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ABSTRACT

We empirically study whether systematic over-the-counter (OTC) market frictions

drive the large unexplained common factor in yield spread changes. Using transaction

data on U.S. corporate bonds, we find that marketwide inventory, search, and bargain-

ing frictions explain 23.4% of the variation of the common component. Systematic OTC

frictions thus substantially improve the explanatory power of yield spread changes and

account for one-third of their total explained variation. Search and bargaining frictions

combined explain more in the common dynamics of yield spread changes as inventory

frictions. Our findings support the implications of leading theories of intermediation

frictions in OTC markets.

JEL Classification: G10; G12; G20

Keywords: Corporate bond market, over-the-counter market, yield spread changes, inter-
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According to frictionless no-arbitrage theory, changes in corporate yield spreads occur be-

cause of innovations in firm-specific and macroeconomic fundamentals. This paradigm has

been challenged by empirical studies showing that yield spread changes are difficult to ex-

plain. Using conventional factors, Collin-Dufresne, Goldstein, and Martin (2001, CDGM

henceforth) show that a large set of firm-specific and macroeconomic variables performs

poorly in explaining the variation of yield spread changes over time. A substantial propor-

tion of the unexplained variation is due to a single common factor.

U.S. corporate bonds trade in an over-the-counter (OTC) market where several dealers

manage bond inventories to provide liquidity to customers. Transactions are non-anonymous

and occur on a bilateral basis; thus, the terms of the trade are determined by search and

bargaining frictions. Consequently, the theoretical literature starting with Duffie, Gârleanu,

and Pedersen (2005, 2007, DGP henceforth) rationalizes deviations of prices from funda-

mentals through OTC market frictions. In this paper, we empirically investigate the ability

of time-varying OTC frictions to explain the remaining common component of yield spread

changes. We find that systematic inventory, search, and bargaining frictions explain 23.4%

of the variation of the common component and account for one-third of the total explained

variation of yield spread changes.

To establish our findings, we employ detailed transaction data on the prices and volumes

of U.S. corporate bonds. We use the Trade Reporting and Compliance Engine (TRACE)

database containing dealer information so that we can assign every transaction to a particular

dealer. The final data set captures all trades executed by more than 2,600 dealers over the

sample period, from the beginning of 2003 to the end of 2013. Our transaction data reveal

similar properties compared to the quote- and price-based data of CDGM. That is, once we

implement the CDGM baseline regression model on our sample of 974 bonds, we find that the

explanatory power of monthly yield spread changes is low, with a mean adjusted R2 value

of 21.7%. Using principal component analysis (PCA), we also find that the residuals are

highly cross-correlated and exhibit a large common component. That is, the first principal
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component captures 48.4% of the unexplained variation.

After having established the CDGM benchmark result, we investigate whether the com-

mon component of yield spread changes is related to systematic OTC frictions. Several

studies find that proxies of transaction costs relate positively and systematically to yield

spread changes (e.g., Longstaff, Mithal, and Neis, 2005; Chen, Lesmond, and Wei, 2007;

Bao, Pan, and Wang, 2011). However, while transaction costs are symptomatic of interme-

diation frictions, the previous literature does not provide insights into the type of friction

that affects yield spread changes. Intermediation frictions are hard to measure, which renders

their empirical investigation just as challenging. We fill this gap and exploit the granularity

of our data set to construct proxies for the intensity of systematic inventory, search, and

bargaining frictions in the corporate bond market.

First, we focus on the role of systematic inventory frictions. Theories based on the

works of Stoll (1978) and Ho and Stoll (1981, 1983) relate asset prices to dealer inventories.

These theories predict that an increase in the level of aggregate dealer inventory lowers

prices (increases yield spreads) and vice versa. We use aggregate order flow to proxy for

changes in marketwide inventory. More advanced theories of liquidity provision by financially

constrained intermediaries further imply that increases in dealers’ time-varying risk aversion

and in their funding costs of holding inventory, respectively, lower asset prices (Gromb and

Vayanos, 2002; Brunnermeier and Pedersen, 2009; Nagel, 2012). To measure dealers’ risk

aversion, we utilize the fact that dealers can avoid inventory risk by prearranging trades

between sellers and buyers and conjecture that more prearranged trades imply more risk-

averse dealers. We use the TED spread to proxy for dealers’ funding costs. In yield spread

regressions we find that all measures are significant, exhibit the predicted sign, and reduce the

common unexplained variation across bonds. Specifically, we find that marketwide inventory

frictions jointly explain 13.9% of the variation of the common component.

Second, we examine the impact of systematic search frictions on yield spread changes.

The broad implication of the random search framework of DGP and Lagos and Rocheteau
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(2009) is that asset valuations increase when search frictions relax and thus counterparties

are easier to find. However, Di Maggio, Kermani, and Song (2016) provide empirical evidence

that dealers do not randomly search but form trading networks to mitigate search frictions,

consistent with models of network formation (e.g., Neklyudov, 2014; Chang and Zhang,

2016; Wang, 2016). Our first search proxy is therefore a measure of the overall connectivity

between dealers, which we define as the graph-level eigencentrality of the interdealer network.

As expected, we find that yield spreads narrow when dealers are more closely connected,

implying that bonds are easier to locate and search frictions are lower.

Further, recent theory on intermediation chains in OTC markets (e.g., Hugonnier, Lester,

and Weill, 2016; Shen, Wei, and Yan, 2016; Neklyudov and Sambalaibat, 2017) suggests that

the intensity of search frictions is reflected in the properties of intermediation chains. There-

fore, we identify intermediation chains by tracing bonds through the interdealer network

once they have been sold by customers and before they disappear into clients’ portfolios. We

allow for split intermediation chains, which generalize the chains introduced by Hollifield,

Neklyudov, and Spatt (2017) and Li and Schürhoff (2018) in that there are multiple sales to

dealers along the chain. We first focus on the chain length, that is, the number of dealers

involved in the chain. We find that longer chains are associated with smaller yield spreads.

This result is consistent with, for example, the models of Shen, Wei, and Yan (2016) and

Neklyudov and Sambalaibat (2017), where lower search costs lead to an endogenously larger

intermediary sector with more competitive allocations and, thus, longer chains.

Moreover, the theory of intermediation chains models search frictions as for DGP through

the meeting rate between sellers and buyers. In any intermediation chain an initial volume is

disseminated to a number of final customers. Therefore, we use the chains as a laboratory to

posit conclusions about meeting rates. That is, we investigate the required number of sales

to customers to complete the chain. We allow for heterogeneity and examine chains with

large and small initial volumes separately. We find that more sales in large-volume chains

result in smaller yield spreads. This result suggests that when dealers split up large initial

3

 Electronic copy available at: https://ssrn.com/abstract=3082955 



volumes, search frictions are low and meeting rates are high, as dealers can rely on a large

client base. Contrary, for small-volume chains we find that more sales lead to a widening of

yield spreads. This finding indicates that when dealers disseminate a relatively small volume

to many customers, the meeting rate is low and search frictions are high. Overall, systematic

search frictions capture 6.3% of the variation of the common component.

