that supplier n assigns to that bid (1− Fn(P ))P .

The expected pro�t is de�ned by:

πn = b(θs + θn)

πs = b(θs + T ) (3.8)

Case (t > 0). The characterization of the equilibrium is given by the next set of equations:

Support of the mixed strategies equilibrium. The lower bound of the support for the

supplier located in the high-demand market is de�ned by bn =
P (θn − T ) + tθs

θn + θs
, and the lower

bound of the support for the supplier located in the low-demand market is de�ned by bs =
tT

θs + T
.

Therefore, the support of the mixed strategies equilibrium for both suppliers is de�ned by

b ∈ S =
[
max

{
bi, bj

}
, P
]

=

[
P (θn − T ) + tθs

θn + θs
, P

]
(3.9)

The cumulative distribution functions are de�ned by:
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Fs(b) =


0 if b < b

(b− b)(θn + θs)

b [(θs + θn)− (θn − T )]− t θs
if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
(b− b)(θs + T )

b(θs + T )− tT
if b ∈ (b, P )

1 if b = P

(3.10)

The expected bid is determined by:

Es(b) =

∫ P

b
bfs(bs)∂b =

∫ P

b
b
(θn + θs)(b(θs + T )− tθs)

(b(θs + T )− tθs)2
+ (1− Fs(P ))P

=
(θn + θs)(b(θs + T )− tθs)

(θs + T )2[
ln

(
P (θs + T )− tθs
b(θs + T )− tθs

)
− tθs
P (θs + T )− tθs

+
tθs

b(θs + T )− tθs

]
En(b) =

∫ P

b
bfn(bs)∂b =

∫ P

b
b
(θs + T )(b(θs + T )− tT )

(b(θs + T )− tT )2
+ (1− Fn(P ))P

=
(b(θs + T )− tT )

(θs + T )[
ln

(
P (θs + T )− tT
b(θs + T )− tT

)
− tT

P (θs + T )− tT
+

tT

b(θs + T )− tT

]
+(1− Fn(P ))P (3.11)

Given that Fn(b) is discontinuous in the upper bound of the support, to work out supplier
n's expected bid is necessary to multiply the maximum bid allowed by the auctioneer by the
probability that supplier n assigns to that bid (1− Fn(P ))P .

The expected pro�t is de�ned by:

πn = b(θs + θn)− tθs
πs = b(θs + T )− tT (3.12)

3.4.4 Annex. Mixed strategies equilibrium

To work out the mixed strategies equilibrium it is necessary to work out the support in which
the suppliers will randomize, and the cumulative distribution function.

First, we work out the support. Supplier n can always submit the maximum bid allowed
by the auctioneer and satisfy the residual demand. Therefore, it will never submit a bid lower
than bn, where bn solves bn(θ + θs) = P (θn − T ). The residual demand for supplier s is zero.
Therefore, the lower bid of the support for supplier s is zero.

Supplier s knows that supplier n never submits bids lower than bn. Therefore, supplier s
never randomize assign a positive probability to bids lower than bn since it can increase its ex-
pected bid by submitting higher bids, but still undercutting supplier n.

28



Given that the demand is inelastic, the upper bound of the support is the maximum price
allowed by the auctioneer P , since the suppliers can always increase their expected pro�t by
raising their bids.

Therefore, the support of the mix strategies equilibrium is de�ned by b ∈ [bn, P ] =

[
P (θn − T )

θn + θs

]
.

Second, we work out the cumulative distribution function for each supplier.

The cumulative distribution function for supplier n.

First, the pro�t function for a given bid b is de�ned by

πn(b) = b [Fs(b)(θn − T ) + (1− Fs(b))(θs + θn)] (3.13)

where, Fs(b) is the probability that supplier s's bid is lower than supplier n's bid. Therefore,
with probability Fs(b) supplier n is dispatched last and it satis�es the residual demand. There-
fore, in that case, supplier n's pro�ts are πn(b) = Fs(b)b(θn − T ). With probability (1 − Fs(b))
supplier s is dispatched �rst, and it satis�es the total demand. Therefore, in that case, supplier
n's pro�ts are πn(b) = (1− Fs(b))b(θn − T ).

By doing some algebra in equation 3.13, we obtain:

πn(b) = −bFs(b) [(θs + θn)− (θn − T )] + b(θn + θs)⇒

Fs(b) =
b(θs + θn)− πn(b)

b((θs + θn) + (θn − T )
(3.14)

Second, in the lower bound the support, the value of the cumulative distribution function is
zero. Otherwise, one supplier can undercut the other and it increases its pro�t. Therefore, in
the lower bound of the support equation 3.14 becomes πn(b) = b(θs + θn).

Third, the pro�t for any bid in the support is the same. Otherwise, the suppliers increases
its pro�t by reassigning probabilities. Therefore, πn(b) = πn(b)∀b ∈ [b, P ]. Therefore, equation
3.14 can be rewritten as:

Fs(b) =
b(θs + θn)− b(θs + θn)

b((θs + θn) + (θn − T )
=

(θs + θn)

(θs + θn)− (θn − T )

(b− b)
b

(3.15)

Where, equation 3.15 and equation 3.6 are the same. Following the same approach it easy to
derive the cumulative distribution function for supplier n.

3.5 Exercises

The set of parameters that we will use in the next two exercises are: k = 60, T = 40, θn = 55,
θs = 5, c = 0, P = 7. In the �rst exercise (case (t = 0)), the parameter t = 0. In the second
exercise (case (t > 0)), the parameter t = 1.5.

3.5.1 Case (t = 0)

Using the set of parameters de�ned above, and the set of equations that characterize mixed
strategies equilibrium when t = 0, answer the next questions:
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1. Work out the support of the mixed strategies equilibrium de�ned by equation 3.5.

2. Plot the cumulative distribution functions de�ned by equation 3.6.

Which supplier will submit the higher bids? Which is the economic intuition behind those
results?

Hint: For the values of b de�ned by equation 3.5, plot Fs(b) and Fn(b).

3. Work out the expected equilibrium price de�ned by equation 3.7.

Which supplier will submit the higher bid? In which direction will �ow the electricity?

4. Knowing the demand and the expected equilibrium price, which will be the (expected)
consumer surplus?

5. Work out the equilibrium pro�t for both suppliers.

6. Analyse the impact of an increase in transmission capacity on the lower bound of the
support, the expected equilibrium price and the expected equilibrium pro�ts.

Hint: Plot equations 3.5, 3.7 and 3.8 for T ∈ [θs, θn] = [5, 55]. You can also plot the equa-
tions for T ∈ [0, k] i.e., from isolated markets to fully integrated market. For illustrative
purposes, I plot the equations for T ∈ [θs, θn] = [5, 55].

3.5.2 Case (t > 0)

Using the set of parameters de�ned above, and the set of equations that characterize the mixed
strategies equilibrium when t > 0, answer the next questions:

1. Work out the support of the mixed strategies equilibrium de�ned by equation 3.9.

2. Plot the cumulative distribution functions de�ned by equation 3.10.

Which supplier will submit the higher bids? Which is the economic intuition behind those
results?

Hint: For the values of b de�ned by equation 3.9, plot Fs(b) and Fn(b).

Which are the di�erences between the cumulative distribution functions when t = 0 and
when t = 1.5? Which are the economic intuitions behind the results?

3. Work out the expected equilibrium price de�ned by equation 3.11.

Which supplier will submit the higher bid? In which direction will �ow the electricity?

Compare the results when t = 0 and when t = 1.5.

4. Knowing the demand and the expected equilibrium price, which will be the (expected)
consumer surplus?

In which case the consumer surplus is larger?

5. Work out the equilibrium pro�t for both suppliers.
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3.5.3 Solution

We present the solutions to the questions introduced in the two previous exercises simultaneously
to compare both cases.

Support of the cumulative distribution function and cumulative distribution function.

When the transmission tari�s are zero (t = 0), in the lower bound of the support, the slope
of cumulative distribution function (CDF) of the supplier located in the low-demand market
is stepper than the slope of the cumulative distribution function of the supplier located in the
high-demand market (left-hand panel, �gure 3.3). The slope of the CDF is the probability dis-
tribution function. Therefore, the supplier located in the low-demand market submits lower
bids with higher probability. Moreover, the slope of the CDF of the supplier located in the
low-demand market is continuous in the upper bound of the support. In contrast, the CDF of
the supplier located in the high-demand market is discontinuous. Therefore, the supplier located
in the high-demand market submits the higher bid allowed by the auctioneer with a positive
probability. Hence, the supplier located in the high demand market submits higher bids with
higher probability.

The intuition behind this result is as follows: The supplier located in the high-demand
market faces a high residual demand and it has incentives to submit higher bids.

When the transmission tari�s are positive (t = 1.5), in the lower bound of the support,
the slope of cumulative distribution function (CDF) of the supplier located in the high-demand
market is stepper than the slope of the cumulative distribution function of the supplier located
in the low-demand market (right-hand panel, �gure 3.3). Therefore, the supplier located in the
high-demand market submits lower bids with higher probability. This is in contrast with the
nil transmission tari�s case where the slope of the cumulative distribution functions follow the
opposite pattern. In the upper bound of the support, as when t = 0, the CDF of the supplier
located in the high-demand market is discontinuous.

The intuition behind this result is as follows: Since the supplier located in the high-demand
market has to transmit a lower part of its production capacity to the other market, it faces lower
transmission costs and thus, it has incentives to submit lower bids to extract the e�ciency rents.
Simultaneously, the supplier located in the high-demand market faces a high residual demand
and it has incentives to submit high bids. Therefore, the supplier located in the high demand
market assigns high probability to the extremes of the support and very little probability to the
intermediate bids.

Expected equilibrium prices.

When the transmission tari�s are zero (t = 0), the supplier located in the high-demand
market submits higher bids than the supplier located in the low-demand market En(b) = 4.2 >
Es(b) = 3.2 (column seven, table 3.1). Therefore, the electricity �ows from the low-demand
market to the high-demand market.

When the transmission tari�s are positive (t = 1.5), the supplier located in the high-demand
market submits lower bids than the supplier located in the low-demand market En(b) = 3.2 <
Es(b) = 3.3 (column eight, table 3.1). Therefore, the electricity �ows from the high-demand mar-
ket to the low-demand market and the transmission losses are minimized (less electricity �ows
through the grid). Therefore, the introduction of a positive transmission tari� could increase

transmission e�ciency.
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Figure 3.3: Cumulative Distribution Functions
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Table 3.1: Impact of transmission constraints and transmission tari�s on the equilibrium outcome
(θs = 5, θn = 55, k = 60, c = 0, P = 7)

Model T b πn πs π = πn + πs En(b) Es(b) θnEn(b) + θsEs(b)

t = 0 40 1.75 105 184 289 4.2 3.2 247
t = 1.5 40 1.87 105 24 129 3.1 3.3 187

Consumers surplus.

The introduction of a positive transmission tari� increases consumers welfare. As I have
explained in the previous point, the introduction of a positive transmission tari� reduces equi-
librium prices in the high-demand market and increases equilibrium prices in the low-demand
market. Given that the majority of consumers are located in the high-demand market, the over-
all e�ect is an increase on consumers welfare (column nine, table 3.1).

Expected pro�ts.

Figure 3.4: Increase transmission capacity
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Table 3.2: Zero transmission tari�s. Increase in transmission capacity 4T (θs = 5, θn = 55, k =
60, c = 0, t = 0, P = 7). Main variables.

T b πn πs En(b) Es(b)

0 7 385.07 35 7 7
5 5.835 350.1 58.35 6.8963 6.3795
15 4.668 280.08 93.36 6.5587 5.6770
25 3.501 210.06 105.03 5.9261 4.8530
35 2.335 140.1 93.4 4.8981 3.8464
45 1.168 70.08 58.4 3.2589 2.5102
55 0 0 0 0 0

The introduction of a positive transmission tari� doesn't change the pro�ts of the supplier
located in the high-demand market, since the increase in transmission costs is compensated by
the increase in demand derived by being dispatched �rst in the auction. In contrast, the in-
troduction of a positive transmission tari� decreases the pro�ts of the supplier located in the
low-demand market since it faces an increase in transmission costs.

Increase in transmission capacity.

An increase in transmission capacity reduces the residual demand and, according to equation
3.5, the lower bound of the support decreases (left-hand panel, �gure 3.4; column two, table 3.2).
A decrease in the lower bound of the support implies that both suppliers randomize submitting
lower bids and therefore, the expected bid decreases for both suppliers (right-hand panel, �gure
3.4; columns �ve and six, table 3.2; equation 3.7). Finally, an increase in transmission capacity
reduces the expected bid and the residual demand of the supplier located in the high-demand
market as does its expected pro�t (central panel, �gure 3.4; column three, table 3.2; equation
3.8). In contrast, an increase in transmission capacity reduces the expected bid and increases the
total demand of the supplier located in the low-demand market. When the transmission capac-
ity is low, the increase in demand dominates the decrease in the expected bid and its expected
pro�t increases. However, when the transmission capacity is large enough, the decrease in bids
dominates and its expected pro�t decreases (central panel, �gure 3.4; column four, table 3.2;
equation 3.8).
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Chapter 4

Auction Design in Zonal Pricing

Electricity Markets

Electricity markets are organized as nodes, where a node is a market with consumers and sup-
pliers. Those nodes are connected through transmission lines. In the presence of transmission
constraints, electricity markets can be organized as nodal or as zonal pricing electricity mar-
kets. In a nodal pricing electricity market, the equilibrium price di�ers across nodes when the
transmission line is congested. In contrast, in a zonal pricing electricity market, the equilibrium
price is the same in all the nodes that belong to the same zone. In this chapter, we analyze
the design of zonal pricing electricity markets when the competition is perfect and when the
competition is imperfect.

First, following Holmberg and Lazarczyk (2015), we compare the equilibrium performance
between nodal pricing electricity markets, zonal pricing electricity markets with counter-trading,
and discriminatory pricing when the competition is perfect and the suppliers have information.

Second, following Blázquez (2019), we work out the equilibrium in a zonal pricing electricity
market when the competition is imperfect and four di�erent auction designs are implemented
by the auctioneer.

We focus our study on zonal pricing electricity markets, since the zonal pricing electric-
ity market is one of the most salient designs to organize electricity markets in the presence of
transmission constraints. Moreover, the European Commission proposes that design for the in-
tegration of the European electricity markets. For a complete literature review of bidding zones,
see Ofgem (2014) and ENTSO-E (2014).For a complete analysis of the delineation of regions
for Transmission System Operators coordination and the governance of System Operators in the
integration of European electricity markets, see ENTSO-E (2015), and European Commission
(2015).

