Mitigating the Dilution Effect of Non-diagnostic Information on Auditors’ Judgments Using a Frequency Response Mode

Aasmund Eilifsen
Norwegian School of Economics

Natalia Kochetova
Saint Mary’s University

William F. Messier, Jr.
Norwegian School of Economics
AGENDA

• Motivation/Theory
• Method
• Findings
• Implications
Motivation/Theory

Non-diagnostic or irrelevant data: it is everywhere!

• Substantial amount of research in various content areas (psychology, law, and marketing) that shows that individual judgments are affected by irrelevant (“non-diagnostic”) information or evidence.

• Basic findings of this line of research: the presence of non-diagnostic evidence leads to a *dilution effect*; that is, individuals make less extreme (more regressive) decisions than those in the presence of diagnostic evidence only.

• Attention to irrelevant information has the potential to significantly limit the potential value from incorporating Big Data into the audit process (Brown-Liburd et al. 2015).
Motivation/Theory

What is dilution effect?

• The information generated by Big Data is largely ambiguous, unstructured, voluminous, and represents a mix of relevant/diagnostic and irrelevant/non-diagnostic - all of these characteristics affect auditor judgments negatively.

• In summary, auditors, similar to other humans, are unable to discount irrelevant/non-diagnostic information in making probabilistic judgements and in other JDM tasks.
Motivation/Theory

What is dilution effect?

• Hackenbrack [1992] assessed how much a company's exposure to fraudulent reporting changed when presented with a mixture of diagnostic and non-diagnostic evidence: the auditors' fraud risk assessments became less extreme in the presence of non-diagnostic evidence.

• Hoffman and Patton [1997] and Glover [1997] examined whether accountability and time pressure eliminated or mitigated the dilution effect.

• Hoffman and Patton [1997] report, “auditors' judgments exhibited the dilution effect both when they were held accountable and when they were not (p. 228).”
Motivation/Theory

What is dilution effect?

• Glover [1997]: accountability had no effect on the dilution effect; however, time pressure reduced the dilution effect, although it did not eliminate it.

• Shelton [2008]: audit managers and partners are less susceptible to the dilution effect than senior auditors.

• Assuming perceptual approach of dilution effect as in prior auditing studies, we continue to ask:
 • *How can dilution effect in auditor judgment be ameliorated?*
What is dilution effect?

- Detecting financial reporting fraud continues to be a priority (PCAOB 2018).
- To improve auditors’ fraud judgments, firms increasingly rely on Big Data and data analytics (FRC 2017).
- *Can dilution of fraud risk assessments can be reduced using a frequency mode in situations where diagnostic and non-diagnostic or irrelevant information supplements the output from a fraudulent client profile analytics?*
Motivation/Theory

What is frequency argument?

- Kochetova-Kozloski, Messier, and Eilifsen (KME) (2011): statistical reasoning within a Bayesian framework can be improved, especially in low base rate events (i.e., fraud): the auditors’ fraud judgments using a frequency response mode, as compared to a probability response mode, are closer to the Bayesian benchmark.

- Gigerenzer and his colleagues (e.g., Gigerenzer, Hoffrage, and Kleinbolting 1991; Gigerenzer and Hoffrage 1995) and others (Cosmides and Tooby 1994, 1996): if people are asked to estimate the probability of a single event, the question does not connect to probability theory in their minds, whereas the frequency of such an event does (Gigerenzer and Goldstein 1996; Gigerenzer 2004).
Motivation/Theory

What is frequency argument?

- Bayesian computations are *cognitively simpler* when information is encoded in a frequency format rather than in a probability format.
- The estimation of the likelihood of a single event and the judgment of frequency are *cognitively different processes* (Cosmides and Tooby 1994, 1996; Gigerenzer et al. 1991). Based on KME’s findings, H1:
 - **H1**: Auditors demonstrate a lower dilution effect when they receive case information and make required judgments in a frequency response mode as compared to a probability response mode.
Motivation/Theory

Types of non-diagnostic evidence

• As in Hackenbrack (1992), three types: favorable, unfavorable, and neutral. In the fraud-risk setting:

 • **Favorable** non-diagnostic evidence would be information that does not relate directly to possible fraud but may be viewed as positive by the auditor.