Third, we turn to the role of systematic bargaining frictions. The prediction implied by

the search and bargaining framework of DGP is that yield spreads increase if dealers extract

higher intermediation rents when their bargaining power increases relative to customers, and

vice versa. Hence, we construct two systematic measures for both customer bargaining power

and dealer bargaining power. Specifically, in the framework of DGP the bargaining power

of customers increases in their outside options to trade, which we measure by the number of

trading relationships customers have with their dealers. Furthermore, we use the marketwide

fraction of block trades, which are associated with the elevated presence of customers with

better bargaining power (see, e.g., Randall, 2015).

With respect to dealers’ bargaining power, we compute a Herfindahl–Hirschman concen-

tration measure based on dealers’ transaction volumes with customers. A higher measure

indicates a less competitive dealer market, implying that dealers have more bargaining power

relative to customers. Further, the model of Lagos, Rocheteau, and Weill (2011) suggests

that dealers’ bargaining power increases when certain investors receive a shock to their

demand for holding bonds. Similarly as does Feldhütter (2012), we therefore exploit the

notion that dealers’ bargaining power increases when bonds are downgraded to junk status,

because either regulation (Ellul, Jotikasthira, and Lundblad, 2011) or investor mandates

(Chen et al., 2014) force some investors to sell their holdings. Tests confirm the theoretical

predictions: that is, yield spreads widen when dealers’ bargaining power increases relative

to their customers. In total, systematic bargaining frictions explain 15.4% of the variation

of the common component.

Finally, we investigate the impact of all three types of frictions jointly in our tests.
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Overall, systematic OTC frictions explain 23.4% of the time-series variation of the common

component of the CDGM model. Generally, when jointly considering two types of frictions,

we find their explanatory power is smaller compared to the sum of the adjusted R2 values

of the individual frictions. Hence, as implied by theory, this observation suggests that

the impact of different OTC frictions on yield spread changes cannot be considered to be

independent. We find that search and bargaining frictions combined capture 18.0% of the

variation of the common component and thus more than the obtained value of 13.9% of

inventory frictions. Generally, in yield spread regressions the statistical significance and

signs of the coefficients of systematic OTC frictions remain very robust. Compared to the

CDGM model, we obtain incremental mean and median adjusted R2 values of 9.0 and 14.4

percentage points. These figures show that OTC market frictions account for around one-

third of the total explained variation of yield spread changes.

In additional tests we show that our results are not driven by the crisis period. We

also demonstrate that the information in our measures for OTC frictions is not subsumed

by other factors that are usual candidates in asset pricing studies. That is, our results are

robust to including the five factors of Fama and French (2015), the illiquidity factor of Pastor

and Stambaugh (2003), and the intermediary capital risk factor of He, Kelly, and Manela

(2017). We find that asymmetric information is not a major determinant of OTC frictions,

as predicted by alternative theories of intermediation frictions (Glode and Opp, 2016; Babus

and Kondor, 2018). Specifically, our results are unaffected when including the factor of the

probability of information-based trading of Easley, Hvidkjaer, and O’Hara (2002). Moreover,

our results are robust to several alternative definitions of the CDGM variables. To sum up,

we provide novel insights into the common drivers of yield spread changes over time.

In examining the ability of systematic OTC frictions to explain yield spread changes,

our paper differs from other studies that analyze the dynamics of yield spreads. In par-

ticular, Duffee (1998) examines the relation between corporate yield spread changes and

changes in Treasury yield. Elton et al. (2001) focus on the risk premium of corporate

5

 Electronic copy available at: https://ssrn.com/abstract=3082955 



bonds, while Longstaff, Mithal, and Neis (2005) show that the non-default component of

yield spreads is related to bond-specific as well as macroeconomic measures of liquidity.

Further, Chen, Lesmond, and Wei (2007) study the role of liquidity in the form of zero-

return days while Bao, Pan, and Wang (2011), Dick-Nielsen, Feldhütter, and Lando (2012),

and Friewald, Jankowitsch, and Subrahmanyam (2012) investigate various liquidity proxies,

such as the measures of Roll (1984) and Amihud (2002), respectively. Lin, Wang, and Wu

(2011), De Jong and Driessen (2012), Acharya, Amihud, and Bharath (2013), and Bongaerts,

de Jong, and Driessen (2017) examine bond returns instead of yield spread changes, showing

that liquidity or liquidity risk matters in pricing bonds.

Further, our paper differs from studies that analyze transaction costs and market mak-

ing in the corporate bond market. Schultz (2001) provides a first analysis of transaction

costs, while Bessembinder, Maxwell, and Venkataraman (2006), Edwards, Harris, and Pi-

wowar (2007), and Goldstein, Hotchkiss, and Sirri (2007) study the impact of post-trade

transparency due to the introduction of TRACE on transaction costs. More recently, several

studies investigate market making and post-crisis implications (Adrian, Boyarchenko, and

Shachar, 2017, provide detailed discussions). Bessembinder et al. (2017) examine trading

costs and dealers’ capital commitment, arguing that, post-crisis, dealers commit less capital

to inventory management. Focusing on similar aspects, albeit using different methodolo-

gies, Trebbi and Xiao (2015), Schultz (2017), Bao, O’Hara, and Zhou (2017), Anderson and

Stulz (2017), Goldstein and Hotchkiss (2017), and Dick-Nielsen and Rossi (2018) examine

the time-varying liquidity provision of dealers, showing that, post-crisis, liquidity is more

sensitive to dealer behavior.

The rest of the article is structured as follows. Section I describes the data and Section

II presents our base case analysis, following CDGM. Section III introduces our measures of

systematic OTC market frictions. Section IV presents the main results by explaining yield

spread changes through our measures of OTC frictions. Section V concludes the paper.
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I. Data Description

We rely on several data sources to study the impact of systematic OTC market frictions

on yield spread changes. We obtain transaction data on the U.S. corporate bond market

between January 2003 and December 2013 from TRACE, which is maintained by the Fi-

nancial Industry Regulatory Authority (FINRA). Every transaction in the U.S. corporate

bond market that is conducted by a designated dealer must be reported to TRACE. Thus,

the data comprise transaction prices and volumes, trade direction, and the exact date and

time of each trade. While, for interdealer trades, we know the coded identities of both par-

ties involved in the transaction, for customer–dealer trades, we know only that the trade is

with a customer and do not have information about the customer’s identity. We focus our

analysis on secondary market transactions because primary market transactions were not

reported to TRACE before 2010. We account for reporting errors using standard filtering

procedures commonly used for TRACE transaction data (e.g., Friewald, Jankowitsch, and

Subrahmanyam, 2012; Bessembinder et al., 2017).1 We also correct for give-up and locked-in

trades to correctly assign each transaction to the actual dealers behind the trade.2

We then merge our transaction data with bond-specific information (i.e., offering amount,

offering date, amount outstanding, coupon rate, maturity, and credit rating), which we ob-

tain from the Mergent Fixed Income Securities Database. Following the literature related

to corporate bonds, we restrict our sample to corporate debentures and exclude bonds that

have variable coupons, are convertible, putable, asset backed, exchangeable, privately placed,

1These include (i) same-day trade corrections and cancellations and (ii) trade reversals, which refer to

corrections and cancellations conducted after the trading day.