4.1 Theory

4.1.1 Zonal pricing with perfect competition: Holmberg and Lazarczyk (2015)

The set up, the timing and the equilibrium of the game are in Holmberg and Lazarczyk (2015).
In exercise 1, I present the set up, and I characterize the equilibrium in three di�erent cases:
Nodal pricing, discriminatory pricing and zonal pricing.
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4.1.2 Zonal pricing with imperfect competition: Blázquez (2019)

In this section, we characterize the equilibrium in a zonal market when three types of redispatch
mechanisms are implemented by the auctioneer. First, we work out the equilibrium when the
auction in the spot electricity market is uniform and the transmission constraint is taken into
account ex-ante, i.e., it is not necessary to introduce a redispatch mechanism to alleviate the
congestion in the transmission line. Second, we work out the equilibrium when the auction in the
spot electricity market is discriminatory and the transmission constraint is taken into account
ex-ante, i.e., it is not necessary to introduce a redispatch mechanism to alleviate the congestion in
the transmission line. Third, we work out the equilibrium when the auction in the spot electricity
market is uniform, and the auction in the redispatch market is discriminatory and the suppliers
submit the same bid in the spot and in the redispatch market.1

Set up of the model

There exist two electricity nodes, node North and node South, that are connected by a trans-
mission line with capacity T . Both nodes belong to the same zone, i.e., the equilibrium price in
both nodes is the same even when the transmission line is congested (zonal pricing).

There exist two duopolists with capacities kn and ks, where subscript n means that the
supplier is located in node North and subscript s means that the supplier is located in node
South. The suppliers' marginal costs of production are cn and cs for production levels less than
the capacity, while production above the capacity is impossible (i.e., in�nitely costly). Suppliers
are symmetric in production costs cn = cs = c = 0. The level of demand in any period, θn in
node North and θs in node South, is independent of the node price, i.e., perfectly inelastic. I
introduce two more assumptions on demand levels. First, θi ∈ [θi, θi] ⊆ [0, ki + T ], i = n, s, i.e.,
the installed production capacity in each node plus the electricity that �ows from the other node
is enough to satisfy the peak demand in each node. Second, θi + θj < ki + kj , i.e., the total
installed production capacity is enough to satisfy the peak demand in both nodes.

The capacity of the transmission line can be lower than the installed capacity in each node
T ≤ min {ks, kn}, i.e., the transmission line could be congested for some realization of demands
(θs, θn). When T > min {ks, kn}, the transmission line is not congested and the equilibrium is as
in Fabra et al. (2006). We study the model when the transmission line is congested. A complete
description of the model also when the transmission line is not congested is in Blázquez (2019).

Timing of the game

1. Both suppliers submit their bids independently and simultaneously.

Having observed the realization of demands θ ≡ (θs, θn), each supplier simultaneously and in-
dependently submits a bid in the spot electricity market specifying the minimum price at which
it is willing to supply up to its capacity, bSi ≤ P , i = n, s, where the super script S denotes
the spot electricity market, and P denotes the "market reserve price", possibly determined by
regulation. P can be interpreted as the price at which all consumers are indi�erent between
consuming and not consuming, or a price cap imposed by the regulatory authorities (von der
Fehr and Harbord, 1993). Moreover, when the auction is discriminatory, the equilibrium in the
discriminatory price auction is in mixed strategies. In that case, when the demand is inelastic,
the introduction of a price cap guarantees the existence of the upper bound of the support in a

1Blázquez (2019) also characterize the equilibrium when the suppliers can submit di�erent bids in the spot and
in the redispatch market. The characterization of the equilibrium is very similar. Therefore, to keep the analysis
as simple as possible, we focus on the three market designs described above.
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mixed-strategy equilibrium (Baye et al., 1992; Fabra et al., 2006).

2. The suppliers are called into operation.

Let bS ≡ (bSs , b
S
n) denote a bid pro�le in the spot electricity market. On basis of this pro�le,

the auctioneer calls suppliers into operation and works out suppliers' outcomes and pro�ts. If
suppliers submit di�erent bids, the capacity of the lower-bidding supplier is dispatched �rst. If
the capacity of the lower-bidding supplier is not su�cient to satisfy total demand, the higher-
bidding supplier's capacity is then dispatched to serve residual demand. If the two suppliers
submit equal bids, then supplier i is ranked �rst with probability ρi, where ρn + ρs = 1, ρi = 1 if

θi > θj , and ρi =
1

2
if θi = θj , i = n, s, i 6= j.2 Without loss of generality, we assume that node

N is the importing node and node S is the exporting node, i.e, bn ≥ bs.

2.a. When the auction is uniform and an ex-ante redispatch mechanism is introduced by the

auctioneer.

When the auction is uniform and an ex-ante redispatch mechanism is introduced by the
auctioneer, the output allocated to supplier n in the spot electricity market (supplier s's output
function is symmetric), denoted by qu1n (bS ; θ), is given by:3

qu1n (bS ; θ) =

{
θn + T if bSn ≤ bSs and θs − T > θs + θn − kn
θn − T if bSn > bSs and θn − T > θs + θn − ks

(4.1)

When supplier n submits the lower bid in the spot electricity market and the transmission
line is congested, supplier n cannot satisfy the demand in node South, even when it has enough
production capacity. Therefore, the total demand that supplier n can satisfy is (θn + T ). When
supplier n submits the higher bid in the spot electricity market, and the transmission line is
congested, supplier n's residual demand is de�ned by (θn − T ).

2.b. When the auction is discriminatory and an ex-ante redispatch mechanism is introduced by

the auctioneer.

When the auction is discriminatory, the output allocated to supplier n in the spot electricity
market, denoted by qdn(bS ; θ), is as when the auction is uniform and an ex-ante redispatch mech-
anism is introduced by the auctioneer.

2.c. When the auction is uniform, an ex-post redispatch mechanism is introduced by the auction-

eer and the suppliers submit the same bid in the spot and in the redispatch market.

When the auction is uniform and an ex-post redispatch mechanism is introduced by the
auctioneer, the output allocated to supplier n in the spot electricity market, denoted by qu2n (bS ; θ),
is given by:

qu2n (bS ; θ) =

{
min {θs + θn, kn} if bSn ≤ bSs and θs − T > θs + θn − kn
θs + θn − ks if bSn > bSs and θn − T > θs + θn − ks

(4.2)

2The implemented tie-break rule is such that if the bids of both suppliers are equal and demand in node i is
larger than demand in node j, the auctioneer �rst dispatches the supplier located in node i. Moreover, when the
auction is discriminatory, the equilibrium in this model is in mixed strategies. In that case, the tie-breaking rule
ensures the existence of a mixed strategies equilibrium (Dasgupta and Maskin, 1986).

3We use the super script u1 to denote the uniform price auction when an ex-ante redispatch mechanism is
introduced by the auctioneer, the super script u2 to denote the uniform price auction when an ex-post redispatch
mechanism is introduced by the auctioneer, and the super script d to denote the discriminatory price auction
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When an ex-post redispatch mechanism is introduced, the congestion is not taken into ac-
count when the spot electricity market is cleared. Therefore, when supplier n submits the lower
bid in the spot electricity market, it satis�es the total demand (θs + θn) up to its production
capacity (kn). When it submits the higher bid, it satis�es the residual demand (θs + θn − ks).

When the transmission line is congested and an ex-post redispatch mechanism is introduced
by the auctioneer to alleviate the congestion in the line, the outcome allocated to supplier n in
the redispatch market is denoted by (I use the super script R to denote the redispatch market):

qRn (bS ; θ) =

{
min {θs + θn, kn} − (θn + T ) if bSn ≤ bSs and θs − T > θs + θn − kn
(θn − T )− (θs + θn − ks) if bSn > bSs and θn − T > θs + θn − ks

(4.3)

When supplier n submits the lower bid in the spot electricity market, it is dispatched
�rst, but due to the transmission constraint it cannot satisfy the total demand or sell its en-
tire production capacity (min {θs + θn, kn}), but only (θn + T ) . Therefore, in the redispatch
market it has to buy back the di�erence between what it wants to sell and what it can sell
(min {θs + θn, kn} − (θn + T )). When supplier n submits the higher bid in the spot electricity
market, it is dispatched last. Due to the transmission constraint, it faces a high residual de-
mand and it can sell more electricity (θn − T ) that what it sells in the spot electricity market
(θs + θn− ks). Therefore, in the redispatch market it can sell all the electricity that it could not
sell in the spot electricity market ((θn − T )− (θs + θn − ks)).

3. The payments are worked out by the auctioneer.

3.a. When the auction is uniform and an ex-ante redispatch mechanism is introduced by the

auctioneer.

When the auction is uniform and an ex-ante redispatch mechanism is introduced by the
auctioneer, the price received by a supplier in the spot electricity market for any positive quantity
dispatched by the auctioneer is equal to the higher bid accepted in the auction. Hence, for a
given realization of θ ≡ (θs, θn) and a bid pro�le b ≡ (bs, bn), supplier n's pro�ts can be expressed
as πu1n (bS ; θ): {

bSs (θn + T ) if bSn ≤ bSs and θs − T > θs + θn − kn
bSn(θn − T ) if bSn > bSs and θn − T > θs + θn − ks

(4.4)

When supplier n submits the lower bid in the spot electricity market and the transmission
line is congested, supplier s sets the price and supplier n's pro�ts are de�ned by (bSs (θn + T )).
When supplier n submits the higher bid in the spot electricity market and the transmission line
is congested, it sets the price and its pro�ts are de�ned as (bSn(θn − T )).

3.b.When the auction is discriminatory and an ex-ante redispatch mechanism is introduced by

the auctioneer.

When the auctioneer runs a discriminatory price auction, the price received by a supplier
in the spot electricity market for any positive quantity dispatched by the auctioneer is equal to
its own o�er price, whenever a bid is wholly or partly accepted. Hence, for a given realization
of demands θ ≡ (θs, θn) and a bid pro�le b ≡ (bs, bn), supplier n's pro�ts can be expressed as
πdn(bS ; θ): {

bSn(θn + T ) if bSn ≤ bSs and θs − T > θs + θn − kn
bSn(θn − T ) if bSn > bSs and θn − T > θs + θn − ks

(4.5)
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3.c. When the auction is uniform, an ex-post redispatch mechanism is introduced by the auction-

eer and the suppliers submit the same bid in the spot and in the redispatch market.

When the auction is uniform and an ex-post redispatch mechanism is introduced by the
auctioneer and when the bid that supplier n submits in the spot electricity market is also used
in the redispatch market, supplier n's pro�ts can be expressed as πu2n (bS ; θ):


bSs min {θs + θn, kn} − ...
bSn (min {θs + θn, kn} − (θn + T )) if bSn ≤ bSs and θs − T ≤ θs + θn − kn
bSn(θs + θn − ks) + ...

bSn((θn − T )− (θs + θn − ks)) if bSn > bSs and θn − T > θs + θn − ks

(4.6)

When supplier n submits the lower bid in the spot electricity market and the transmis-
sion line is congested, supplier s sets the price and supplier n's pro�ts in that market are
de�ned as (bSs min {θs + θn, kn}). However, due to the transmission constraint, supplier s can-
not satisfy the demand in both nodes, and it has to use the redispatch market to buy back
the capacity that cannot be sold in the spot electricity market (min {θs + θn, kn} − (θn + T )).
Given that redispatch market is designed as a discriminatory price auction, supplier n's ex-
penses in the redispatch market are determined by bSn (min {θs + θn, kn} − (θn + T )). By sum-
ming and subtracting the term bSs (θn + T ) in the �rst equation in 4.6, we can rewrite it as
bSs (θn + T ) + (bSs − bSn) (min {θs + θn, kn} − (θn + T )). This last expression has an useful eco-
nomic interpretation, the �rst term represents supplier n's pro�ts in the spot electricity when
the transmission constraint is taken into account, the second term represents supplier n's com-
pensation for not being able to satisfy the demand in both nodes.

When supplier n submits the higher bid in the spot electricity market and the transmission
line is congested, supplier n's pro�ts in that market are de�ned as (bSn(θs + θn − ks)). However,
due to the transmission constraint, supplier n can sell more electricity that what it sells in the
spot electricity market. Therefore, in the redispatch market it can sell all the electricity that it
could not sell in the spot electricity market ((θn − T ) − (θs + θn − ks)). Given that the redis-
patch market is organized as a discriminatory price auction, supplier n' pro�ts in that market
are de�ned as bSn((θn − T )− (θs + θn − ks)).

After the algebra transformations described above, equation 4.6 can be rewritten as πu2n (bS ; θ):


bSs (θn + T ) + ...

(bSs − bSn) (min {θs + θn, kn} − (θn + T )) if bSn ≤ bSs and θs − T ≤ θs + θn − kn
bSn(θs + θn − ks) + ...

bSn((θn − T )− (θs + θn − ks)) if bSn > bSs and θn − T > θs + θn − ks

(4.7)

As can be observed by comparing equations 4.4, 4.5 and 4.7, the introduction of di�erent
auction designs in the zonal market change suppliers' pro�ts functions. These equations present
a lot of similarities, but also important di�erences that will a�ect the characterization of the
equilibrium. In the rest of the paper, we work out the equilibrium when di�erent auction designs
are implemented by the auctioneer.

Equilibrium

In this section we characterize the equilibrium for each of the three auction designs presented in
the model section. As in the model section, we assume that node N is the importing node and
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node S is the exporting node.

In lemma 1, we study the type of equilibrium in the spot electricity market when a uniform
and discriminatory price auction are implemented by the auctioneer.

Lemma 1. When the transmission line is congested, the equilibrium price in the spot electricity
market is in pure strategies when the auction is uniform and an ex-ante or an ex-post redispatch
mechanism are implemented, but a pure strategies equilibrium does not exist when the auction
is discriminatory.

Proof. When the transmission line is congested, the supplier located in the importing node
faces a positive residual demand. In that case, when the auction is uniform and an ex-ante or
an ex-post redispatch mechanism are introduced by the auctioneer, the supplier located in the
importing node submits the maximum bid allowed by the auctioneer, and the supplier located
in the low-demand node submits a bid that makes undercutting unpro�table.

In contrast, when the auction is discriminatory, a pure strategies equilibrium does not exist,
since the suppliers has incentives to undercut each other to be dispatched �rst in the auction.

Based on the ancillary result presented in lemma 1, we present the main result of this section.

Proposition 1. When the transmission line is congested, the characterization of the equilibrium
falls in one of the next three categories depending on the auction design:

i. When the auction is uniform and an ex-ante redispatch mechanism is introduced by the
auctioneer, there are multiplicity of Nash equilibria in the spot electricity market.

ii. When the auction is uniform, an ex-post redispatch mechanism is introduced by the auc-
tioneer and the suppliers submit the same bid in the spot and in the redispatch market,
there is a unique Nash equilibrium in the spot and in the redispatch market.

iii. When the auction is discriminatory and an ex-ante redispatch mechanism is introduced by
the auctioneer, the equilibrium is in mixed strategies.

Proof. We prove the results for the four auction designs.

i. When the auction is uniform and an ex-ante redispatch mechanism is introduced by the auc-

tioneer. By using lemma 1, the proof is as follows:

The pure strategies equilibrium is de�ned by

bSs ∈
[
0,

P (θn − T )

min {θs + θn, kn}

]
; bSn = P. (4.8)

The equilibrium price in the spot electricity market is P .