 • **Unfavorable** non-diagnostic evidence describes negative client information that is not directly related to the presence of client fraud but might be viewed by the auditor as negative.

 • **Neutral** non-diagnostic evidence includes information that is neither positive nor negative and evaluated as unrelated to the presence of client fraud by the auditor.
Motivation/Theory

Types of non-diagnostic evidence

• Hackenbrack’s (1992) H: non-neutral (favorable and unfavorable combined) non-diagnostic evidence has a higher dilutive capacity than neutral non-diagnostic evidence:
 • non-neutral, non-diagnostic evidence is more *salient* and auditors will devote more attention to such evidence (e.g., Tversky 1977);
 • Hackenbrack (1992): mixed results across the two versions of the task (increasing versus decreasing fraud risk);
 • Hoffman and Paton (1997) distinguish between favorable and unfavorable non-diagnostic information but find no differences in their dilutive effect.

• Literature in psychology: neutral non-diagnostic evidence is more likely to be ignored than non-neutral (e.g., LaBella and Koehler 2004).
Motivation/Theory

Types of non-diagnostic evidence

• RQ: In a frequency response mode, do auditors exhibit the dilution effect differentially across the different types of non-diagnostic/irrelevant evidence?
Continuum of Evidence Relevance/Diagnosticity

- **Diagnostic**: information that is clearly relevant to the specific fraud event; i.e., it is a robust “red flag” indicating increased likelihood of fraud; e.g. fraud risk factors identified by Bell and Carcello (2000) (and those clearly rated by our experts).
- Diagnostic/non-diagnostic: e.g. there are many fraud-related factors in auditing standards that auditors believe to be diagnostic - but which are not (e.g., see Hogan et al. 2008; Trompeter et al. 2014; Bell and Carcello 2000).
- **Irrelevant**: has not predictive ability or association with event being judged.
Method: 2 Experiments

Participants

- Norwegian auditors in NHH MRR program
- A mix of senior auditors, staff or associates, and managers
- Some had a master’s degree, while all had a bachelor’s degree
- All participants either had or were in the process of obtaining a professional designation
- The majority of the participants worked for a Big 4 firm at the time of the experiment
- Experiment 2 participants were, on average, more experienced than Experiment 1
- Paper and pencil vs. Qulatrics administration
Method: 2 Experiments

Design

• Experiment 1:
 • 2 (Response Mode) x 3 (Type of Non-diagnostic Evidence) x 2 (Order) between-participants
 • Response Mode (RM) at two levels: frequency response mode vs. probability response mode;
 • Type of Non-diagnostic Evidence (TYPE-EV) at three levels: neutral, favorable, and unfavorable; and
 • Order (ORDER) of the non-diagnostic evidence cues at two levels.
Method: 2 Experiments

Design

• **Experiment 2:**

 • 2 (Response Mode) x 3 (Type of Irrelevant Evidence) Response Mode (RM) at two levels: frequency response mode vs. probability response mode;

 • Type of Irrelevant Evidence (TYPE-EV) at two levels: favorable and unfavorable; and

 • Order (ORDER) of the non-diagnostic evidence cues was randomized in Qulatrics
Method

Procedure: Experiment 1

• Expert panel evaluated 41 fraud risk factors: see Appendix A.
• We selected 3 diagnostic factors and three each of neutral, favorable, and unfavorable non-diagnostic factors: see Table 1 for selected factors (cues).
• Same case materials as KME except: presented 3 pieces of diagnostic evidence and then 3 pieces of either neutral, favorable, and unfavorable non-diagnostic factors.
• This approach follows a belief revision procedure followed by LaBella and Koehler [2004].
• Auditors were asked to rate the fraud risk factors in the same manner as the expert managers.
• Participants were asked a series of demographic questions.
Method

Procedure: Experiment 2

• Used Hoffman and Patton (1997) irrelevant cues: 3 favorable and 3 unfavorable.
• Same case materials as KME except: presented 3 pieces of diagnostic evidence and then 3 pieces of either favorable, or unfavorable irrelevant cues.
• Otherwise similar to Experiment 1.