2In a give-up trade, one party reports on behalf of another party, who has reporting responsibility. In a

locked-in trade, one party is responsible for reporting both sides of the trade in a single report, thus satisfying

the reporting requirements on both sides. Such a locked-in trade can refer to either a transaction between the

reporting party and its correspondent (single locked-in trade) or a transaction between two correspondents

(two-sided locked-in trade).
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perpetual, preferred securities, secured lease obligations, unrated, or quoted in a foreign cur-

rency. We also remove bonds from the sample that were issued by financial firms (Standard

Industrial Classification, or SIC, codes 6000–6999) or utility firms (SIC codes 4900–4999)

and bonds that have issue sizes under $10 million or a time-to-maturity of more than 30

years or less than one month. The merged data sample comprises approximately 44 million

intraday transactions in 14,300 bonds issued by 3,700 issuers that have been conducted by

2,600 dealers during the entire sample period. In addition, we obtain the corporate bond

transaction data of insurance companies, mutual funds, and pension funds from Thomson

Reuters eMAXX. In particular, the data provide information on the identities of the man-

aging firms and the brokers with which they trade. We merge all data sources and use this

sample to compute our proxies for systematic OTC frictions.

Table I provides summary statistics for our data sample. Panel A shows the number of

observations, mean, standard deviation, and 5%, 50%, and 95% quantiles of several bond

characteristics. The average bond size in the sample is about $900 million, with an in-

terquintile range between $250 million and $2 billion. The average bond is 4.1 years old

and has a remaining time to maturity of 8.5 years. The average coupon rate is 6.5% and

shows considerable variation across the sample, which is also reflected in the credit rating.

The interquintile range of the credit rating is between four (AA-) and 16 (B-). Overall,

the summary statistics suggest that our sample comprises a wide cross section of corporate

bonds. In Panel B, we provide descriptive statistics of the daily trading activity in the U.S.

corporate bond market. On average, we observe nearly twice as many daily customer trades

(7,643) as interdealer trades (4,071). Customer trades are also much larger than interdealer

trades ($831,000 versus $387,000). Both exhibit considerable dispersion across the sample.

Dealers, on average, buy larger quantities from customers ($995,000) compared to what they

sell to customers ($714,000). Correspondingly, the number of dealer buys is lower than the

number of dealer sales (3,209 versus 4,477).
Table I
about
here

We follow CDGM and obtain market- and firm-specific variables that, according to struc-
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tural models, determine yield spread changes. In particular, we obtain market variables such

as the Standard & Poor’s (S&P) 500 index from the Center for Research in Security Prices

(CRSP), the volatility index (VIX) from the Chicago Board Options Exchange, and the

10-year Treasury constant maturity rate from the Federal Reserve Bank of St. Louis. As

a systematic proxy for the probability or magnitude of a downward jump in firm value, we

construct a measure based on at- and out-of-the money put options and at- and in-the-

money call options with maturities of less than one year, traded on S&P 500 futures. We

obtain option-implied volatilities from OptionMetrics. For the exact procedure to estimate

the jump component, we refer to CDGM. We use market leverage as a proxy for a firm’s

creditworthiness. We define market leverage as book debt over the sum of book debt and the

market value of equity, where book debt is given by the sum of Compustat items Long-Term

Debt - Total (DLTT) and Debt in Current Liabilities - Total (DLC). To account for (vary-

ing) time lags between a firm’s fiscal year-end and when the information becomes publicly

available, we apply a conservative lag of six months before we update a firm’s debt-related

information. The market value of equity is the number of common shares outstanding times

the share price, both obtained from the CRSP. We merge TRACE with CRSP/Compustat

data using the first six digits of a bond’s CUSIP number, which is commonly referred to as

the CUSIP base.

The main variable in our empirical analysis is the yield spread. We compute the corporate

bond yield from the average end-of-month transaction price and define the yield spread as the

difference between the corporate bond yield and the yield of a risk-free bond with the same

cash flow structure as the corporate bond. We use the U.S. Treasury yield curve estimates

obtained from the Federal Reserve Board as our risk-free benchmark. Next, we compute

the changes and returns, respectively, from months t to t+ 1 of all the variables. Following

CDGM, we only consider bonds for which we have at least 25 observations of monthly yield

spread changes. The merged data sample consists of 105,810 observations of end-of-month

yield spreads that result in 45,350 observations of yield spread changes of 974 bonds issued
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by 237 firms. We show descriptive statistics of the end-of-month yield spread in Panel A of

Table I. The average yield spread is 3.0%, with a standard deviation of 2.8%.

II. CDGM Model and Yield Spread Changes

CDGM show that there is a large unexplained common component in yield spread changes.

However, their analysis is primarily based on dealer quotes instead of actual transaction

prices. This potentially impairs their conclusion regarding the magnitude of the latent

factor. The reason is that dealer quotes may be stale, that is, they are not updated regularly

or are based on matrix pricing. Consequently, we employ CDGM’s base-case regression

analysis, using transaction prices to examine to what extent yield spreads are driven by a

single latent factor.3 We then use the results as a benchmark for our subsequent analyses,

where we examine the impact of time-varying systematic OTC frictions on the dynamics of

yield spread changes.

We follow CDGM and use the same firm-specific and macroeconomic variables that,

according to structural models à la Black and Scholes (1973) and Merton (1974), drive yield

spread changes. In particular, we consider changes in a firm’s underlying leverage ratio

(∆LEV), changes in the 10-year Treasury rate (∆RF), as well as the squared change in

the 10-year Treasury rate, (∆RF)2, which captures any potential nonlinear effects due to

convexity. Furthermore, we consider changes in the slope of the yield curve (∆SLOPE),

changes in market volatility (∆V IX), returns on the S&P 500 index (RM), and changes in

a jump component (∆JUMP) that reflect the magnitude and probability of a large negative

jump in firm value. We define the vector of CDGM variables of bond i at time t as

∆Fi,t :=
[
∆LEVi,t, ∆RFt, (∆RFt)

2, ∆SLOPEt, ∆V IXt, RMt, ∆JUMPt
]
. (1)

3In a sub-analysis, CDGM also restrict their sample to transaction prices only but are then left with

merely 29 bonds for their analysis.
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In a first step, we estimate the following regression model for each bond i with yield

spread changes ∆Y Si,t:

∆Y Si,t = αi + β′
i∆Fi,t + εi,t (2)

To mimic the test of CDGM, we assign each bond to a leverage group based on the firm’s

average leverage ratio over the bond’s lifetime. The groups are defined as below 15%, 15%–

25%, 25%–35%, 35%–45%, 45%–55%, and more than 55%. This grouping creates a relatively

homogeneous distribution of bonds across the six cohorts, ranging from 84 bonds in the

45%–55% group up to 256 bonds in the 15%–25% group. We present the average coefficients

and their statistical significance for each cohort in Table II. The associated t-statistics are

calculated from the cross-sectional variation over the coefficient estimates within a cohort.