The pro�ts are de�ned by:

πs = P (θs + T ); πn = P (θn − T ). (4.9)

The electricity �ows from the low-demand node to the high-demand node, and the transmis-
sion line is congested.
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Consumers' surplus is de�ned by:

CS = (P − P )(θs + θn) = 0 (4.10)

ii. When the auction is uniform, an ex-post redispatch mechanism is introduced by the auction-

eer, and the suppliers submits the same bid in the spot and in the redispatch market. By using
lemmas 1 and 2, the proof is as follows:

Solving by backward induction, we characterize the equilibrium in the redispatch market. Ac-
cording with equation 4.7, supplier s's pro�ts are given by bSn(θn+T )+(bSn−bSs )(min {θs + θn, ks}−
(θs+T )), where (bSn− bSs )(min {θs + θn, ks}− (θs+T )) represents the compensation for the elec-
tricity that supplier s wants to sell in the spot electricity market, but that it cannot sell because
of the transmission constraint. If supplier s could participate in the redisptach market it would
submit a bib equal to zero to maximize that compensation.

According with equation 4.7, supplier n's pro�ts are given by bSn(θs + θn − ks) + bSn((θn −
T )− (θs + θn − ks)), where (bSn((θn − T )− (θs + θn − ks))) represents supplier n's pro�ts in the
redispatch market. If supplier n could participate in the redisptach market it would submit the
maximum bid allowed by the auctioneer to maximize those pro�ts.

Given that the bid submitted by the suppliers in the redispatch market has to be the same as
the one in the spot electricity market, it is necessary to check that the bid that the suppliers want
to submit in the redispatch market is also the one that they want to submit in the spot electricity
market. Otherwise, it does not exist a pair of strategies that clear both markets simultaneously.

When the transmission line is congested, the unique possible equilibrium is the spot electricity
market is the one in which supplier n submits the maximum bid, and supplier s submits a bid that
makes undercutting unpro�table. Therefore, the unique pair of strategies that makes compatible
an equilibrium in the spot and in the redispatch market simultaneously is de�ned by:

bSs = 0; bSn = P, (4.11)

The equilibrium price in the spot electricity market is P .

By plugging those values in equation 4.7, the pro�ts are de�ned by:

πs = P (θs + T ) + (P − 0) (min {θs + θn, kn} − (θs + T )) ;

πn = P (θs + θn − ks) + P ((θn − T )− (θs + θn − ks)). (4.12)

The electricity �ows from the low-demand node to the high-demand node, and the transmis-
sion line is congested.

Consumers' surplus is de�ned by:

CS = (P − P )(θs + θn) = 0 (4.13)

iii. When the auction is discriminatory and an ex-ante redispatch mechanism is introduced by

the auctioneer. The equilibrium is as in Blázquez (2018). However, I present the main equations
that characterize the equilibrium to facilitate the comparison with the other three auction designs.

First, the lower bound of the support is de�ned by:

bSs = bSn =
P (θn − T )

kn
(4.14)
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Second, I work out the cumulative distribution functions.

Fs(b
S) =


0 if bS < bS

kn
kn − (θn − T )

bS − bS

bS
if bS ∈

(
bS , P

)
1 if bS = P

Fn(bS) =


0 if bS < bS

θs + T

(θs + T )− (θs + θn − kn)

bS − bS

bS
if bS ∈ (b, P )

1 if bS = P

(4.15)

Given that bSn > bSs , it is easy to show that Fs(P ) is continuous in the upper bound of the
support, and that Fn(P ) is discontinuous in the upper bound of the support:

Fs(P ) =
kn

kn − (θn − T )

P − P (θn − T )

kn
P

= 1

Fn(P ) =
θs + T

(θs + T )− (θs + θn − kn)

P − P (θn − T )

kn
P

< 1

Third, the probability distribution function is equal to:

fs(b
S) =

∂Fs(b
S)

∂bS
=

kn
kn − (θn − T )

bS

(bS)2

fn(bS) =
∂Fn(bS)

∂bS
=

θs + T

(θs + T )− (θs + θn − kn)

bS

(bS)2
(4.16)

Fourth, the expected bid is determined by:

Es(b
S) =

∫ P

bS
bSfs(b

S
s )∂bS =

∫ P

bS

kn
kn − (θn − T )

bS

bS
∂bS =

kn
kn − (θn − T )

bS
[
ln(bS)

]P
bS

En(bS) =

∫ P

bS
bSfn(bSn)∂bS =

∫ P

bS

θs + T

(θs + T )− (θs + θn − kn)

bS

(bS)2
∂bS =

=
θs + T

(θs + T )− (θs + θn − kn)
bS
[
ln(bS)

]P
bS

+ (1− Fn(P ))P (4.17)

Given that Fn(bS) is discontinuous in the upper bound of the support, to work out supplier
n's expected bid is necessary to multiply the maximum bid allowed by the auctioneer by the prob-
ability that supplier n assigns to that bid (1− Fn(P ))P , where Fn(P ) = Fn(bS), when bS −→ P .

When the auction is discriminatory, the expected equilibrium price in the spot market is
de�ned by:

E(bS) =
E(bSs )θs
(θs + θn)

+
E(bSn)θn
(θs + θn)

(4.18)

Fifth, the expected pro�t is de�ned by:
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Figure 4.1: Nodal Pricing

Node 1 Node 2

πn = bS(θs + θn)

πs = bS(θs + T ) (4.19)

The electricity �ows in expectation from the low-demand node to the high-demand node, and
the transmission line is congested.

Consumers' surplus is de�ned by:

CS = (P − E(bS))(θs + θn) ≥ 0 (4.20)

4.2 Exercises

4.2.1 Exercise 1. Zonal pricing with perfect competition: Holmberg and
Lazarczyk (2015)

Set up: There are many suppliers located in two di�erent nodes, node 1 and node 2. Both nodes
are connected through a transmission line with capacity T = 4. The total production capacity
installed in each node is equal to 15 (k1 = k2 = k = 15). The marginal cost of the suppliers
located in node 1 and 2 is linear and increasing starting from MC = 0 when k = 0, and ending
with MC = 15 when k = 15. The demand in each node is inelastic (θ1 = 5), and (θ2 = 18).

Question 1 (Nodal Pricing). By using a similar approach that in the example that

appears in page 156 in the paper. Work out the equilibrium bids, the equilibrium

price and the equilibrium pro�ts.

The market is organized as a uniform price auction. Therefore, the suppliers that are dis-
patched in the auction sell their production capacity at the last o�er bid accepted in the auction.

The suppliers located in node 1 satisfy the demand in their node (θ1) and sell T units of
their demand to node 2. Therefore, the equilibrium price in node 1 is set by the last supplier
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Figure 4.2: Discriminatory Pricing

Node 1 Node 2

dispatched in that node, and the equilibrium price in node 1 is θ1 + T = 9.

The equilibrium bids coincide with the marginal costs. By submitting a bid equal to their
marginal costs the suppliers with a marginal cost lower than the equilibrium price will be dis-
patched and will sell their production at that price. The pro�ts of the suppliers dispatched in
node 1 are represented by the blue area in �gure 4.1. The suppliers with a marginal cost higher
than the equilibrium price will not be dispatched and they do not have incentives to deviate.

The suppliers located in node 2 satisfy the demand in that node minus the electricity that
�ows from node 1. Therefore, the equilibrium price in node 2 is set by the last supplier dispatched
in that node, and the equilibrium price in node 2 is θ2 − T = 14.

The equilibrium bids in node 2 coincide with the marginal cost curve, since nor the suppliers
that are dispatched, neither the suppliers that are not dispatched have incentives to deviate. The
pro�ts of the suppliers located in node 2 are equal to the orange area in �gure 4.1.

Question 2 (Discriminatory Pricing). By using a similar approach that in the ex-

ample that appears in page 156 in the paper. Work out the equilibrium bids, the

equilibrium price and the equilibrium pro�ts.

When the auction is discriminatory, the equilibrium price in each node is set by the last
supplier dispatched in each node. Therefore, the equilibrium price in each node is as when the
auction is discriminatory.

The equilibrium bids are di�erent, since now the suppliers that are dispatched sell their pro-
duction capacity at their own bid. Therefore, the inframarginal suppliers in each node maximize
their bid by submitting a bid equal to the equilibrium price in each node. The overmarginal
suppliers submits a bid equal to their marginal cost, since if they are disptached they incur in
losses (�gure 4.2).

Suppliers' pro�ts are as in the nodal pricing model.

Question 3 (Zonal Pricing) If the market is organized as a zonal pricing electricity

market. Work out the equilibrium bids and suppliers' pro�ts in the spot and in the
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Figure 4.3: Zonal Pricing

Zonal Market

redispatch market in the exporting and in the importing node.

The equilibrium price in the zonal market is 14 since the last supplier that will be dispatched
in that market is θ2 − T .

In the exporting node: The inframarginal suppliers, the ones which a production capacity
below θ1 + T submits a bid equal to their marginal cost, since they well sell their production
capacity at the price 14 in the spot electricity market (dark blue area, �gure 4.3). The over-
marginal suppliers in the exporting node submits a bid equal to θ1 +T so that they will be never
dispatched in the spot electricity market, but they will be compensated in the redispatch market,
since they cannot sell their production capacity in the spot electricity market. Their pro�ts in
the redispatch market are: πR1 = (14− 9)(k1 − (θ1 + T ))) (light-blue area, �gure 4.3).

In the importing node: The inframarginal suppliers, the ones with production capacity below
θ1 + θ2 submits a bid equal to 14 since that will be the maximum bid accepted in the auction
and they will send their entire production at that price. Therefore, their pro�ts in the spot
electricity market are πS2 = 14((θ1 + θ2) − k1) (dark red area, �gure 4.3). The overmarginal
suppliers also submit a bid equal to 14, since they know that due to the transmission constraint,
they will be called into operation in the redispatch market, and they want to maximize their
pro�t by submitting a bid equal to 14. Therefore, their pro�ts in the redispatch market are
πR2 = 14((θ2 − T )− ((θ1 + θ2)− k1)) (light-red area, �gure 4.3).

It is important to notice that the sum of the pro�t areas in the nodal and the discriminatory
pricing markets are the same. In contrast, the sum of the pro�ts areas in the zonal pricing
market is larger due to the compensation received by the suppliers located in the exporting node
(light-blue are, �gure 4.3).

4.2.2 Exercise 2. Zonal pricing with imperfect competition: Blázquez (2019)

Set up: There is a nodal market with two nodes, node S and node N connected by a transmis-
sion line with capacity T = 40. There are two suppliers with production capacities ks = kn = 60
and production costs cs = cn = 0, where supplier s is located in node S, and supplier n is located
in node N . The demand in node S is inelastic an equal to θs = 4, and the demand in node N is
also inelastic an equal to θn = 65. The reservation price is equal to P = 7.
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Figure 4.4: Model comparison. Suppliers' pro�ts functions (θs = 5, θn = 65, ks = kn = k = 60,
T = 40, cs = cn = 0, P = 7)

Uniform, ex-ante redispatch Discriminatory, ex-ante redispatch Ex-post redispatch, one bid

Table 4.1: Model comparison (θs = 5, θn = 65, ks = kn = k = 60, T = 40, cs = cn = 0, P = 7)

Design bSs bSn PS bRs bRn b E(bSs ) E(bSn) E(bS) πn πs CS

I [0, 2.9] 7 7 − − − − − − 175 315 0
II − − − − − 2.9 4.4 5.03 4.98 175 131.2 140.9
III 0 7 7 − − − − − − 175 420 0

I: Ex-ante redispatch, uniform. II: Ex-ante redispatch, discriminatory. III: Ex-post redisptach, one bid.

Question 1. Work out the equilibrium when the auction is uniform and an ex-ante

redispatch mechanism is introduced by the auctioneer.

When the auction in the spot electricity market is uniform and an ex-ante redispatch mecha-
nism is introduced by the auctioneer, the supplier located in the high-demand node submits the
maximum bid allowed by the auctioneer setting the price in the zonal market (columns 3 and 4,
table 4.1). The supplier located in the low-demand node submits a bid that makes undercutting
unpro�table (column 2, table 4.1). In that case, the supplier located in the high demand node
satis�es the residual demand, the supplier in the low-demand node satis�es the demand in its
own node and the demand in the other node up to the transmission capacity, and suppliers'
pro�ts are de�ned by equation 4.9 (columns 11 and 12, table 4.1; left-hand panel, �gure 4.4).
Finally, given that the equilibrium price is equal to the reserve price, consumers' surplus is zero
(equation 4.10; column 13, table 4.1).

Question 2. Work out the equilibrium when the auction is discriminatory and an

ex-ante redispatch mechanism is introduced by the auctioneer.

When the auction in the spot electricity market is discriminatory and an ex-ante redispatch
mechanism is introduced by the auctioneer, the equilibrium is in mixed strategies and the supplier
located in the high-demand node submits higher bids in expectation (equation 4.17; columns 9
and 10, table 4.1). Suppliers' pro�ts are de�ned by equation 4.19 (column 13, table 4.1; central
panel, �gure 4.4). Consumers' surplus is positive, since the expected equilibrium price is lower
than the reserve price (equations 4.18 and 4.20; columns 10 and 13, table 4.1).

Question 3. Work out the equilibrium when the auction is uniform, an ex-post re-
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dispatch mechanism is introduced by the auctioneer, and the suppliers submits the

same bid in the spot and in the redispatch market.

When the auction is uniform, an ex-post redispatch mechanism is introduced by the auction-
eer and the suppliers submit the same bid in the spot and in the redispatch market, the supplier
located in the high-demand node submits the maximum bid allowed by the auctioneer setting the
price in the zonal market (columns 3 and 4, table 4.1). Supplier n satis�es the demand in the spot
electricity market and its pro�ts in that market are de�ned as πu2;Sn = 7(65+5−60) = 70 (dark-
red area, right-hand panel, �gure 4.4). Due to the transmission constraint, supplier s cannot sell
its entire production capacity, and in the redispatch market, supplier n is called into operation
again to sell the production capacity that it could not sell in the spot electricity market, and its
pro�t in that market are de�ned as πu2;Rn = 7((65 − 40) − (65 + 5 − 60)) = 105 (light-red area,
right-hand panel, �gure 4.4). Supplier n's pro�ts in the spot and in the redispatch market are
de�ned in equation 4.12. The sum of supplier n's pro�ts in both markets is πu2;Sn + πu2;Rn = 175
(column 11, table 4.1).

The supplier located in the low-demand node submits a bid equal to zero in the spot elec-
tricity market to make undercutting unpro�table (column 2, table 4.1). By using equation 4.7
to work out the equilibrium pro�ts, we obtain an useful economic interpretation of supplier s's
pro�ts. Supplier s' pro�ts can be calculated as the pro�ts that it obtains by selling its production
capacity up to transmission capacity in the spot electricity market πu2;Ss = 7(5 + 40) = 315, plus
the compensation that it receives for not being able to sell its entire production capacity in the
spot electricity market πu2;Rs = (7− 0)(60− (5 + 40)) = 105 (dark-blue area and light-blue area,
right-hand panel, �gure 4.4). By summing the pro�ts in both markets, we obtain supplier s's
pro�ts πu2;Ss + πu2;Rs = 315 + 105 = 420 (equation 4.12; column 12, table 4.1).