• *Note:* an alternative approach would have been to “bundle” diagnostic and non-diagnostic cues (Fanning et al. 2015; Lambert and Peytcheva 2017) vs. our “step-by-step,” sequential, approach.
Method

Dependent Variables

• Replication of KME: \(F-DEV = |\text{Auditor’s Fraud Response} - \text{Fraud Bayesian Response}| \).

• Tests of H1 and RQ:

 \(F-ABSREV = |\text{Auditor’s Fraud Response: diagnostic evidence only} - \text{Auditor’s Fraud Response: added non-diagnostic evidence}| \) and

 \(F-REV = \text{Auditor’s Fraud Response: diagnostic evidence only} - \text{Auditor’s Fraud Response: added non-diagnostic evidence} \).

• Ps agreement with Expert Panel in Experiment 1: a reasonable level of agreement but we also conducted sensitivity analyses.
Findings

Replication of KME

• The Bayesian benchmarks for the frequency and probability response modes are 0.0776 and 0.0767, respectively (KME [2011, p. 846]).

• Experiment 1: For the low base rate (1%), the absolute deviations from the Bayesian benchmark are smaller in the frequency response mode (marginal mean = 0.262) than in the probability response mode (marginal mean = 0.423) (F = 7.504, p = 0.004, one-tailed, not tabled).

• Note: this mean is significantly different from zero (t = 7.190, p = .000, two-tailed), i.e. the participants still show significant base rate neglect. This result is also consistent with KME [2011, p. 853].

• Did the same for Experiment 2.
Findings

Tests of H1

- *Experiment 1*: Tables 2 and 3 - main analyses (n=174); Table 4 - sensitivity analyses on reduce sample (n=108)
- *Experiment 2*: Table 6 (n=110)

In both experiments, the use of a frequency response mode only reduced the dilution effect in the presence of favorable non-diagnostic evidence using both specifications of the DV.

In Experiment 2, we observe “opposite-to-dilution” effect in the cells with unfavorable irrelevant evidence.
Findings

Experiment 1: Tests of H1 on Full Sample (n=174)

Panel A: Analysis of Variance (n=174); Signed Revision (F-REV) as a Dependent Variable

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>F</th>
<th>p–value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.559</td>
<td>1</td>
<td>18.683</td>
<td>.000</td>
</tr>
<tr>
<td>RM</td>
<td>.172</td>
<td>1</td>
<td>5.728</td>
<td>.018</td>
</tr>
<tr>
<td>TYPE-EV</td>
<td>.893</td>
<td>2</td>
<td>14.918</td>
<td>.000</td>
</tr>
<tr>
<td>RM x TYPE-EV</td>
<td>.195</td>
<td>2</td>
<td>3.249</td>
<td>.041</td>
</tr>
<tr>
<td>Error</td>
<td>5.030</td>
<td>168</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Analysis of Variance (n=174); Absolute Revision (F-ABSREV) as a Dependent Variable

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>F</th>
<th>p–value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.810</td>
<td>1</td>
<td>71.584</td>
<td>.000</td>
</tr>
<tr>
<td>RM</td>
<td>.260</td>
<td>1</td>
<td>10.266</td>
<td>.002</td>
</tr>
<tr>
<td>TYPE-EV</td>
<td>.191</td>
<td>2</td>
<td>3.780</td>
<td>.025</td>
</tr>
<tr>
<td>RM x TYPE-EV</td>
<td>.234</td>
<td>2</td>
<td>4.625</td>
<td>.011</td>
</tr>
<tr>
<td>Error</td>
<td>4.248</td>
<td>168</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Findings