Thus, for each cohort we divide the average coefficient by the standard deviation of the

coefficient estimates and scale by the square root of the number of bonds in the cohort. To

facilitate the presentation of the results, we also present the average coefficients and their

statistical significance in a regression where we use all 974 bonds. The signs of the coefficients

are economically meaningful, that is, yield spreads increase with leverage, the slope of the

term structure, and volatility and decrease with the risk-free rate and the market return.

However, as for CDGM, the explanatory power is low, with mean adjusted R2 values ranging

between 14.6% and 32.9% (overall mean value is 21.7%). We also report the median adjusted

R2 values, which reveal a quantitatively similar pattern. The overall median value is 20.1%.
Table
II
about
here

We follow CDGM and carry out a PCA on the residuals to capture the properties of

the unexplained variation. Each month, we assign bonds to one out of 18 bins that are

determined by the six leverage groups (as defined above) as well as by three maturity groups;

under five years, five to eight years, and more than eight years. We show the results of the

PCA in Table III. The total unexplained variance is 167 basis points. We find that the

first principal component, PC1, accounts for a substantial magnitude of 48.4% of the total

unexplained variance, while the second component, PC2, accounts for only 9.5%. Albeit less

pronounced than for CDGM, who find a PC1 value of 75% in their sample, we also document
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that a single common factor captures most of the remaining variation. More importantly,

the loadings of each bin on the PC1 are all positive, ranging between 0.09 and 0.48. This

result suggests that a latent factor drives the yield spreads of all bonds jointly and in the

same direction.4 Given the trading environment of the U.S. corporate bond market, we

conjecture that systematic OTC frictions are obvious candidates to be associated with the

single common component. Specifically, theory postulates that trading frictions should be

positively related to yield spreads. We underpin this conjecture by employing systematic

measures of OTC frictions in the subsequent tests.
Table
III
about
hereIII. Systematic OTC Market Frictions

In this section, we establish our measures that proxy for the intensity of systematic inventory,

search, and bargaining frictions in the corporate bond market. Subsequently, we use these

measures to investigate the ability of intermediation frictions in OTC markets to explain the

variation of yield spread changes.

A. Inventory Frictions

Theories of inventory risk management (Stoll, 1978; Amihud and Mendelson, 1980; Ho and

Stoll, 1981, 1983; Grossman and Miller, 1988) relate asset prices to dealer inventories. These

theories imply that dealers exert price pressure to mean-revert inventory and thus manage

their risk. More advanced theories, such as those of Gromb and Vayanos (2002), Brun-

nermeier and Pedersen (2009), and Nagel (2012), also show that dealers’ time-varying risk

aversion and their funding costs of holding inventory matter for asset prices. The general

predictions of these models are that yield spreads increase in dealers’ inventory, their risk

aversion, and their inventory holding costs, respectively.

4Within maturity cohorts, we find that the loadings are increasing with leverage. CDGM obtain a

qualitatively similar result, albeit less pronounced. Our results suggest that the latent factor is more relevant

for more risky bonds.
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While inventory theories have been rigorously tested in the equity market, a thorough

analysis in the corporate bond market has been missing so far.5 There are important dif-

ferences between the two markets. In contrast to equity markets, trading in the corporate

bond market is decentralized and occurs on a bilateral basis where the counterparties know

each other. Consequently, inventory frictions may not be considered independently from

other frictions when describing the dynamics of yield spread changes. Furthermore, trade

can be delayed by search as dealers have to find counterparties (Duffie, 2010). This suggests

that inventory management is potentially of greater concern to bond dealers compared with

liquidity provision in the equity market.

To test the predictions of inventory theories, we control for the riskiness of the assets and

proxy for the aggregate dealer inventory, the risk aversion of dealers, and the funding costs

to hold inventory, respectively. The riskiness of the assets in our setup is captured by the

CDGM variables. To construct a series for aggregate end-of-month dealer inventory, inv,

we compute the cumulative marketwide order flow, which has positive (negative) increments

when dealers buy from (sell to) customers.6 Furthermore, we follow Longstaff, Mithal, and

5Several contributions examine the implications of the theory of dealer inventory management in stock

markets. Hansch, Naik, and Viswanathan (1998) study the inventory dynamics of specialists on the London

Stock Exchange. Chordia, Roll, and Subrahmanyam (2002) and Chordia and Subrahmanyam (2004) analyze

the relation between aggregate order imbalances, market liquidity, and stock returns, respectively, on the

New York Stock Exchange (NYSE). Naik and Yadav (2003) examine the relation between individual stock

positions and dealers’ total inventories. Hendershott and Seasholes (2007) study the joint dynamics of inven-

tories and prices of individual market makers for a small sample of specialists on the NYSE. Comerton-Forde

et al. (2010) study the role of financing constraints for market liquidity by examining the trading revenues of

specialists’ inventory positions on the NYSE. Hendershott and Menkveld (2014) estimate inventory reversion

rates for NYSE stocks and quantify the price pressure of specialists induced by extreme inventories.

6The Federal Reserve Bank of New York reports aggregate primary dealer statistics on inventories. There

are important differences between our aggregate dealer inventory measure and that of the Federal Reserve.

First, the Federal Reserve’s inventory statistics are solely based on primary dealers. Typically about 20 to

30 dealers are designated as primary dealers, on average, per year, whereas our sample comprises about
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Neis (2005) and employ the aggregate amount outstanding, amt.out, which controls for the

unobserved order flow in our data that is due to newly issued bonds and bonds that are called

or retired during the sample period. Next, we estimate dealer risk aversion by exploiting a

feature of the corporate bond market. Bessembinder et al. (2017) and Schultz (2017) point

out that, upon receiving a sell order from a client, dealers can choose between adding the

bond to the inventory (principal trade) or asking the seller to wait until the dealer finds

a matching buy order (prearranged trade). In a prearranged trade, the dealer assumes no

risk, because the bond is not in the dealer’s inventory. Hence, more prearranged trades are

indicative that dealers are more risk averse to holding inventory. Each month, we compute

the marketwide fraction of prearranged trades, match.trd. We follow Schultz (2017) and

define a matched trade as a trade that occurs within one minute. We require at least one

customer trade in the transaction. Finally, we follow Garleanu and Pedersen (2011) and use

the TED spread, ted, as a measure of dealer funding costs. Typically, inventory is short-

term financed through the interbank market and the TED spread captures the health of

the intermediary sector. To reiterate, theory predicts that all inventory-related proxies are

positively related to yield spreads.