By using equation 4.6 instead of equation 4.7, supplier s it is dispatched �rst in the spot
electricity market, selling its entire production capacity at the price set by supplier n, and its
pro�ts are de�ned as πu2;Ss + πu2;Rs = 7(60) = 420 (sum of the dark-blue and light-blue areas,
right-hand panel, �gure 4.4).4 Due to the transmission constraint, supplier s cannot sell its entire
production capacity in the high-demand node, and it has to buy back the production capacity
that it cannot sell in that node. Given that supplier s has to submit the same bid in both
markets, and that the auction in the redispatch market is discriminatory, supplier s's expenses
in that market are de�ned as eu2;Rs = 0(60− (5 + 40)) = 0. By subtracting the expenses in the
redispatch market from the pro�ts in the spot electricity market, I obtain supplier s's pro�ts
πu2;Ss + πu2;Rs − eu2;Rs = 420− 0 = 420 (equation 4.12; column 12, table 4.1).

As when a redispatch mechanism is introduced ex-ante by the auctioneer, consumers' surplus
is zero since the equilibrium price is equal to consumers' reserve price (equation 4.13, annex 2;
column 13, table 4.1).

Question 4. By comparing the three market designs, which will be the impact of

those designs on long-term investment decisions and consumers' welfare?

The change on supplier s's pro�ts induced by the changes on the design could induce distor-
tions on investment decisions. In particular, when the auction in the spot electricity market is
discriminatory and an ex-ante redispatch mechanism is introduced by the auctioneer, the sup-
pliers want to invest in the high-demand node, since the equilibrium pro�ts in that node are
larger πd;Sn ≥ πd;Ss . When the auction in the spot electricity market is uniform and an ex-ante

4It is important to notice that supplier n's pro�ts in the spot electricity market should be a single area that
covers the dark-blue and the light-blue areas. We explain supplier n's pro�ts by summing πu2;Ss + πu2;Rs to avoid
introducing more graphs.
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redispatch mechanism is introduced by the auctioneer, the suppliers want to invest in the low-
demand node since πu1;Ss ≥ πu1;Sn . The introduction of an ex-post redispatch market makes even
more attractive to invest in the low-demand node (πu2;Ss + πu2;Rs > πu1;Ss > πu1;Sn ). Therefore,
the introduction of di�erent redispatch designs change suppliers' pro�ts and that could have
important investment implications in the long-term.

The introduction of di�erent redispatch designs also a�ect consumers' surplus. In particular,
when the auction is uniform and for any type of redispatch mechanism, consumers' surplus is
zero, since the equilibrium price is equal to consumers' reserve price. In contrast, when the
auction in the spot electricity market is discriminatory and an ex-ante redispatch mechanism is
introduced by the auctioneer, the equilibrium price is lower than consumers' reserve price and
consumers' surplus is positive.
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Chapter 5

Experiments in Electricity Markets

In chapter 2, we characterize the equilibrium in an uniform and in a discriminatory price auc-
tion. When the suppliers face a positive residual demand, the characterization of the equilibrium
depends crucially on the type of auction. In particular, when the auction is discriminatory, an
unique mixed strategies equilibrium exists. In contrast, when the auction is uniform multiplicity
of pure strategies equilibrium exist.

In this chapter, we study di�erent equilibrium selection techniques to study which equilib-
rium will be selected in an uniform price auction. In particular, we apply the risk dominance
method (Harsanyi and Selten, 1988), the robustness to strategic uncertainty method (Andersson,
Argenton and Weibull, 2014) and the quantal response method (McKelvey and Palfrey, 1998)
to predict which equilibrium is selected by the players. We also play a game that simulate a
uniform price auction, and analyze the strategies selected by the players in that game to evaluate
if those results are in line with the theoretical predictions.

The chapter is organized as follows: In section 5.1, we present the game, we also play that
game in the lectures to get adquantied with the game. In section 5.3, we present the main
equilibrium selection techniques to predict which equilibrium will be played in the game. In
section 5.4 we present the statistical analysis of the game played by the students in section 5.1.

5.1 The game

The set up and the characterization of the equilibrium is similar to the one in chapter 2. How-
ever, we present the set up and the characterization of the equilibrium, since this chapter present
some particularities that it is necessary to explain.

Set up: There are two players with production capacity ki and kj , where ki > kj . The level of
demand, θ is independent of market price, i.e., perfectly inelastic. Moreover, θ ∈ [ki, ki + kj ],
i.e., the demand is large enough to guarantee that both players face a positive residual demand.
We introduce this assumption because when the demand is very low, both players have enough
production capacity to satisfy the demand, and in that case the Nash equilibrium is unique, and
it has no sense to study any type of equilibrium selection technique.

Timing: Having observed the realization of demand θ, each player simultaneously and indepen-
dently submits a bid specifying the minimum price at which it is willing to supply up to its
capacity, bi ∈ [bmin, P ], i = 1, 2, where bmin and P are determined by the auctioneer. The
players can only submit bids higher or equal than bmin and lower or equal than bmax = P .1

1The minimum bid in the auction (bmin) and the maximum bid (P ) are determined by the auctioneer. The
minimum bid guarantees a minimum pro�t for the players. The maximum bid represents the reservation price
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The number of bids in that interval (N) is determined exogenously and it can be as large as we

wanted. The distance between one bid and the next one is de�ned by ε =
P − bmin

N
. The set of

strategies is represented in �gure 5.1.

Figure 5.1: Strategies set

bmin bmin+ ε bmin+ hε bmax = bmin+Nε = P

Let b ≡ (b1, b2) denote a bid pro�le. On basis of this pro�le, the auctioneer calls players into
operation. The output allocated to player i, i = 1, 2, denoted by qi(b; θ, k), is given by2

qi(b; θ, k) =


ki if bi < bj
kiθ

ki + kj
if bi = bj

θ − kj if bi > bj

(5.1)

When player i submits the lower bid, it sells her entire production capacity (qi = ki). When
both players submit the same bid, the demand is split among them in proportion to their produc-

tion capacity

(
qi =

kiθ

ki + kj

)
. When player i submits the higher bid in the auction, it satis�es

the residual demand (qi = θ − kj).

Finally, the payments are worked out by the auctioneer. When the auctioneer runs a uniform
price auction, the price received by a player for any positive quantity dispatched by the auctioneer
is equal to the higher o�er price accepted in the auction. Hence, for a given realization of demand
θ and a bid pro�le b ≡ (b1, b2), player i's payo�s, i = 1, 2, are expressed as3

πi(b; θ, k) =


bjki if bi < bj

bi
ki

ki + kj
θ if bi = bj

bi(θ − kj) if bi > bj

(5.2)

When player i submits the lower bid, it sets the price in the auction and sells her entire pro-
duction capacity πi = biki. These are the payo�s over the diagonal in �gure 5.3. When players
i and j submit the same bid, the payo� is split among them in proportion to their production

capacity πi = bi
θki

ki + kj
. These are the payo�s on the diagonal in �gure 5.3. When player i

submits the higher bid, it sets the price and satis�es the residual demand πi = bi(θ− kj). These
are the payo�s below the diagonal in �gure 5.3.

for the consumers of the good.
2It is important to emphasize that qi(b; θ, k) is only valid under the assumptions of the model which stablish

that θ ∈ [kj , ki + kj ]. When θ < kj , qi(b; θ, k) is slightly di�erent, since in that case both players have enough
production capacity to satisfy the entire demand and the equilibrium is unique. For a complete analysis of the
uniform price auction when the demand is low see Fabra, von der Fehr and Harbord (2006).

3As with qi(b; θ, k), πi(b; θ, k) is slightly di�erent when the assumptions of the model are relaxed.
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Figure 5.2: Generalized Hawk-Dove and Battle of the Sexes payo� matrices
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The tie breaking rule implemented in this game is crucial since it determines if the game
is a Hawk-Dove or a Battle of the Sexes game.4 According with the footnote 1 in Cabrales,
García-Fontes and Motta (2000), the Battle of the Sexes game de�ned in Luce and Rai�a (1957)
and the Hawk-Dove game de�ned in Binmore (1992) are equivalent. However, the payo� matrix
in Benndorf, Martínez-Martínez and Normann (2016) (left-hand panel, �gure 5.2) and the one in
Belle�amme and Peitz (2015) (right-hand panel, �gure 5.2) show that those games are di�erent.
Moreover, Tirole and Fudenberg (1991) study the Hawk-Dove and the Battle of the Sexes games,
but the matrix that they present to characterize the Hawk-Dove game does not coincide with the
one in Benndorf, Martínez-Martínez and Normann (2016). In this paper, we assume that a game
has the structure of a Hawk-Dove game when it follows the structure presented in Benndorf,
Martínez-Martínez and Normann (2016).

Equilibrium: The uniform price auction described above has multiplicity of pure strategies equi-
libria in which one player submits the maximum bid allowed by the auctioneer (dove strategy),
and the other submits a bid that makes undercutting unpro�table (hawk strategy). When the
players are asymmetric in production capacity, the number of equilibria in which the player with
higher production capacity submits the maximum bid are larger than the number of equilibria
in which the player with lower production capacity submits the maximum bid. Those sets of
equilibria are represented in the dark grey cells in �gure 5.3. To provide a better understanding
of the uniform price auction and the set of equilibria in that game, in section 5.2, we provide an
illustrative example taken from Bigoni, Blázquez and le Coq (2018).

The players have opposite preferences on both set of equilibria. Both players prefer the set of
equilibria in which the other player submits the higher bid allowed by the auctioneer (dove strat-
egy), since in that case the player that is dispatched �rst sells her entire production capacity at
the maximum price allowed by the auctioneer. It could be possible that both players coordinate
by submitting the maximum bid allowed by the auctioneer. In that case, the price perceived by
the players is the maximum price allowed by the auctioneer and the players split the pro�t in
proportion to their production capacity. However, it is very di�cult to coordinate in that pair of
strategies, since both players have incentives to deviate to sell their entire production capacity
at the maximum price allowed by the auctioneer.

In section 5.3, we apply the tracing procedure method proposed by Harsanyi and Selten
(1988), the robustness to strategic uncertainty method proposed by Andersson, Argenton, and
Weibull (2014), and the quantal response method proposed by McKelvey and Palfrey (1998) to
analyze which of those equilibria is played in the game.

4When the auction is discriminatory, the tie-breaking rule is also very important, but for di�erent reasons.
In that case, the tie-breaking rule is important to guarantee the existence of the equilibrium (Blázquez, 2018;
Dasgupta and Maskin, 1986; Fabra, von der Fehr and Harbord, 2006; Osborne and Pitchik, 1986).
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Figure 5.3: Payo� matrix in a uniform price auction

bmin +Nε = P

...

bmin + hε
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bmin
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bj

πi(bmin +Nε, bmin) =

(bmin +Nε)(θ − kj)
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(bmin +Nε)kj
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πi(bmin + hε, bmin) =

(bmin + hε)(θ − kj)
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θki
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θkj
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(bmin +Nε)ki
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bmin(θ − ki)

bmin +Nε = P

5.2 An example

In this section, we present an example of an uniform price auction that follows the set up and
the timing described in the previous section.

To facilitate the understanding of the game and the experiment results presented in section
5.4, we play several rounds of the game summarized in the payo� matrix 5.4. The students will
play the game in pairs using the payo� matrix in �gure 5.4. One of the students will be the red
player, and the other will be the blue player. Each player has to select one of the strategies in
the matrix independently and simultaneously. Then, the two players show their strategies and
write their pro�ts.

The students repeat this game during ten rounds. After those ten rounds, new pairs are
created and the students play the game another ten rounds.

In section 5.3, we apply di�erent equilibrium selection techniques to understand which equi-
librium will be played in this game. In section 5.4, we analyze statistically the results of this
game that have been studied in detail in Bigoni et al. (2019).

5.3 Equilibrium selection techniques

In this section, we apply the risk dominance method (Harsanyi and Selten, 1988), the robust-
ness to strategic uncertainty method (Andersson, Argenton and Weibull, 2014) and the quantal
response method (McKelvey and Palfrey, 1998) to predict which equilibrium will be played in
the uniform price auction.
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Figure 5.4: Example. Payo� matrix
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5.3.1 Risk dominance method

In this section, we use the risk dominance method proposed by Harsanyi and Selten (1988) to
study which equilibrium is selected by the players.

The risk dominance method assumes that players' payo�s are a linear combination of the
original payo� matrix and the expected payo� matrix based on players' believes.

πi = tπi(bi, bj) + (1− t)πi(bi, pj), (5.3)

where pj is the probability that player j assigns to each strategy based on player i's believes.
Therefore, when t = 0, players' payo�s are determined only by players' expected pro�t based
on their prior believes. When t = 1, players' payo�s are determined only by the original payo�
matrix.

In general, at t = 0 the players choose a pair of strategies that is not an equilibrium of
the original game. When t increases the players change their strategies. At some t ∈ [0, 1],
the players chose a pair of strategies that is an equilibrium of the original game. That pair
of strategies (b∗i , b

∗
j ) will be the equilibrium selected by the tracing procedure. Therefore, the

key point in the tracing procedure is to �nd the player that �rst deviates to a Nash equilibrium
in the original game, and to �nd the parameter t for which that player deviates to the equilibrium.

If we assume that the players' believes follow a uniform probability distribution, the players
maximize their expected payo�s by submitting the lower bid in the auction (left-panel, �gure
5.5).5 Therefore, when t = 0, the equilibrium selected by the risk dominance method is the one
in which both players submit the lower bid in the auction (bi = bj = bmin), (right-panel, �gure
5.5).

As can be observed in �gure 5.5, the pair of strategies (bi = bj = bmin) it is not an equilibrium
of the original game. According with equation 5.3, when the parameter t increases, the players
give more importance to the payo� of the original game (�gures 5.3 and 5.4). Therefore, when
t increases one of the players deviates from bmin by increasing its bid. In particular the player

5This statement is only true if the demand is high enough to guarantee that both players face a positive
residual demand, but the demand is not to high. For a complete characterization of the equilibrium for any type
of demand, see Blázquez and Koptyug (2019).
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Figure 5.5: Expected payo�s and equilibrium (ki = 8.7, kj = 6.5, bmin = 1, bmax = 10, N = 110)
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with higher production capacities deviates �rst, since it faces a high residual demand and it is
less "risky" for it to submit a high bid. The player with higher production capacity continues
increasing its bid until both players select the equilibrium in which the player with higher pro-
duction capacity submits the maximum bid allowed by the auctioneer, and the player with lower
production capacity submits the minimum bid allowed by the auctioneer (bi = bmin, bj = P )
(left-hand panel, �gure 5.5).