Experiment 2: Tests of H1

Panel A: Analysis of variance ($n=110$); Signed Revision (F-REV) as a Dependent Variable

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.010</td>
<td>1</td>
<td>12.662</td>
<td>.001</td>
</tr>
<tr>
<td>RM</td>
<td>.000</td>
<td>1</td>
<td>.176</td>
<td>.675</td>
</tr>
<tr>
<td>$TYPE-EV$</td>
<td>.006</td>
<td>1</td>
<td>7.922</td>
<td>.006</td>
</tr>
<tr>
<td>$RM \times TYPE-EV$</td>
<td>.004</td>
<td>1</td>
<td>4.676</td>
<td>.033</td>
</tr>
<tr>
<td>Error</td>
<td>.085</td>
<td>106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Analysis of variance ($n=110$); Absolute Revision (F-ABSREV) as a Dependent Variable

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.027</td>
<td>1</td>
<td>37.115</td>
<td>.000</td>
</tr>
<tr>
<td>RM</td>
<td>.001</td>
<td>1</td>
<td>.697</td>
<td>.406</td>
</tr>
<tr>
<td>$TYPE-EV$</td>
<td>.000</td>
<td>1</td>
<td>.374</td>
<td>.542</td>
</tr>
<tr>
<td>$RM \times TYPE-EV$</td>
<td>.001</td>
<td>1</td>
<td>.995</td>
<td>.321</td>
</tr>
<tr>
<td>Error</td>
<td>.076</td>
<td>106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Findings

Tests of RQ

• RQ: In a frequency response mode, do auditors exhibit the dilution effect differentially across the different types of non-diagnostic evidence?

• Experiment 1: signed revisions as a DV(F-REV), $TYPE$-EV is significant ($p=.026$):
 • Statistically significantly different regressive (dilutive) effect of non-diagnostic evidence between conditions with favorable and unfavorable cues, and between neutral and unfavorable cues.
 • Affected by the direction of revision (F-$ABSREV$)- sensitivity to DV specification

• Experiment 2: F-REV as DV, $TYPE$-EV is significant ($p=.001$):
 • Dilutive effect of irrelevant evidence is larger for cell with unfavorable cues than for the cell with favorable cues.
Findings

Tests of RQ

• RQ Conclusion: Indeed, auditors are still susceptible to dilution effect in frequency response mode, and differentially so across the different types of non-diagnostic/irrelevant evidence.

• Frequency response mode with irrelevant unfavorable cues appears to increase fraud risk assessments and produce opposite-to-dilution effect (“over-reaction” to negative irrelevant information)
Implications

What does it all mean?

- A simple approach to representing probability information as frequencies to auditors may mitigate a bias in risk assessment that has been shown to be extremely robust to various settings (Hackenbrack [1992]; Hoffman and Patton [1997]; Glover [1997]).

- Our results indicate that while the use of a frequency response mode reduced the dilution effect, this finding is driven by the auditors’ responses to cases where non-diagnostic evidence is favorable.

- This is an important finding since clients who are committing fraud are likely to present favorable (non-diagnostic) explanations/evidence to an auditor's inquiry about fraud.
Where do we go from here?

- Future research should investigate why the dilution effect appeared to be unaffected by response mode when non-diagnostic/irrelevant cues were neutral or unfavorable.
- Why did auditors exhibit “opposite-to-dilution” effect in response to unfavorable cues in frequency response mode?
 - Excessive sensitivity to negative information? (Bhattacharjee et al. 2012)
 - Conversational approach to dilution? (Tetlock and Boettger 1989)
- Cue bundling/aggregation design vs. sequential approach: does response mode matter?
- Impact of time pressure, experience, other factors on dilution effect in frequency mode