B. Search Frictions

Search frictions are considered a major impediment to efficient trade in the corporate bond

market. The more difficult a bond is to locate, the more search effort must be spent to

trade the asset. The incurred cost eventually results in a price that is lower than the asset’s

fundamental value. Search frictions are inherently difficult to observe and can only be

inferred ex post from trading activity. We exploit the information in our transaction data

2,600 dealers over the entire sample period. Second, up until April 2013, the Federal Reserve reported an

aggregate dealer inventory measure that also included holdings in commercial paper and mortgage-backed

securities. The disaggregated data made available after April 2013 indicate that mortgage-backed securities

account for a substantial part, over 50%, of dealers’ holdings.
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and construct proxies for the intensity of systematic search frictions.

The theories of DGP and Lagos and Rocheteau (2009) provide insights into why prices

deviate from fundamentals in the face of search frictions. A key feature of these models is

that dealers have access to a frictionless interdealer market where they can offload inventory

at competitive prices. Consequently, interdealer links are random and not persistent and

dealer networks or intermediation chains do not arise. However, consistent with models of

network formation (e.g., Neklyudov, 2014; Chang and Zhang, 2016; Wang, 2016), empirical

evidence shows that OTC markets typically exhibit a core–periphery structure. That is,

there are a few well-connected core dealers at the center of the network and several hundreds

of less active dealers on the periphery. While Di Maggio, Kermani, and Song (2016) provide

empirical evidence that the core–periphery network structure of the U.S. corporate bond

market is persistent, whether the overall degree of connectedness between dealers remains

stable over time is less clear, since new dealers can enter the market while others leave.7

Consequently, new trading relationships between dealers emerge while existing linkages can

strengthen, weaken, or even disappear and thereby affect the ease with which a bond can

be sought and traded. In other words, a better-connected interdealer market is synonymous

with lower search frictions.

Further, we use intermediation chains to infer the intensity of search frictions. In doing

so, we trace bonds through the interdealer network once they have been sold by customers

and before they are reabsorbed into clients’ portfolios. Intermediation chains basically allow

us to disentangle search-induced effects from inventory effects, since the net cumulative order

flow remains unaffected. Recent theoretical contributions investigate the properties of these

intermediation chains and their relations to prices and transaction costs. Specifically, the

most common modeled metric is the length of intermediation chains, that is, the number of

dealers involved in the chain. For example, in the model of Hugonnier, Lester, and Weill

7Hollifield, Neklyudov, and Spatt (2017) and Li and Schürhoff (2018) identify core–periphery structures

in the U.S. structured product market and U.S. municipal bond market, respectively.
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(2016), agents have heterogeneous and time-varying asset valuations, which endogenously

leads them to trade through intermediation chains. Formally there is no distinction between

dealers and customers, however, agents with intermediate asset valuations are designated as

intermediaries, while those with extreme valuations are labeled as customers. They show

that in equilibrium a higher meeting intensity between agents coincides with lower levels of

misallocation. In turn, this relation gives rise for the role of intermediation in facilitating

trade and thus, lengthens the intermediation chain.

Shen, Wei, and Yan (2016) extend the model of Hugonnier, Lester, and Weill (2016)

and endogenize the size of the intermediary sector by incorporating fixed costs of search.

The occurrence of search costs implies that not all agents stay in the market continuously.

Those that stay are dealers, while the others act as customers. In equilibrium, lower search

costs imply longer intermediation chains. This effect arises because lower search costs imply

that more agents find it profitable to be dealers, leading to a larger intermediary sector and

thus longer intermediation chains. Neklyudov and Sambalaibat (2017) arrive at a similar

conclusion; that is, they show that a larger dealer market increases the length of intermedia-

tion chains. They argue that multiple dealers are more efficient at producing matches, thus

lowering search frictions.

Generally, a key ingredient in models of intermediation chains is the meeting intensity

between sellers and buyers. Intermediation chains provide a laboratory to posit conclusions

about meeting rates, because any intermediation chain disseminates an initial volume to a

number of final customers. Therefore, this property allows us to investigate the required

number of sales to customers to complete the chain. Empirical regularities in how search

frictions affect the number of sales to customers in a chain have not yet been studied compre-

hensively. Moreover, along the final customer domain, the existing theoretical literature on

intermediation chains provides little guidance, as most models assume non-divisible assets

and do not formally distinguish between dealers and customers. An exception is Colliard

and Demange (2018), however, their model does not provide predictions on the number of
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sales to customers. The key empirical question is whether more sales to customers imply

a high or a low meeting rate. To address this point, we explore the relation between yield

spreads and the required number of sales to customers to complete a chain of a given initial

volume.

Following the previous discussion, we employ four proxies for systematic search frictions.

First, we use an overall measure of connectedness between dealers by computing the graph-

level eigencentrality, centr, based on dealers’ trading relationships. We consider a pair of

dealers to have a trading relationship if they trade at least 50 times during a given month.

The eigenvector centrality of a dealer measures the strength of the connectedness to other

dealers. The measure increases the better connected, in turn, these other dealers are in the

network. We normalize the graph-level eigencentrality measures to be bounded between zero

and one by dividing the measure by its theoretical graph-level maximum. To obtain our three

other measures of systematic search frictions, we first describe the algorithm to determine

intermediation chains. We start with a definition of dealer round trips and subsequently

explain how we connect round trips together to form intermediation chains.

Dealer round trips. We define dealer round trips (i.e., inventory cycles) as a sequence of

buy transactions followed by a sequence of sell transactions by the same dealer in the same

bond that exactly offset each other. Thus, the inventory levels at the start and at the end of

the round trip are the same. We exclude round trips from our sample with more than one

dealer buy trade because they are difficult to connect with other round trips.8 We further

exclude round trips from our sample that last for more than seven days, because dealers

could hold these bonds not for liquidity provision but, rather, for speculative purposes. In

doing so, we identify close to 10.7 million round trips in around 14,000 bonds.

8Essentially, round trips with more than one dealer buy would result in recombining intermediation

chains.
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Intermediation chains. We link round trips together to obtain intermediation chains. We

allow for split chains, that is, there can be multiple sales to different dealers along the chain.

Thus, the concept of a split intermediation chain is a more generalized version compared to

intermediation chains used in previous studies.9 Therefore, we also make a methodological

contribution that permits further insights into intermediation patterns in the corporate bond

market. Any type of intermediation chain is triggered by one or more sales of customers to

a dealer and ends only once the initial volume has completely left the interdealer market.

Figure 1 shows the conceptual differences between a non-split intermediation chain (Panel A)

and a split intermediation chain (Panel B), respectively. The non-split intermediation chain

in Panel A consists of three round trips. Dealer D1 buys $10,000 in bonds from customer C1

at a price of 95.125. Dealer D1 then immediately sells the bond to D2, who passes on the

bond a few days later to D3, who then sells to customer C2. Panel B shows an example of a

split intermediation chain that also consists of three round trips by three dealers. However,

unlike in Panel A, four customers are involved and there is a split after dealer D1, who passes

the bond on to customer C2 and dealers D2 and D3.
Figure
1 about
here

We identify 2.8 million intermediation chains in nearly 14,000 bonds, about one-third

of which are complete, that is, for which we can fully trace the acquired bonds through

the interdealer network before they disappear again in clients’ portfolios.10 We restrict our

9For example, the intermediation chains of Hollifield, Neklyudov, and Spatt (2017) and Li and Schürhoff

(2018) in the structured product market and the municipal bond market, respectively, do not feature dealer

splits along the chain.