5.3.2 Robustness to strategic uncertainty method

In this section we apply the robustness to strategic uncertainty method presented by Andersson,
Argenton and Weibull (2014) to determine the equilibria played in the game.

In the robustness to strategic uncertainty method the players face some uncertainty on the
strategies played by other players. Player i's uncertainty on player j's strategy is modelled as
follows:

btij = btj + tεi,j ∀j 6= i, (5.4)

where the random variables εi,j ∼ φij are statistically independent.

Equation 5.4 can be interpreted as follows: player i thinks that player j will play strategy
bj plus some random perturbation. When the uncertainty parameter (t-parameter) goes to zero,
the players do not face any type of uncertainty.

For t > 0, the random variable bi,j has probability density de�ned by:

f ti,j =
1

t
φi,j

(
x− btj
t

)
And the pro�t function is de�ned by:

πti(b) = E
[
π(bi, b

t
−i)
]

=

∫ [
πi(bi, x−i)f

t
i,j(bj)

]
∂x−i (5.5)

A pair of strategies (b∗i , b
∗
j ) is a t-equilibrium of the game if b∗i and b

∗
j maximize 5.5. Therefore,

to �nd the t-equilibrium of the game is enough to work out the best response functions and to
�nd the intersection between them.

If we apply equation 5.5 to the payo� function in the uniform price auction model de�ned
by equation 5.2 in the model section we obtain:
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Figure 5.6: Players' conditional payo� functions (ki = 8.7, kj = 6.5, θ = 10, bmin = 1, bmax = 10,
N = 110)
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πti(bi, b
t
j) = E

[
π(bi, b

t
j)
]

=

∫ [
πi(bi, x−i)f

t
i,j(bj)

]
∂x−i (5.6)

= bjki

[
1− Φi,j

(
bi − bj
t

)]
+ bi(θ − kj)

[
Φi,j

(
bi − bj
t

)]
,

where Φi,j is the cumulative distribution function of φi,j . The �rst term in equation 5.6(
bjki

[
1− Φi,j

(
bi − bj
t

)])
represents player i's expected payo� when it submits the lower bid

in the auction. With probability

[
1− Φi,j

(
bi − bj
t

)]
player i submits the lower bid in the auc-

tion. In that case, player j sets the price (bj), and player i's sells its entire production capacity

(ki). The second term in equation 5.6

(
bi(θ − kj)

[
Φi,j

(
bi − bj
t

)])
represents supplier i's ex-

pected payo� when it submits the higher bid in the auction. With probability

[
Φi,j

(
bi − bj
t

)]
player i submits the higher bid in the auction. In that case, player i sets the price (bi) and
satis�es the residual demand (θ − kj).

To �nd the equilibrium selected by the robustness to strategic method, it is enough to work
out players' best response functions. By using equation 5.6, it is easy to work out one player's
expected payo� given the strategy of the other player. In particular, we set bj and vary bi be-
tween bmin and bmax. Knowing that the random variable bi,j has probability density de�ned by

f ti,j =
1

t
φi,j

(
x− btj
t

)
, and if we assume that f ti,j ∼ N(0, 1), we work out player i' expected

payo� πi(bi | bj), and we choose bi that maximizes that payo�. Repeating that process for every
bj ∈ [bmin, bmax], we work out player i's best response function. By using the same approach we
work out player j's best response function. The intersection between both players' best response
functions determines the equilibrium selected by the robustness to strategic uncertainty method.

To understand the best response functions, it is useful to work out the expected payo� for
one player when we set the strategy played by the other player. In the left-hand panel of �gure
5.6 we plot four of the expected payo� functions for player i. When player j sets a low bid, player
i maximizes its expected payo� by submitting the maximum bid allowed by the auctioneer. In
contrast, when player j sets a high bid, player i maximizes its expected payo� by submitting
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Figure 5.7: Quantal Response Equilibria (ki = 8.7, kj = 6.5, θ = 10, bmax = 10, N = 11)
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low bids. In both cases, as can be observed in �gure 5.6, players' expected payo� functions are
concave and therefore, players maximize their expected payo� by submitting low or high bid,
but never by submitting intermediate bids.

The analysis of players' expected payo� functions is useful to understand the equilibrium
selected by the robustness to strategic uncertainty method. In �gure 5.6 we plot players' best
response functions. The intersection of the best response functions selects two of the Nash
equilibria in the original game. In each of these two equilibria, one player submits the higher bid
allowed by the auctioneer and the other player submits the lower bid allowed by the auctioneer.

5.3.3 Quantal response method

As in the previous sections, we present the quantal response method and we study the equilib-
rium selected by this method when we apply it to the uniform price auction de�ned in the model
section.

The quantal response method assumes that the players choose among the strategies in the
game based on their relative expected payo�. The key idea in the quantal response method is
that when the players calculate their expected payo�, they make calculation errors according
to some random process. The players assign more probability to the strategies that give them
a higher expected payo�. The Nash equilibrium in the quantal response method is the set of
probabilities for which none of the players wants to deviate.

In the seminal paper to study the quantal response method, McKelvey and Palfrey (1998) use
the logistic quantal response function. That speci�c function is a particular parametric class of
quantal response functions that has a long tradition in the study of individual choice behaviour.
The logit equilibrium is the correspondence π∗ : < −→ 24 given by:

π∗(λ) =

{
π ∈ 4 : πij =

eλuij(π)∑Ji
k=1 e

λuik(π)
∀i, j

}
, (5.7)

where the term in the numerator
(
eλuij(π)

)
is one of the players' expected payo� when it selects

strategy i and the other player selects strategy j. The term in the denominator
(∑Ji

k=1 e
λuik(π)

)
is the sum of one of the players' expected payo� when it selects strategy i and the other player
selects all the strategies in its strategies set. Therefore, by using equation 5.7 each player assigns

57



Figure 5.8: ki = 8.7; kj = 6.5; θ = 10; bmin = 1; bmax = 10, N = 11
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more probability to the strategies that give it higher expected payo�.

The Nash equilibrium in the quantal response method is de�ned as follows: Given {λ1, λ2, ...}
a sequence such that limt−→∞ λt =∞, and {p1, p2, ...} a corresponding sequence with pt ∈ π∗(λt)
for all t, such that limt−→∞ pt = p∗, then p∗ is a Nash equilibrium.

When we apply the quantal response method to the uniform price auction presented in the
model section we observe that the player with larger production capacity (player i) plays the
maximum bid with a probability close to one. In contrast, the player with lower production
capacity (player j) assigns higher probabilities to the lower bids (�gure 5.7). Therefore, the
quantal response method selects the equilibrium in which the player with higher production ca-
pacity submits the higher bid and the player with lower production capacity submits the lower
bid.

The equilibrium selected by the quantal response method is in line with the equilibrium
selected by the tracing and the robustness to strategic uncertainty methods. Moreover, the
pattern that appears in the equilibrium selected by the quantal response method is very similar
to the pattern that appears in the other two methods, since in the three methods the players tend
to select extreme strategies. In particular, the player with higher production capacity submits the
maximum bid allowed by the auctioneer and the player with lower production capacity submits
the lower bid allowed by the auctioneer.

5.4 Experimental results

In this section we study if the theoretical results presented in section 5.3 are in line with the
results of the game played in section 5.2.6

According with the theoretical analysis conducted in section 5.3, there are three di�erent
theoretical predictions that can be tested: First, according with the risk dominance method,
the equilibrium selected by the players is (bi = bmax, bj = bmin); second, according with the
robustness to strategic uncertainty method, the equilibrium selected by the players is either
(bi = bmin, bj = bmax), or (bi = bmax, bj = bmin); �nally, according with the quantal response
method the equilibrium selected by the players is (bi = bmax, bj = pj), where pj is the probability

6For a detailed statistical analysis of the experiment conducted in section 5.2 see Bigoni et al. (2019).
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Figure 5.9: ki = 8.7; kj = 6.5; θ = 10; bmin = 1; bmax = 10, N = 11
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that player j assigns to each strategy in the quantal response equilibrium.

To test those theoretical predictions we follow two di�erent approaches: First, we use an
histogram to visualize which pairs of strategies are played in the game; second, we use a scatter
plot to study which strategies are played in the game.

In �gure 5.8, we have plot the histogram for each player and for each pair of strategies.
We have enumerate each pair of strategies as follows: Pair 1 corresponds with the strategies
(bi = bmin = 1, bj = bmin = 1); pair 2 corresponds with the strategies (bi = bmin = 1, bj = 1.81);
pair 3 corresponds with the strategies (bi = bmin = 1, bj = 2.63); pair 11 corresponds with the
strategies (bi = bmin = 1, bj = bmax = 10); pair 110 corresponds with the strategies (bi = bmax =
10, bj = bmin = 1); pair 111 corresponds with the strategies (bi = bmax = 10, bj = 1.81); pair
112 corresponds with the strategies (bi = bmax = 10, bj = 2.63); pair 121 corresponds with the
strategies (bi = bmax = 10, bj = bmax = 10).

Based on the histogram information that appears in �gure 5.8 we can tested the theoretical
predictions. In particular, according with the risk dominance method, the pair of strategies that
is more played by the players is the pair 111 (bi = bmax, bj = bmin) seen from player i perspective,
or the pair 11 (bi = bmax, bj = bmin) seen from player j perspective, and that is the result that
we obtain in �gure 5.8. According with the robustness to strategic method, the players select
either the pair of strategies (bi = bmin, bj = bmax) (pair 11 seen from player i perspective, or
pair 111 seen from player j perspective), or (bi = bmax, bj = bmin) (pair 111 seen from player i
perspective, or pair 11 seen from player j perspective), and that is the result that we obtain in
�gure 5.8. However, it is important to notice that the pair of strategies (bi = bmax, bj = bmin) is
more prominent. Finally, according with the quantal response method, the equilibrium selected
by the players is (bi = bmax, bj = pj), where pj is the probability that player j assigns to each
strategy in the quantal response equilibrium. That pair of strategies corresponds with the pair
of strategies 111 to 122 seen from player i perspective, or the pair of strategies 1 to 11 seen from
player j perspective, and that is the result that we obtain in �gure 5.8.

We test the theoretical predictions by using the scatter plot presented in �gure 5.9. In the
horizontal line of that graph are the cycles7 in the vertical axes appears the frequency with which
each player plays each of the strategies in the game. As can be observed in �gure 5.9, player i plays

7In the experiment, the students play the game in �ve cycles of 15 rounds each.
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the maximum bib more frequently than player j, that is in line with the theoretical predictions
of risk dominance method. The players also select the pair of strategies (bi = bmin, bj = bmax).
However, that pair of strategies is played with less frequency. Finally, the theoretical predictions
of the quantal response method are only partially validated by the scatter plot analysis.
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Chapter 6

Regulation of Natural Monopolies

In this chapter we de�ne the characteristics of a natural monopoly, and we introduce and discuss
di�erent price regulation regimes when the regulator has full information.

6.1 Introduction

Textbook discussions of price and entry regulation typically are motivated by the asserted exis-
tence of an industry with �natural monopoly� characteristics. These characteristics make it
economical for a single �rm to supply services in the relevant market rather than two or more
competing. Markets with natural monopoly characteristics are thought to lead to a variety of
economic performance problems: excessive prices, production ine�ciencies, costly duplication of
facilities, poor service quality, and to have potentially undesirable distributional impacts.

Economic analysis of natural monopoly has focused on several questions which, while related,
are somewhat di�erent.

1. One question is a normative question: What is the most e�cient number of sellers
(�rms) to supply a particular good or service given �rm cost characteristics and market
demand characteristics? This question leads to technological or cost-based de�nitions of
natural monopoly.

2. A second and related question is a positive question: What are the �rm production or
cost characteristics and market demand characteristics that lead some industries �naturally�
to evolve to a point where there is a single supplier (a monopoly) or a very small number
of suppliers (an oligopoly)? This question leads to behavioral and market equilibrium
de�nitions of natural monopoly which are in turn related to the technological attributes
that characterize the cost-based de�nitions of natural monopoly.

3. A third question is also a normative question: If an industry has �a tendency to
monopoly� what are the potential economic performance problems that may result and
how do we measure their social costs? This question leads to an evaluation of the losses
in economic e�ciency and other social costs resulting from an �unregulated� industry with
one or a small number of sellers.

4. This question in turn leads to a fourth set of questions: When is government regulation
justi�ed in an industry with natural monopoly characteristics and how can regulatory
mechanisms best be designed to mitigate the performance problems of concern?

6.2 Technological de�nition of natural monopoly

A natural monopoly is characterized by the presence of increasing returns to scale. A production
function exhibits increasing returns to scale when the average cost curve is decreasing. In that
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Figure 6.1: Technological de�nition of natural monopoly
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case the average cost decrease with the production and therefore, it is less costly than a unique
supplier serves the entire demand.

To illustrate the previous point, assume what we have a cost function de�ned by TC(q) =
f + q2, where f is the �x cost. The average cost is the total cost divided by the quantity.

Therefore, AC(q) =
f

q
+ q. The average cost is represented by the blue line AC1(q) in �gure 6.1.

The marginal cost of production is de�ned by MC(q) =
∂TC(q)

∂q
= 2q. As can be observed, if

the production region where the average cost is decreasing, the marginal cost is lower than the
average cost and thus, if the supplier sets a price equal to the marginal cost (perfect competition
scenario), it doesn't cover the total cost.

It is important to notice, that from an economic perspective, it can be less costly that
only one supplier satis�es the total demand even when the production function exhibits de-
creasing returns to scale (increasing average cost). This happens when the average cost of
producing with only one supplier is lower that the average cost of producing with two suppliers.
This property of the cost functions is called sub-additivity, and mathematically implies that

TC(q) ≤ TC
(q

2
,
q

2

)
. To work out the quantity that equalize both production costs, it is enough

to compute q such that f + q2 = f +
(q

2

)2
+ f +

(q
2

)2
⇒ 2q2

4
= f ⇒ q =

√
2f .

As can be observed in �gure 6.1, when the production capacity is lower than 1.4, even when
the production function exhibits decreasing returns to scale, it is less costly that one supplier
satis�es the total demand. In that case the average cost of producing with only one supplier
AC1(q) is lower that the average cost of producing with two suppliers AC2(q).
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6.3 Price regulation by a fully informed regulator

Fully e�cient pricing (price equal to marginal cost) is typically not feasible for a private �rm
that must meet a break-even constraint in the presence of economies of scale. Accordingly, the
traditional literature on price regulation of natural/legal monopolies focused on normative is-

sues related to the development of second-best pricing rules for the regulated �rm given
a break-even constraint (or given a cost of government subsidies that ultimately rely on a tax
system that also creates ine�ciencies). A secondary focus of the literature has been on pricing
of services like electricity which are non-storable, have widely varying temporal demand,
have high capital intensities and capital must be invested to provide enough capacity to meet
the peak demand, the so-called peak-load or variable-load pricing (PLP) problem.

The traditional literature on second-best pricing for natural monopolies assumes that the
regulator is fully informed about the regulated �rm's costs and knows as much about the at-
tributes of the demand for the services that the �rm supplies as does the regulated �rm. The
regulator's goal is to identify and implement normative pricing rules that maximize total

surplus given a budget constraint faced by the regulated �rm. Neither the regulated
�rm nor the regulator acts strategically.

6.3.1 Optimal linear price Ramsey-Boiteux pricing

In order for the �rm with increasing returns to break-even it appears that the prices the �rm
charges for the services it provides will have to exceed marginal cost. One way to proceed in the
single product context is simply to set a single price for each unit of the product equal to its
average cost (pAC). Then the expenditures made by each consumer i will be equal to Ei = pACqi.
In this case pAC is a uniform linear price schedule since the �rm charges the same price for
each unit consumed and each consumer's expenditures on the product varies proportionately
with the output she consumes.

The deadweight loss associated with uniform linear prices is represented in the left-hand side
in �gure 6.2. As can be observed in that �gure, since the elasticity of the demand during the day
is lower than during the night, the deadweight loss for the consumers during the day is larger
than the deadweight loss for the consumers during the night.

The �rst question to address is whether, within the class of linear prices, we can do better
than charging a uniform price per unit supplied that embodies an equal mark-up over marginal
cost to all consumers for all products sold by the regulated �rm? Alternatively, can we do better
by engaging in third degree price discrimination?1 in the case of a single product �rm, by
charging di�erent unit prices to di�erent types of consumers (e.g. residential and industrial and
assuming that resale is restricted) charging a constant unit price for each product but where
each unit price embodies a di�erent markup over its incremental cost?

Set up: Following La�ont and Tirole ((2000), p. 64), the regulated �rm produces n products
whose quantities supplied are represented by the vector q = (q1, ..., qn). Assume that the demand
functions for the price vector p = (p1, ..., pn) are qk = Dk(p1, ..., pn). The �rm's total revenue
function is then R(q) =

∑n
i=1 pkqk. Let the �rm's total cost function be C(q) = C(q1, ..., qn) and

denote the marginal cost for each product k as ck(q1, ..., qn). Let S(q) =
∑n

i=1

∫ qi(pi)
0 pi(q)∂qi

denote the gross surplus for output vector q with
∂S

∂qi
= pi.

1In a third degree price discrimination, the suppliers can o�er di�erent price to di�erent types of consumers.
The types of price discrimination are explained in the annex in this section
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Figure 6.2: Linear and Ramsey-Boiteux pricing c = 0.25, f = 1.5, an = ad = 5, bn = 2, bd = 1
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The Ramsey-Boiteux pricing problem (Ramsey 1927; Boiteux, 1971) is then to �nd the vector
of contant unit (linear) prices for the n products that maximizes net social surplus subject to
the regulated �rm's break-even or balanced budget constraint:

maxq S(q)− C(q)

subject to R(q)− C(q) ≥ 0

This problem may be solved using a Lagrange multiplier. FOC on q are:

pn − cn(q) = −λ
(
∂R

∂qn
− cn(q)

)
= −λ

(
pn +

∂pn
∂qn

qn
pn
pn
− cn(q)

)
= −λ

(
pn

(
1 +

∂pn
pn

qn
∂qn

)
− cn(q)

)
= −λ

(
pn

(
1− 1

|εn|

)
− cn(q)

)
= −λ(pn − cn(q)) +

λp

|εn|
⇒

(pn − cn(q))(1 + λ) =
λpn
|εn|
⇒

pn − cn(q)

pn
=

λ

1 + λ

1

|εn|
=

k

|εn|
(6.1)

Equation 6.1 is often referred to as the inverse elasticity rule (Baumol and Bradford (1970)).
Prices are set so that the di�erence between a product's price and its marginal cost varies in-
versely with the elasticity of demand for the product. The margin is higher for products

that have less elastic demands than for products that have more elastic demand.

Note that Ramsey-Boiteux prices involve third-degree price discrimination that results
in a set of prices that lie between marginal cost pricing and the prices that would be set by a pure
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monopoly engaging in third-degree price discrimination. For example, rather than being di�erent
products, assume that q1 and q2 are the same product consumed by two groups of consumers
who have di�erent demand elasticities (e.g. residential and industrial consumers) and that resale
can be blocked eliminating the opportunity to arbitrage away di�erences in prices charged to
the two groups of consumers. Then the price will be higher for the group with the less elastic
demand despite the fact that the product and the associated marginal cost of producing it are
the same.

The Ramsey-Boiteux prices are represented in the right-hand side in �gure 6.2. As can be
observed, the consumers with the less elastic demand curve pay a higher price. However, for this
particular example, the deadweight loss with linear pricing (0.164) is lower than the deadweight
loss with Ramsey-Boiteux pricing (0.198).

6.3.2 Non-linear prices: Simple two-part tari�s

Ramsey-Boiteux prices are still only second-best prices because the per unit usage prices are
not equal to marginal cost. The distortion is smaller than for uniform (p = AC in the single
product case) pricing since we are taking advantage of di�erences in the elasticities of demand
for di�erent types of consumers or di�erent products to satisfy the budget constraint yielding a
smaller dead-weight loss from departures from marginal cost pricing. That is, there is still a
wedge between the price for a product and its marginal cost leading to an associated dead-weight
loss.

The question is whether we can do better by further relaxing the restriction on the kinds
of prices that the regulated �rm can charge? Speci�cally, can we do better if we were to allow
the regulated �rm to charge a "two-part" price that includes a non-distortionary uniform

�xed "access charge" (A) and then a separate per unit usage price (p). A price schedule or
tari� of this form would yield a consumer expenditure or outlay schedule of the form: Ti = A+pqi.

Such a price schedule is "non-linear" because the average expenditure per unit consumed
Ti/qi is no longer constant, but falls as qi increases. We can indeed do (much) better from
an e�ciency perspective with two-part prices than we can with second-best (Ramsey-Boiteux)
linear prices (Brown and Sibley 1986, pp. 167-183).

Set up: Assume that there are N identical consumers in the market each with demand qi = d(p)
and gross surplus of Si evaluated at p = 0. The regulated �rm's total cost function is given by
C = f + cq. That is, there is a �xed cost f and a marginal cost c. Consider a tari� structure
that requires each consumer to pay an access charge A = f/N and then a unit charge p = c.
Consumer i's expenditure schedule is then: Ti = A+ pqi = f/N + cqi.

Economic analysis: This two-part tari� structure is �rst-best. On the margin, each consumer
pays a usage price equal to marginal cost and the di�erence between the revenues generated
from the usage charges and the �rm's total costs are covered with a �xed fee that acts as a lump
sum tax. As long as A < (Si − pqi) then consumers will pay the access fee and consume at the
e�cient level. If A > (Si − pqi) then it is not economical to supply the service at all because
the gross surplus is less than the total cost of supplying the service (recall Si is the same for all
consumers and pi = c).

6.3.3 Peak-Load Pricing

Many public utility services cannot be stored and the demand for these services may vary
widely from hour to hour, day to day and season to season. Because these services cannot be
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stored, the physical capacity of the network must be expanded su�ciently to meet peak demand.
Services like electricity distribution and generation, gas distribution, and telephone networks are
very capital intensive and the carrying costs (depreciation, interest on debt, return on equity
investment) of the capital invested in this capacity is a relatively large fraction of total cost.

The intuition behind the basic peak load pricing results is quite straightforward. If capacity
must be built to meet peak demand then when demand is below the peak there will be surplus
capacity available.

• The long run marginal cost of increasing supply to meet an increment in peak demand

includes both the additional capital and operating costs of building and operating an
increment of peak capacity.

• The long run marginal cost of increasing supply to meet an increment in o� peak demand

re�ects only the additional operating costs or short run marginal cost of running more
of the surplus capacity to meet the higher demand as long as o�-peak demand does not
increase to a level greater than the peak capacity on the system.

Accordingly, the peak price should be relatively high, re�ecting both marginal operating and
capital costs, and the o�-peak prices low to re�ect only the o�-peak marginal costs of operating
the surplus capacity more intensively.

Set up: Let qd = qd(pd), the demand during the day-time hours, and qn = qn(pn), the demand
for electricity during night-time hours for any pd = pn day-time demand is higher than night-
time demand (qd(pd)) > qn(pn)). The gross surplus during each period (area under the demand

curve) is given by S(qi) and
∂Si
∂qi

= pi.

Assume that the production of electricity is characterized by a simple �xed-proportions
technology composed of a unit rental cost ck for each unit of generating capacity (k) and a
marginal operating cost ce for each unit of electricity produced. We will assume that there are
no economies of scale, recognizing that any budget balance constraints can be handled with
second-best linear or non-linear prices. Demand in any period must be less than or equal to the
amount of capacity installed so that qd < k and qn < k.

Equilibrium analysis: The optimal prices are then given by solving the following program
which maximizes net surplus subject to the constraints that output during each period must be
less than or equal to the quantity of capacity that has been installed:

L = S(qd) + S(qn)− ckk − ce(qd + qn) + λd(k − qd) + λn(k − qn) (6.2)

where λd and λn are the shadow prices on capacity. The �rst order conditions are then given
by:

∂L

∂qd
= pd − ce − λd = 0 (6.3)

∂L

∂qn
= pn − ce − λn = 0 (6.4)

∂L

∂k
= λd + λn − ck = 0 (6.5)

with complementary slackness conditions:

λd(k − qd) = 0 (6.6)

λn(k − qn) = 0 (6.7)
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There are then two interesting cases:

Case 1: Classic peak load pricing results.

If qn < k, then by equation 6.7, λn = 0.

If qd = k, then by equation 6.6, λd ≥ 0.

By equation 6.5, λd = ck. Finally, to obtain the prices that the consumers have to pay, we
use equations 6.3 and 6.4 to obtain that pd = ce+ ck and that pn = ce. Therefore, the consumers
during the peak (day), pay the marginal operation costs (ce) and the marginal capacity costs
(ck). The consumers during the base (night) only pay the marginal operation costs (ce).

Case 2: Shifting peak case.

If qn = k, then by equation 6.7, λn ≥ 0.

If qd = k, then by equation 6.6, λd ≥ 0.

By equation 6.5, λd + λn = ck. Finally, to obtain the prices that the consumers have to pay,
we use equations 6.3 and 6.4 to obtain that pd = ce + λd and that pn = ce + λn. Therefore, the
consumers during the day and during the night are consuming at peak demand. Therefore, both
consumers contribute to pay the marginal operation costs (ce) and the marginal capacity costs
(ck). If the demand elasticity is the same during the day and during the night, the share of the
marginal capacity costs paid by the consumers during the day is larger than the share paid by
the consumers during the night.

Example. When the demand is linear, equation 6.2 becomes:

L = S(qd) + S(qn)− ckk − ce(qd + qn) + λd(k − qd) + λn(k − qn)

= bdq
2
d

1

2
+ bnq

2
n

1

2
− ckk − ce(qd + qn) + λd(k − qd) + λn(k − qn) (6.8)

Where λd and λn are the shadow prices on capacity. The �rst order conditions are then given
by:

∂L

∂qd
= bdqd − ce − λd = 0 (6.9)

∂L

∂qn
= bnqn − ce − λn = 0 (6.10)

∂L

∂k
= λd + λn − ck = 0 (6.11)

with complementary slackness conditions:

λd(k − qd) = 0 (6.12)

λn(k − qn) = 0 (6.13)

There are then two interesting cases:

Case 1: Classic peak load pricing results.
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Figure 6.3: Peak-Load pricing
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Case 2: Shifting peak case

If qn < k, then by equation 6.13, λn = 0.

If qd = k, then by equation 6.12, λd ≥ 0.

By equation 6.11, λd = ck. Finally, to obtain the quantities and the prices we use equations
6.9 and 6.10. By equation 6.9:

qdbd = ce + ck ⇒ qd =
ce + ck
bd

(6.14)

pd = ad − bd
ce + ck
bd

= ad − (ce + ck) (6.15)

By equation 6.10:

qnbn = ce ⇒ qn =
ce
bn

(6.16)

pn = an − bn
ce
bn

= an − (ce) (6.17)

When an = 5, ad = 10, bn = bd = 1, c3 = ck = 4, where subindex n refers to night, and
subindex d refers to day, the values of equations 6.14, 6.15, 6.16, 6.17 are represented in the
left-hand side in �gure 6.3. The price paid by the consumers during the day is larger than the
price paid by the consumers during the night. However, this is not necessarily true for di�erent
parameters. Moreover, equations 6.3 and 6.4 are di�erent from equations 6.15 and 6.17. There-
fore, it is very important to take carefully the results presented in the example because they
could be wrong.

Case 2: Shifting peak case.

If qn = k, then by equation 6.13, λn ≥ 0.

If qd = k, then by equation 6.12, λd ≥ 0.

By equation 6.11, we know that ck = λn + λn.
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Summing equations 6.12 and 6.13 taken into account the previous results, we obtain:

(bd + bn)k − 2ce − ck = 0⇒ k = qd = qn
2ce + ck
bd + bn

(6.18)

By plugging 6.18 equations 6.9 and 6.10, we obtain:

λd = bd
2ce + ck
bd + bn

− ce

λn = bn
2ce + ck
bd + bn

− ce

Finally, by using the demand functions, we obtain the equilibrium prices:

pd = ad − bd
2ce + ck
bdbn

(6.19)

pn = an − bn
2ce + ck
bdbn

(6.20)

When an = 8, ad = 10, bn = bd = 1, c3 = ck = 4, where subindex n refers to night, and
subindex d refers to day, the values of equation 6.18, 6.19, 6.20 are represented in the right-hand
side in �gure 6.3.

6.4 Exercises

6.4.1 Natural Monopoly. Linear pricing and Ramsey-Boiteux pricing

Set up: We have a supplier with production cost TC(q) = f + cq, where f is the �xed cost and
c is the marginal cost of production. We have two groups of consumers with di�erent demand
functions: qi = ai − biq∀i = d, n, where subindex n refers to night, and subindex d refers to day.
Assume the next set of parameters: f = 1.5, c = 0.25, an = ad = 5, bn = 2, bd = 1.

Questions:

1. Work out the average cost and the marginal cost.

2. Is this cost function sub-additive?

3. Work out the perfect competition quantities for the day and night consumers. Work out
the pro�ts in that case? Are the pro�ts positive?

4. Given the perfect competition solution, work out the linear price that makes that the
supplier can cover the �x cost. Work out the deadweight loss in that case.

5. Work out the Ramasey-Boiteux pricing and work out the deadweight loss in that case.
Compare it with the linear price case.

6. Program this exercise in GAMS and analyze how the changes in the amount of electricity
consumed (an, ad) and elasticity of the demand (bn, bd) modify the equilibrium prices and
the deadweight loss.
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6.4.2 Peak-Load pricing

Set up: We have a supplier with production cost TC(q, k) = ckk+ ceq, where ck is the marginal
cost of installing production capacity and ce is the marginal cost of producing energy. We
have two groups of consumers with di�erent demand functions: qi = ai − biq∀i = d, n, where
subindex n refers to night, and subindex d refers to day. Assume the next set of parameters:
f = 1.5, c = 0.25, an = 8, ad = 10, bn = bd = 1, ce = ck = 2. In this case, the supplier doesn't
face a �xed investment cost and therefore, the perfect competition solution is feasible. The main
questions in this problem are: First, to �nd the right investment in capital to satisfy the demand
during the day and the demand during the night. Second, to �nd the prices that the consumers
have to pay to cover the cost of capital and electricity.