10The fraction of incomplete chains is significantly larger in the corporate bond market compared to

intermediation chains constructed in the municipal bond market (Li and Schürhoff, 2018, document that

around 20% of chains are incomplete) and the structured product market (Hollifield, Neklyudov, and Spatt,

2017, document that around 15% of chains are incomplete), respectively. The identification of intermediation

chains in the corporate bond market is more challenging because the trading activity of individual corpo-

rate bonds is less sparsely spaced in time compared to municipal bond and structured product markets,

respectively.
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sample of intermediation chains to completed chains with at most eight dealers. Finally, we

exclude all chains executed within one minute because these are likely prearranged trades.

It is reasonable to assume that the observed search costs in prearranged trades are lower,

because dealers wait until an offsetting order arrives to match opposing transactions. Our

final sample of intermediation chains consists of 943,578 observations, of which 7,204 are

split chains. Hence, the vast majority of completed chains are non-split.

Table IV shows that, generally, for a given chain length (i.e., the number of dealers),

the number of sales to customers increases with the initial chain volume. This observation

reflects that dealers disseminate larger initial volumes to several investors. Furthermore, a

substantial fraction (i.e., 84%) of the chains consists of only one dealer, while, at the same

time, these chains exhibit the largest initial volumes. This result shows that dealers first try

to sell to customers before they offload bonds into the more competitive interdealer market,

where they potentially obtain worse prices. Moreover, the chains are longer the smaller the

initial acquired volume. This observation indicates that it is less attractive for dealers to

incur search costs for the smallest quantities, implying that the dealers, instead, prefer to

sell these in the interdealer market.
Table
IV
about
here

We exploit the properties of these intermediation chains to provide more accurate proxies

of the intensity of systematic search frictions. We define the chain length, chain.len, as the

average number of dealers involved in the chain. Furthermore, we allow for heterogeneity

in the initial chain volume and compute the number of sales to customers for two different

types of chains: we define large-volume chains with initial volumes greater or equal to $1

million and small-volume chains with initial volumes less or equal to $100,000. We then

compute for each month the average number of sales to customers for large-volume chains,

lvc.sales, and small-volume chains, svc.sales.
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C. Bargaining Frictions

Trading in the corporate bond market takes place on a bilateral basis. This implies that,

when dealers and customers meet, they know their identities and bargain over the terms of

the trade. DGP show that asset valuations are lower when the bargaining power of dealers

increases relative to that of their customers, since dealers extract higher rents. Thus, models

on bargaining predict that yield spreads widen with dealers’ bargaining power relative to

that of their customers.

Measuring bargaining power is, per se, challenging because it is unobservable. We exploit

the granularity of our data to construct two systematic measures that proxy for the bargain-

ing power of customers and two for the bargaining power of dealers. We start with the

bargaining power of customers. The framework of DGP implies that the bargaining power

of customers increases in their outside options to trade. To proxy for customers’ outside

options, we determine the number of trading relationships customers have with dealers. We

consider clients to have a stable trading relationship if they trade at least 25 times with a

dealer during a month. We then average the number of trading relationships across all clients

and denote this measure outside.opt. Further, we follow the literature and use the proper-

ties of customers’ trade size distributions. Edwards, Harris, and Piwowar (2007) document

that larger transactions result in better prices. This phenomenon is theoretically reconciled

through the idea that larger transactions are associated with customers with better bar-

gaining power, that are typically institutional and less likely to be retail investors (see, e.g.,

Randall, 2015). We thus determine the fraction of block trades, block.trd, by computing

the number of transactions exceeding $10 million in customer trading volume relative to all

customer trades in a given month.

With respect to dealer bargaining power, we compute a measure for the competitiveness

of the dealer market. Clearly, in more concentrated dealer markets, dealers have relatively

more bargaining power toward their customers. Hence, for each month and bond, we deter-

mine a dealer’s market share based on the log customer trading volume. We then compute
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a Herfindahl–Hirschman index (HHI) from the dealers’ market shares and normalize the

measure to have it bounded between zero and one. Finally, in each month we average HHI

across all bonds to obtain our measure of concentration, dlr.conc.

Next we rely on the model of Lagos, Rocheteau, and Weill (2011), which highlights that

dealers’ bargaining power increases when certain investors receive a shock to their demand

to hold bonds. Hence, we exploit the fact that credit ratings play a pivotal role in the

investment practices of several types of investors.11 For example, the mandates of insurance

firms and pension funds mostly restrict them from investing in speculative-grade issues.

Ellul, Jotikasthira, and Lundblad (2011) show that these institutions are forced to sell their

holdings upon a downgrade to junk status, which puts them in a less favorable position

when negotiating the terms of the trade. Consequently, we determine the number of rating

downgrades from investment grade to junk status per month, ig2junk, as an alternative

proxy for dealer bargaining power.

Again, based on the theoretical predictions, we expect yield spreads to decrease in the

bargaining power of customers (outside.opt, block.trd) and to increase in that of dealers

(dlr.conc, ig2junk).

D. Time-Series Dynamics of Systematic OTC Market Frictions

To get a sense of the time-series patterns of systematic OTC frictions we plot our measures

in Figure 2. Generally, we find that most of our proxies exhibit considerable time-series

variation. We obtain the time-series for the aggregate inventory level, inv, by calculating

the cumulative marketwide order flow. Inventory decreases in the beginning of the sample

period, then it stabilizes with some fluctuations before it increases again towards the end of

11For example, Chen et al. (2014) study how credit rating classifications affect investment practices.

They show that quasi-exogenous changes in rating-based bond index compositions affect yield spreads due

to investor mandates.
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the sample.12 The fraction of prearranged trades, match.trd, steadily grows and peaks at a

value of 0.37 around the outbreak of the financial crisis, broadly in line with the estimates of

Schultz (2017). The pattern suggests increasing risk aversion before the onset of the crisis.

However, the detection of prearranged trades from the data is difficult, because offsetting

trades are not always reported with the exact same time stamp. Thus, given a certain

cutoff in defining prearranged trades, the measure could also partly reflect dealers’ matching

intensity.

Some proxies peak in the midst of the financial crisis (e.g., match.trd, ted, centr, and

svc.sales), suggesting OTC frictions are more severe in times of market stress. While the

number of sales to customers in small-volume chains, svc.sales, increases during the crisis,

the corresponding variable for large-volume chains, lvc.sales, shows no particular pattern.