Questions:

1. Work out the optimal solution for investments in production capacity, and the optimal
production during the day and during the night.

2. Write a program in GAMS and work out the optimal investment in capacity, the optimal
production during the day, during the night and the prices the consumers have to pay.

3. Using your program, change the parameters an, bn, ad, bd and analyze how that a�ect the
main variables of the model (optimal investment in capacity, optimal production during
the day, optimal production during the night, and prices faced by the consumers).

Annex. Price discrimination

Taken from the wikipedia (link). We can di�erentiate three types of price discrimination.

First degree:

Exercising �rst degree (or perfect/Primary) price discrimination requires the monopoly seller
of a good or service to know the absolute maximum price (or reservation price) that
every consumer is willing to pay. By knowing the reservation price, the seller is able to sell the
good or service to each consumer at the maximum price he is willing to pay, and thus trans-
form the consumer surplus into revenues. So the pro�t is equal to the sum of consumer surplus
and producer surplus. The marginal consumer is the one whose reservation price equals to the
marginal cost of the product. The seller produces more of his product than he would to achieve
monopoly pro�ts with no price discrimination, which means that there is no deadweight loss.

Second degree:

In second degree price discrimination, price varies according to quantity demanded. Larger
quantities are available at a lower unit price. This is particularly widespread in sales to industrial
customers, where bulk buyers enjoy higher discounts.

Additionally to second degree price discrimination, sellers are not able to di�erentiate

between di�erent types of consumers. Thus, the suppliers will provide incentives for the
consumers to di�erentiate themselves according to preference, which is done by quantity
"discounts", or non-linear pricing. This allows the supplier to set di�erent prices to the di�erent
groups and capture a larger portion of the total market surplus.

In reality, di�erent pricing may apply to di�erences in product quality as well as quantity.
For example, airlines often o�er multiple classes of seats on �ights, such as �rst class and econ-
omy class, with the �rst class passengers receiving wine, beer and spirits with their ticket and the
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economy passengers o�ered only juice, pop and water. This is a way to di�erentiate consumers
based on preference, and therefore allows the airline to capture more consumer's surplus.

Third degree:

Third degree price discrimination, means charging a di�erent price to di�erent con-

sumer groups. For example, rail and tube (subway) travellers can be subdivided into commuter
and casual travellers, and cinema goers can be subdivided into adults and children, which some
theatres also o�ering discounts to full-time students and seniors. Splitting the market into peak
and o� peak use of a service is very common and occurs with gas, electricity, and telephone
supply, as well as gym membership and parking charges. Some parking lots charge less for "early
bird" customers who arrive at the parking lot before a certain time.

(Some of these examples are not pure "price discrimination", in that the di�erential price
is related to production costs: the marginal cost of providing electricity or car parking spaces
is very low outside peak hours. Incentivizing consumers to switch to o�-peak usage is done as
much to minimize costs as to maximize revenue.)
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Chapter 7

Investments

The increasing weight of renewable capacity in the production mix increases the volatility of
production capacity. Moreover, the presence of price caps can induce a scarcity in production
capacity investments. The increase in production volatility, and the lack of production capacity
investments could generate blackouts that have important economic consequences. In this chap-
ter, we study the main models that analyze generation capacity investment decisions, and the
in�uence that production volatility and price caps have on those decisions.

We study Kreps and Scheinkman (1984), where the suppliers invest in production capacity
and then they compete in prices. We broaden that analysis by analyzing the papers that extend
that analysis by introducing di�erent rationing rules and demand uncertainty. We complement
this study by analyzing other models that study investment decisions in transmission and in
production capacities.
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Chapter 8

Forward Contracts

Forward contracts have been implemented historically to exacerbate competition in spot elec-
tricity markets. However, the e�ects of those contracts enhancing competition in spot electricity
markets depend crucially on the type of competition between �rms in those markets. In par-
ticular, the e�ect on competition varies if the strategies are complementary or substitutes. In
this chapter, we study the main models that analyze the e�ects that the introduction of forward
contracts has on spot electricity markets.
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Chapter 9

Measuring Market Power

Electricity is a commodity with special characteristics that facilitate the exercise of market power
as we have studied in chapter 1. Moreover, electricity markets are characterized for the presence
of few competitors and the presence of transmission constraints. Therefore, it is necessary to
develop tools to study if the suppliers are exercising market power. In this chapter, we study
di�erent techniques to measure market power in electricity markets.
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Chapter 10

Collusion

Electricity is a commodity with special characteristics that facilitate the exercise of market power
as we have studied in chapter 1. Moreover, electricity markets are characterized for the presence
of few competitors and the presence of transmission constraints. In electricity markets, the
suppliers interact with each other and that could facilitate collusion. In this chapter, we study
the main papers that study collusion in electricity markets.
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Chapter 11

Exams

11.1 Exam November 2019

Question 1:

Electricity is a special commodity, and electricity markets operates with some par-

ticular rules that do not apply to other markets. Could you enumerate some of the

particularities of electricity and electricity markets that facilitates the exercise of

market power in those markets?

• Demand is di�cult to forecast.

• Demand is insensitive to price �uctuations.

• Supply faces binding constraints at peak times.

• Storage is prohibitively costly.

• Demand and supply have to match all the time.

• Electricity markets are connected by transmission lines that could be congested.

Question 2:

In an electricity market there are two suppliers with production capacities ks = kn =
50, and marginal cost of production cs = cn = 0, and the price cap is P = 5. Work

out the Nash equilibrium in an uniform and in a discriminatory price auction when

the demand is equal to θ = 40.

When the demand is θ = 40 both suppliers have enough production capacity to satisfy the
total demand and they compete �ercely to be dispatched in the auction. Therefore, there exists
an unique Nash equilibrium where both suppliers submit a bid equal to the their marginal costs.
Hence, the pair of strategies that de�ne the equilibrium are b∗s = b∗n = 0.

Question 3:

In an electricity market there are two suppliers with production capacities ks = kn =
50, and marginal cost of production cs = cn = 0, and the price cap is P = 5. Work out

the close form solution that de�ne the Nash equilibrium in an uniform price auction

when the demand is equal to θ = 60.
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When the demand is θ = 60 both suppliers face a positive residual demand and there aremul-
tiplicity of Nash equilibrium. One of the sets of Nash equilibria is the one in which supplier
n submits the higher bid, and supplier s submits a bid that makes undercutting unpro�table.
That set of Nash equilibria is de�ned by:

b∗s ∈
[
0,
P (θ − ks)

kn

]
=

[
0,

5(60− 50)

60

]
= [0, 1] ;

b∗n = P = 5

The other set of Nash equilibria is the one in which supplier s submits the higher bid, and
supplier n submits a bid that makes undercutting unpro�table. That set of Nash equilibria is
de�ned by:

b∗s = P = 5;

b∗n ∈
[
0,
P (θ − ks)

kn

]
=

[
0,

5(60− 50)

60

]
= [0, 1]

Question 4:

In an electricity market there are two suppliers with production capacities ks = kn =
50, and marginal cost of production cs = cn = 0, and the price cap is P = 5. Work out

the close form solution that de�ne the Nash equilibrium in a discriminatory price

auction when the demand is equal to θ = 60.

When the demand is θ = 60 both suppliers face a positive residual demand. In that case, a
pure Nash equilibrium does not exist. The proof of this statement is as follows:

First, any pair of bids (bs, bn) in the interval

[
0,
P (θ − ks)

kn

]
, it is not a Nash equilibrium,

since both suppliers prefer to deviate to the price cap and satisfy the residual demand.

Second, any pair of bids (bs, bn) in the interval

[
P (θ − ks)

kn
, P

]
, it is not a Nash equilibrium,

since the suppliers undercut each other to be dispatched �rst in the auction.

Therefore, the Nash equilibrium is in mixed strategies. To work out the Nash equilibrium, it
is necessary to work out the support of the mixed strategies equilibrium, and suppliers'
cumulative distribution functions.

Both suppliers assign probability equal to zero to the bids in the interval

[
0,
P (θ − ks)

kn

]
,

since they can assign probability one to the price cap increasing their pro�ts. Therefore, the

support of the mixed strategies equilibrium is de�ned by

[
P (θ − ks)

kn
, P

]
= [1, 5].

To work out the cumulative distribution function, we proceed in three steps:

First, supplier n's pro�t function is de�ned by:1

πn(b; θ) = b [Fs(b)(θ − ks)] + b [(1− Fs(b))kn]

−bFs(b) [kn − (θ − ks)] + bkn (11.1)

1Suppliers' production capacities and suppliers' production costs are identical. Therefore, the Nash equilibrium
is also symmetric and it is only necessary to work out the cumulative distribution function of one of the suppliers.
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Figure 11.1: Mixed strategies equilibrium

CDF  =60, k
n
=k

s
=50, c=0, P=5

The �rst term in equation 12.1 (b [Fs(b)(θ − ks)]) represents supplier n' pro�ts when bs ≤ bn.
The second term in equation 12.1 (b [(1− Fs(b))kn]) represents supplier n' pro�ts when bs > bn.

Therefore, supplier s's cumulative distribution function is de�ned by:

Fs(b) =
bkn − πn(b; θ)

b [kn − (θ − ks)]
(11.2)

Second, at the lower bound of the support (b), the cumulative distribution function is zero.
Plugging that information in equation 12.2, we can work out supplier n's pro�ts:

Fs(b; θ) = 0 =⇒ πn(b; θ) = bkn (11.3)

Moreover, we know that πn(b; θ) = bkn = πn(b; θ) ∀b ∈ [b, P ]. The last inequality holds
because all the bids in the support give in expectation the same payo�. Otherwise, the suppliers
can reallocate probabilities to increase their expected pro�ts.

Third, by using the information obtained in the second step, and plug in the value of supplier
n's pro�ts in equation 12.1, we obtain supplier s's cumulative distribution function:

Fs(b) =
bkn − bkn

b [kn − (θ − ks)]
=

kn
kn − (θ − ks)

b− b
b

(11.4)

The graphical representation of the cumulative distribution functions for both suppliers are
in �gure 12.1.

Optional:

To complete the analysis of the equilibria, it is important to work out the expected bid
submitted by each supplier. First, we work out the probability distribution function:

fs(b) =
∂Fs(b)

∂b
=

kn
kn − (θ − ks)

b

b2
(11.5)

Second, we work out the expected bid for each supplier:
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Es(b) =

∫ P

b
bfs(b)∂b =

kn
kn − (θ − ks)

∫ P

b

b b

b2

=
kn

kn − (θ − ks)
[ln(b)]Pb = 2.0118 (11.6)

Question 5:

In an electricity market there are two nodes connected by a transmission line with

capacity T = 20. There is one supplier with capacity kn = 50 located in node North,

and a supplier with capacity ks = 50 located in node South. The marginal cost of

production cs = cn = 0 and the price cap is P = 5. Work out the close form solution

that de�ne the Nash equilibrium in a discriminatory price auction when the demand

in node South is θs = 10, and the demand in node North is θn = 60.

We have to prove that a pure strategies equilibrium does not exist. We proceed in
three steps:

First, we �nd the bid that makes indi�erent each supplier between to submit the maximum
bid allowed by the auctioneer and to undercut the other supplier. We start from supplier n.
Supplier n's residual pro�ts are determined by P (θn − T ), and the bid that makes undercutting
unpro�table is de�ned by:

P (θn − T ) = bnkn =⇒ bn =
P (θn − T )

kn
= 2.5

We work out the bid that makes undercutting unpro�table for supplier s. In that case,
supplier s's residual pro�ts are determined by P (θn+θs−kn), and the bid that makes undercutting
unpro�table is de�ned by:

P (θs + θn − kn) = bs(θs + T ) =⇒ bs =
P (θs + θn − kn)

(θs + T )
= 0.83

Second, we prove that a pair of bids in the interval [0,max {bs, bn}] cannot be a Nash equi-
librium. A pure strategies equilibrium does not exist in that interval, since at least one of the
suppliers prefers to submit the maximum bid allowed by the auctioneer and satisfy the residual
demand.

Third, a pair of bids in the interval [max {bs, bn} , P ] cannot be a Nash equilibrium, since
both suppliers undercut each other to be dispatched �rst in the auction.

Therefore, the Nash equilibrium is in mixed strategies. Hence, it is necessary to �nd the

support of the mixed strategies equilibrium and the cumulative distribution function. The
support of the mixed strategies equilibrium is de�ned by b ∈ [max {bs, bn} , P ], since as we show
above, the suppliers never randomize in the interval b ∈ [0,max {bs, bn}].

To work out the cumulative distribution function, we proceed in three di�erent steps:

First, supplier n's pro�t function is de�ned by:

πn(b; θ) = b [Fs(b)(θn − T )] + b [(1− Fs(b))kn]

−bFs(b) [kn − (θn − T )] + bkn (11.7)
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The �rst term in equation 12.7 (b [Fs(b)(θn − T )]) represents supplier n' pro�ts when bs ≤ bn.
The second term in equation 12.7 (b [(1− Fs(b))kn]) represents supplier n' pro�ts when bs > bn.

Therefore, supplier s's cumulative distribution function is de�ned by:

Fs(b) =
bkn − πn(b; θ)

b [kn − (θ−T )]
(11.8)

Second, at the lower bound of the support (b), the cumulative distribution function is zero.
Plugging that information in equation 12.7, we can work out supplier n's pro�ts:

Fs(b; θ) = 0 =⇒ πn(b; θ) = bkn (11.9)

Moreover, we know that πn(b; θ) = bkn = πn(b; θ) ∀b ∈ [b, P ]. The last inequality holds
because all the bids in the support give in expectation the same payo�. Otherwise, the suppliers
can reallocate probabilities to increase their expected pro�ts.

Third, by using the information obtained in the second step and plug in the value of supplier
n's pro�ts in equation 12.8, we obtain supplier s's cumulative distribution function:

Fs(b) =
bkn − bkn

b [kn − (θn − T )]
=

kn
kn − (θn − T )

b− b
b

(11.10)

We repeat the same steps to work out supplier n's cumulative distribution function:

First, supplier s's pro�t function is de�ned by:

πs(b; θ) = b [Fs(b)(θs + θn − kn)] + b [(1− Fs(b))(θs + T )]

−bFs(b) [(θs + T )− (θs + θn − kn)] + b(θs + T ) (11.11)

Therefore, supplier n's cumulative distribution function is de�ned by:

Fn(b) =
b(θs + T )− πs(b; θ)

b [(θs + T )− (θs + θn − kn)]
(11.12)

Second, at the lower bound of the support (b), the cumulative distribution function is zero.
Plugging that information in equation 12.12, we can work out supplier S's pro�ts:

Fn(b; θ) = 0 =⇒ πs(b; θ) = b(θs + T ) (11.13)

Moreover, we know that πs(b; θ) = b(θs + T ) = πs(b; θ) ∀b ∈ [b, P ]. The last inequality holds
because all the bids in the support give in expectation the same payo�. Otherwise, the suppliers
can reallocate probabilities to increase their expected pro�ts.

Third, by using the information obtained in the second step and plug in the value of supplier
s's pro�ts in equation 12.12, we obtain supplier n's cumulative distribution function:

Fn(b) =
b(θs + T )− b(θs + T )

b [(θs + T )− (θs + θn − kn)]
=

(θs + T )

(θs + T )− (θs + θn − kn)

b− b
b

(11.14)

The graphical representation of the cumulative distribution functions of both suppliers are in
the left-hand side of �gure 12.2. As can be observed in that �gure, the cumulative distribution
function of the supplier located in the high-demand node stochastic dominate the cumulative
distribution function of the supplier located in the low-demand node, i.e., the supplier located
in the high-demand node submits higher bids with higher probabilities. This result is very intu-
itive, the supplier located in the high-demand node faces a high residual demand and it prefers
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Figure 11.2: Mixed strategies equilibrium
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to satisfy that demand by submitting higher bids.

Optional:

To complete the analysis of the equilibria, it is important to work out the expected bid
submitted by each supplier. First, we work out the probability distribution function:

fs(b) =
∂Fs(b)

∂b
=

kn
kn − (θn − T )

b

b2

fn(b) =
∂Fn(b)

∂b
=

(θs + T )

(θs + T )− (θs + θn − kn)

b

b2
(11.15)

Second, we work out the expected bid for each supplier:

Es(b) =

∫ P

b
bfs(b)∂b =

kn
kn − (θn − T )

∫ P

b

b b

b2

=
kn

kn − (θn − T )
[ln(b)]Pb = 3.51

En(b) =

∫ P

b
bfn(b)∂b =

(θs + T )

(θs + T )− (θs + θn − kn)

∫ P

b

b b

b2
+ P [1− Fn(P )]

=
(θs + T )

(θs + T )− (θs + θn − kn)
[ln(b)]Pb + P [1− Fn(P )] = 4.109 (11.16)

It is important to notice that the supplier n's cumulative distribution function is discontinuous
in the upper bound of the support. Therefore, to work out the supplier n's expected bid, it is
necessary to add the term P [1− Fn(P )] to work out supplier n's expected bid. In contrast
supplier s's cumulative distribution function is continuous in the upper bound of the support,
and the probability assigned to the maximum bid allowed by the auctioneer is zero. Therefore,
it is not necessary to add the term P [1− Fs(P )] to work out supplier s's expected bid.

Question 6:

Use the same parameters than in question 5, but now assume that the suppliers have

to pay a tari� for the electricity that they sell into the other market, but not for the
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electricity that they sell in their own market (transmission tari�) t = 2.5. Work out

the close form solution that de�ne the Nash equilibrium in a discriminatory price

auction.

We have to prove that a pure strategies equilibrium does not exist. We proceed in
three steps:

First, we �nd the bid that makes indi�erent each supplier between to submit the maximum
bid allowed by the auctioneer and to undercut the other supplier. We start from supplier n.
Supplier n's residual pro�ts are determined by P (θn − T ), and the bid that makes undercutting
unpro�table is de�ned by:

P (θn − T ) = bnkn − t(kn − θn) =⇒ bn =
P (θn − T ) + t(kn − θn)

kn
= 2.75

We work out the bid that makes undercutting unpro�table for supplier s. In that case,
supplier s's residual pro�ts are determined by P (θn+θs−kn), and the bid that makes undercutting
unpro�table is de�ned by:

P (θs + θn − kn) = bs(θs + T )− tT =⇒ bs =
P (θs + θn − kn) + tT

(θs + T )
= 2.5

Second, we prove that a pair of bids in the interval [0,max {bs, bn}] cannot be a Nash equi-
librium. A pure strategies equilibrium does not exist in that interval, since at least one of the
suppliers prefers to submit the maximum bid allowed by the auctioneer and satisfy the residual
demand.

Third, a pair of bids in the interval [max {bs, bn} , P ] cannot be a Nash equilibrium, since
both suppliers undercut each other to be dispatched �rst in the auction.

Therefore, the Nash equilibrium is in mixed strategies. Hence, it is necessary to �nd the
support of the mixed strategies equilibrium and the cumulative distribution function. The sup-
port of the mixed strategies equilibrium is de�ned by b ∈ [max {bs, bn} , P ], since as we
show above, the suppliers never randomize in the interval b ∈ [0,max {bs, bn}].

To work out the cumulative distribution function, we proceed in three di�erent steps:

First, supplier n's pro�t function is de�ned by:

πn(b; θ) = Fs(b) [b(θn − T )] + (1− Fs(b)) [bkn − t(kn − θn)]

−Fs(b) [b(kn − (θn − T ))− t(kn − θn)] + bkn − t(kn − θn) (11.17)

The �rst term in equation 12.17 Fs(b) [b(θn − T )] represents supplier n' pro�ts when bs ≤ bn.
The second term in equation 12.17 (1 − Fs(b)) [bkn − t(kn − θn)] represents supplier n' pro�ts
when bs > bn. It is important to notice that when supplier n submits the lower bid in the auction
it has to pay a tari� for the electricity that sells to the other node (kn − θn).

Therefore, supplier s's cumulative distribution function is de�ned by:

Fs(b) =
bkn − t(kn − θn)− πn(b; θ)

b [kn − (θ−T )]− t(kn − θn)
(11.18)

Second, at the lower bound of the support (b), the cumulative distribution function is zero.
Plugging that information in equation 12.17, we can work out supplier n's pro�ts:
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Fs(b; θ) = 0 =⇒ πn(b; θ) = bkn (11.19)

Moreover, we know that πn(b; θ) = bkn = πn(b; θ) ∀b ∈ [b, P ]. The last inequality holds
because all the bids in the support give in expectation the same payo�. Otherwise, the suppliers
can reallocate probabilities to increase their expected pro�ts.

Third, by using the information obtained in the second step and plug in the value of supplier
n's pro�ts in equation 12.8, we obtain supplier s's cumulative distribution function:

Fs(b) =
bkn − bkn

b [kn − (θn − T )]− t(kn − θn)
(11.20)

We repeat the same steps to work out supplier n's cumulative distribution function:

First, supplier s's pro�t function is de�ned by:

πs(b; θ) = Fn(b) [b(θs + θn − kn)] + (1− Fn(b)) [b(θs + T )− tT ]

−Fn(b) [b((θs + T )− (θs + θn − kn))− tT ] + b(θs + T )− tT (11.21)

Therefore, supplier n's cumulative distribution function is de�ned by:

Fn(b) =
b(θs + T )− tT − πs(b; θ)

b [(θs + T )− (θs + θn − kn)− tT ]
(11.22)

Second, at the lower bound of the support (b), the cumulative distribution function is zero.
Plugging that information in equation 12.22, we can work out supplier s's pro�ts:

Fn(b; θ) = 0 =⇒ πs(b; θ) = b(θs + T )− tT (11.23)

Moreover, we know that πs(b; θ) = b(θs + T ) = πs(b; θ) ∀b ∈ [b, P ]. The last inequality holds
because all the bids in the support give in expectation the same payo�. Otherwise, the suppliers
can reallocate probabilities to increase their expected pro�ts.

Third, by using the information obtained in the second step and plug in the value of supplier
s's pro�ts in equation 12.22, we obtain supplier n's cumulative distribution function:

Fn(b) =
b(θs + T )− b(θs + T )

b [(θs + T )− (θs + θn − kn)]− Tt
(11.24)

The graphical representation of the cumulative distribution functions of both suppliers are in
the right-hand side of �gure 12.2. The cumulative distribution functions present two important
characteristics:

First, the cumulative distribution function of the supplier located in the high-demand node is
stepper in the lower bound of the support. Therefore, supplier n submits lower bids with higher
probability. The intuition is as follows: supplier n has to sell a lower portion of its electricity into
the other node and its costs are lower. Therefore, it submits lower bids to extract the e�ciency
rents.

Second, the supplier located in the high-demand node submits the maximum bid with a posi-
tive probability. The intuition of this result is as follows: the supplier located in the high-demand
node faces a high residual demand and it submits the price cap with a positive probability to
satisfy that demand.
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This contrast with the case in with the transmission tari� is zero. In that case, the supplier
located in the high-demand node has no advantages in cost, and it submits in expectation higher
bid than the supplier located in the low-demand node (left-hand side vs. right-hand side in �gure
12.2).

Question 7:

By using the parameters in question 5, and only for the case in which the transmis-

sion line is congested, answer the next questions:

Question 7.1: Work out the Nash equilibrium in a zonal market when the auction

is uniform and the transmission is taken into account ex-ante.

The transmission line is congested only when the supplier located in the high demand market
submits the highest bid in the spot electricity market bSn > bSs . In that case, suppliers' pro�ts
are equal to:

πs = bSn(θs + T )

πn = bSn(θn − T )

The Nash equilibrium in that case is de�ned by the pair of strategies:(
bs ∈

[
0,
P (θn − T )

kn

]
; bn = P

)
The pro�ts of the suppliers in the equilibrium are:

π∗s = P (θs + T )

π∗n = P (θn − T ) (11.25)

Question 7.2: Work out the Nash equilibrium in a zonal market when the auction

in the spot electricity market is uniform, and a discriminatory redispatch market is

introduced ex-post to alleviate the congestion in the line. Assume that the suppliers

submit di�erent bids in the spot and in the redispatch market.

The suppliers submit the pair of bids (bSs , b
N
n ) in the spot electricity market and the pair of

bids (bRs , b
R
n ) in the redispatch market, and suppliers' pro�ts are de�ned by:

πs = bSn(ks)− bRs (ks − (θs + T ))

πn = bSn(θs + θn − ks) + bRn ((θn − T )− (θs + θn − ks)) (11.26)

Where the term bSn(ks) in equation 12.26 represents supplier s's pro�ts in the spot electricity
market, and −bRs (ks−(θs+T )) represents supplier s's expenses in the redispatch market, since it
has to buy back the electricity that it cannot sell in the spot electricity market due to the trans-
mission constraint. The term bSn(θs + θn − ks) in equation 12.26 represents supplier n's pro�ts
in the spot electricity market, and the term +bRn ((θn − T )− (θs + θn − ks)) represents supplier
n's pro�ts in the redispatch market, since it is called into operation to satisfy the demand that
supplier s cannot satisfy in the spot electricity market due to the transmission constraint.

To work out the subgame perfect Nash equilibrium, we have to proceed by backward induc-
tion. First, we have to work out the equilibrium in the redispatch market. By using equation
12.26, it is easy to �nd that in equilibrium bR∗s = 0, since that bid minimizes supplier s's expenses
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in the redispatch market. By using equation 12.26, it is easy to �nd that in equilibrium bR∗n = P ,
since that bid maximizes supplier n's pro�ts in the redispatch market.

We plug in the pair of values of bR∗s = 0, and bR∗n = P in equation 12.26, and we obtain:

πs = bSn(ks)

πn = bSn(θs + θn − ks) + P ((θn − T )− (θs + θn − ks)) (11.27)

By using equation 12.27, it is easy to work out the equilibrium in the spot electricity market.
The pair of bids that de�ne that equilibrium is:(

bS∗s ∈
[
P (θs + θn − ks)

kn

]
, bS∗n = P

)
By plug in the equilibrium bid in equation 12.26, we work out suppliers' pro�ts in the equi-

librium:

πs = P (ks)

πn = P (θn − T ) (11.28)

Question 7.3: Based on the your answers to questions 7.1 and 7.2, what is the e�ect

of a change on the design on suppliers' pro�ts?

By comparing equation 12.25 and 12.28, it is easy to check that the equilibrium pro�ts of the
supplier located in the importing node are the same with the two market designs. However, the
pro�ts of the supplier located in the exporting node are much higher when an expost redispatch
mechanism is introduced by the auctioneer. That can induce long-term investment distortions,
since the suppliers could invest in the exporting node where the production capacity is less
valuable. These distortions receive the name of increase-decrease game.

87


	Electricity markets. Overview
	Borenstein, S., 2002, "The Trouble with Electricity Markets: Understanding California's Restructuring Disaster," Journal of Economic Perspectives, 16, 1, 191-211.
	Joskow, P., 2008, "Lessons Learned from Electricity Market Liberalization," The Energy Journal, Special Issue on the Future of Electricity, 9-42.
	Newbery, D., 2005, "Electricity Liberalization in Britain: The Quest for a Satisfactory Wholesale Market Design,", The Energy Journal, 26, 43-70.
	Wilson, R., 2002, "Architecture of Power Markets," Econometrica, 70, 4, 1299-1340.
	Integrated vs unbundled market
	Market Microstructure

	Bibliography

	Electricity auction designs: Uniform and discriminatory price auctions
	Theory
	Set up and timing
	Uniform price auction. Equilibrium
	Discriminatory price auction. Equilibrium

	Exercises
	Exercise 1. Nash equilibrium in uniform and discriminatory price auctions
	Exercise 2. Uniform Price Auction
	Exercise 3. Discriminatory Price Auction

	Bibliography

	Transmission
	Integration of electricity markets in Europe. The role of the system operator.
	Transmission tariffs
	Bidding zones
	Theory. Electricity Auctions in the Presence of Transmission Constraints and Transmission Costs
	Set up of the model
	Timing of the game.
	Equilibrium
	Annex. Mixed strategies equilibrium

	Exercises
	Case (t=0)
	Case (t>0)
	Solution

	Bibliography

	Auction Design in Zonal Pricing Electricity Markets
	Theory
	Zonal pricing with perfect competition: Holmberg and Lazarczyk (2015)
	Zonal pricing with imperfect competition: Blázquez (2019)

	Exercises
	Exercise 1. Zonal pricing with perfect competition: Holmberg and Lazarczyk (2015)
	Exercise 2. Zonal pricing with imperfect competition: Blázquez (2019)

	Bibliography

	Experiments in Electricity Markets
	The game
	An example
	Equilibrium selection techniques
	Risk dominance method
	Robustness to strategic uncertainty method
	Quantal response method

	Experimental results
	Bibliography

	Regulation of Natural Monopolies
	Introduction
	Technological definition of natural monopoly
	Price regulation by a fully informed regulator
	Optimal linear price Ramsey-Boiteux pricing
	Non-linear prices: Simple two-part tariffs
	Peak-Load Pricing

	Exercises
	Natural Monopoly. Linear pricing and Ramsey-Boiteux pricing
	Peak-Load pricing

	Bibliography

	Investments
	Bibliography

	Forward Contracts
	Bibliography

	Measuring Market Power
	Bibliography

	Collusion
	Bibliography

	Renewable Policies
	Bibliography

	Exams
	Exam November 2019