This result indicates that search frictions are differently reflected in large- and small-volume

chains. Intermediation chains lengthen over time, consistent with the findings for other OTC

markets (see Shen, Wei, and Yan, 2016, for detailed discussions).

Further, among the bargaining proxies, outside.opt and dlr.conc exhibit a clear regime

shift at the beginning of 2009. Both measures depend on the number of active dealers in the

market, which sharply grows in 2009 from about 300 to 400. Consequently, dlr.conc decreases

from the pre-crisis to the post-crisis period, from a value of around 0.13 to 0.08, indicative

of a more competitive dealer market. Conversely, the variable outside.opt increases over the

12Note that the cumulative marketwide order flow provides an inaccurate picture of the time-series dy-

namics of the inventory level, given that we do not observe the initial dealer inventory positions at the

beginning of our sample period as well as at new bond issuances. Typically a fraction of a newly issued bond

is not directly placed to investors but is distributed through dealers’ inventories in the secondary market.

In Figure IA.1 in the Internet Appendix we provide a more realistic time-series plot of the dynamics of the

marketwide inventory level. That is, we account for changes in the amount outstanding by running the

regression, ∆invt = α + β∆amt.outt + ut, and then plot the cumulative residuals. The figure shows that

inventory increases up until the onset of the financial crisis and then drops below the pre-crisis level before

increasing again towards the end of the sample period.
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same period, from a value of around 18 to 25. Overall, these patterns indicate a shift in

bargaining power from dealers to customers over time.
Figure
2 about
here

IV. Systematic OTC Frictions and Yield Spread Changes

In this section, we use our measures of inventory, search, and bargaining frictions to investi-

gate the ability of systematic OTC frictions to explain the variation of yield spread changes.

First, we analyze the effect of each proxy separately within the framework of CDGM. In the

next step, we consider their joint impact on yield spread changes by augmenting the CDGM

model with all our measures of OTC frictions.

We start our analysis by reporting the unconditional correlations between the changes

in yield spreads and our proxies, as well as among the proxies in Table V. When comparing

our measures within and across the three groups of OTC frictions, we find that, generally,

the absolute correlation coefficients are relatively low. While this was to be expected across

groups, the low correlation within groups is more surprising. The highest pairwise correlation

of 0.47 within groups by far is between inventory, inv, and amount outstanding, amt.out,

and that across groups of 0.45 is between matched trades, match.trd, and chain length,

chain.len, respectively. Thus, these results suggest that each measure reflects a slightly

different aspect of the corresponding OTC friction. This prompts the use of all our proxies

in the further empirical analysis. Table V also reports the standard deviations of all our

variables to ease the interpretation of the economic impact of our proxies in the subsequent

regression analyses.
Table
V
about
hereA. Inventory Frictions and Yield Spread Changes

We examine the impact of systematic inventory frictions on yield spread changes by aug-

menting the CDGM baseline specification by the marketwide inventory measures:

∆It := [∆invt, ∆amt.outt, ∆match.trdt, ∆tedt] (3)
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We run the time-series regression for each bond i,

∆Y Si,t = αi + β′
i∆Fi,t + γ′

i∆It + εi,t, (4)

and report the average coefficients across bonds, their statistical significance, and the ex-

planatory power in Panel A of Table VI. Column (1) reiterates the results of the CDGM

baseline model. When testing the effect of the inventory frictions separately in Columns (2)

to (5), we find that they all have their predicted signs and are statistically significant, with

t-statistics ranging from 3.5 to 10.2. That is, yield spreads widen with either an increase in

the aggregate dealer inventory, inv; the amount outstanding, amt.out; dealers’ risk aversion,

match.trd; or dealers’ funding costs, ted. The underlying mechanism is such that, when

dealers face higher costs in holding inventories, they will charge investors a higher inter-

mediation premium, which eventually results in lower prices and thus larger yield spreads.

In a joint test of all inventory proxies in Column (6), we find that the coefficients remain

statistically significant with their predicted signs, suggesting again that they each measure a

different aspect of inventory friction. Thus, our results clearly confirm the predictions made

by inventory models.

We find that each of our inventory proxies, on average, increases the adjusted R2 value

between 1.5 and 2.6 percentage points, with the change in the aggregate inventory exhibiting

the highest incremental mean adjusted R2 value compared with the CDGM baseline specifi-

cation. Employing all variables together increases the mean and median adjusted R2 values

by 6.0 and 7.9 percentage points, respectively. Note that this is a sizable fraction, given that

we explain changes in yield spreads and not their levels.
Table
VI
about
here

While we find that, on average, inventory frictions increase the explanatory power of yield

spread changes, our results do not yet tell us whether the marketwide proxies affect all bonds

systematically and with comparable magnitudes. In a first step, we thus again undertake a

PCA on the residuals of Equation (4) and report the properties of the remaining variation in
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Panel B of Table VI. We find that inventory frictions decrease the proportion of unexplained

variance associated with the common component, PC1, by 8.1 percentage points, that is,

from 48.4% in the CDGM benchmark to a value of 40.3%. Further, inventory frictions reduce

the total unexplained variance by 38 basis points to a value of 129 basis points.

To test for the significance of the unexplained variance reduction we run simple time-

series regression of PC1 on our inventory friction variables.13 We report the R2 values as well

as the F -statistics and corresponding p-values of a Wald-test in Panel C. Overall, we find

that inventory frictions are indeed significantly related to the common component. That is,

using all friction measures we obtain an adjusted R2 value of 13.9% with an F -statistic of

6.1 (significant at 1%-level). Further, to assess the relative importance within the group of

inventory frictions, we run the regression using each individual friction measure separately.

In these one-factor models the R2 value reflects the relative reduction in PC1 implied by

a given friction. We find that the change in the aggregate dealer inventory represents the

friction that explains PC1 the most, that is, the R2 value is 7.8% (significant at 1%-level).

Overall, our findings show that systematic inventory frictions explain a substantial pro-

portion of the common component of yield spread changes. Moreover, the signs of the

individual coefficients obtained in the yield spread regressions confirm the implications of

theories related to inventory frictions.

B. Search Frictions and Yield Spread Changes

In this section, we focus on the impact of systematic search frictions on yield spread changes

and define the vector of search measures:

∆St := [∆centrt, ∆chain.lent, ∆lvc.salest, ∆svc.salest] (5)

13We end up with 129 instead of 131 monthly observations, because for two months we cannot assign

bonds to each of the 18 bins due to missing observations.

25

 Electronic copy available at: https://ssrn.com/abstract=3082955 



To examine their importance, we run the following regression for each bond i:

∆Y Si,t = αi + β′
i∆Fi,t + γ′

i∆St + εi,t (6)

Panel A in Table VII provides the results, where we first test our proxies individually

in Columns (2) to (5). All our proxies are statistically significant, with absolute t-statistics

ranging between 3.2 and 10.9. As expected, eigenvector centrality, centr, is negatively related

to yield spread changes, implying that yield spreads narrow when dealers are overall better

connected and form closer trading relationships. The length of the intermediation chains,

chain.len, exhibits a negative sign, showing that yield spreads decrease when chains are

longer. This result is consistent with the models of Hugonnier, Lester, and Weill (2016),

Shen, Wei, and Yan (2016) and Neklyudov and Sambalaibat (2017), where longer chains

coincide with lower levels of misallocation and with an endogenously larger intermediary

sector, respectively. The number of sales to customers in large-volume chains, lvc.sales, is

negatively related to yield spread changes. This finding suggests that when dealers split up

relatively large initial volumes, meeting rates are high and search frictions are low as dealers

can rely on a large customer base. Moreover, we find that sales to customers in small-volume

chains, svc.sales, are positively related to yield spread changes, indicating that, when dealers

need to approach many customers to disseminate rather small initial volumes, the meeting

rate is low and search frictions are high. When the search proxies are considered together,

they increase the average (median) adjusted R2 value by 2.7 (4.9) percentage points.
Table
VII
about
here

In Panel B of Table VII, we provide the results of the corresponding PCA. We find

that our search proxies reduce the remaining value of PC1 from the CDGM model by 3.9

percentage points and the total unexplained variance by 28 basis points. The figures of the

time-series regression in Panel C further show that our search proxies jointly explain 6.3%

(significant at 5%-level) of the variation of PC1. However, while we employ a battery of

search friction measures, it appears that lvc.sales is the single most important among our
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search measures, capturing 7.9% (significant at 1%-level) of the variation of the common

component. Overall, our analysis indeed provides evidence that search frictions drive the

common variation of yield spread changes.

C. Bargaining Frictions and Yield Spread Changes

To examine the impact of systematic bargaining frictions on yield spread changes, we define

the vector of bargaining measures:

∆Bt := [∆outside.optt, ∆block.trdt, ∆dlr.conct, ∆ig2junkt] (7)

Then we estimate for each bond i the following model:

∆Y Si,t = αi + β′
i∆Fi,t + γ′

i∆Bt + εi,t (8)

We report the results in Panel A of Table VIII, where we first analyze the effect of the

bargaining proxies individually in Columns (2) to (5). All measures exhibit their theoretically

predicted signs and are significant, with absolute t-statistics ranging from 4.7 to 14.6. That

is, yield spreads decrease in the proxies of customer bargaining power (outside.opt, block.trd)

and increase in the proxies of dealer bargaining power (dlr.conc, ig2junk). When we test

all measures jointly in Column (6), they keep their signs and significance. The results reveal

that bargaining frictions improve the explanatory power in terms of the mean and median

adjusted R2 values by 2.9 and 6.1 percentage points, respectively.
Table
VIII
about
here

In Panel B of Table VIII, we carry out the PCA and report the properties of the remaining

variation. We find that bargaining frictions decrease the proportion of unexplained variance

associated with PC1 by 9.5 percentage points. Again, to test for the significance in the

unexplained variance reduction, we run time-series regressions of PC1 on our measures of

bargaining frictions and report R2 values, F -statistics and p-values in Panel C. We find that

the bargaining proxies jointly explain 15.4% (significant at 1%-level) of the variation of the
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common component. The two most important measures are block trades, block.trd, and

dealer concentration, dlr.conc, with R2 values of 10.0% and 8.3%, respectively (both are

significant at 1%-level).

In sum, the tests show that bargaining frictions capture a considerable fraction of the

variation of the common component. Further, the signs of the coefficients obtained in the

yield spread regressions confirm the theoretical implications. That is, yield spreads decrease

in the bargaining power of customers and increase in that of dealers.

D. Joint Impact of Inventory, Search, and Bargaining Frictions

The previous tests show that time-series variation of systematic inventory, search, and bar-

gaining frictions affect the common component of yield spread changes. The frictions differ

in terms of the fractions they capture in the remaining systematic component of the CDGM

model. That is, we find that inventory frictions explain 13.9%, search frictions 6.3%, and

bargaining frictions 15.4%, respectively.

From a theoretical standpoint, the impact of these frictions on yield spreads depends on

their severity and degree of interaction. For example, DGP and Lagos and Rocheteau (2007)

show that the pricing impact of search frictions depends on dealers’ bargaining power and vice

versa. Lagos, Rocheteau, and Weill (2011) argue that dealers demand higher compensation

for providing liquidity through their inventory if both search and bargaining frictions are

more severe. Similarly, in the model of Üslü (2016), higher search frictions make dealers

effectively more averse to holding inventory because the possibility of risk sharing in the

interdealer market becomes limited. Further, Randall (2015) argues that it is important to

condition on dealer bargaining power in examining the pricing impact of inventory frictions in

the corporate bond market. Normally, larger trades tend to receive better prices, irrespective

of the potential inventory cost they generate. This effect arises because larger orders come

from institutional investors that have greater bargaining power.

To investigate the joint pricing impact of inventory, search, and bargaining frictions, we
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estimate different subsets of the following regression model:

∆Y Si,t = αi + β′
i∆Fi,t + γ′

i,1∆It + γ′
i,2∆St + γ′

i,3∆Bt + εi,t (9)

We show the results in Table IX. Generally, when two types of frictions are considered,

their joint explanatory power is lower than the sum of the incremental adjusted R2 values

of each one, as reported in Columns (2) to (4). Similarly, the joint effect in explaining

the common component is less than the sum of the individual effects. As suggested by

theory, these results indicate that the pricing impact of different types of frictions cannot be

considered to be completely independent. For example, compared to the individual model of

inventory frictions, the marginal effect of dealer risk aversion (match.trd) on yield spreads

increases considerably once we control for search frictions. As discussed above, this provides

qualitative evidence that dealers’ risk aversion and search frictions are indeed interrelated.
Table
IX
about
here

Somewhat surprisingly, when we test the joint effect of all measures in Column (5) in

Table IX, only three of our proxies (amt.out, outside.opt, and ig2junk) become insignificant.

All the other proxies keep their signs and significance. The incremental explanatory power of

the full model compared with the baseline specification of CDGM is substantial. The mean

(median) adjusted R2 value improves by 9.0 (14.4) percentage points. Put differently, this

result implies that OTC market frictions account for around one-third of the total explained

variation of yield spread changes.

While we have shown that the coefficients of our proxies are, generally, statistically sig-

nificant and relatively stable across different model specifications, their economic importance

also merits discussion. To do so, we rely on the full model and analyze the implied yield

spread change for a one standard deviation change in a particular friction measure. For

example, among the inventory frictions, inv has a pricing impact of close to five basis points,

while those of match.trd and ted are around seven basis points. Among the search and

bargaining frictions, the variable centr has an economic impact of five basis points, while
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chain.len, lvc.sales, and block.trd each have an impact of around four basis points. The

economic pricing impacts obtained are quite substantial, considering that the standard de-

viation of monthly average yield spread changes is 31 basis points.

Further, to better understand by how much our proxies reduce the common component

of the CDGM model, we again undertake a PCA and present the results in Panel B. The

results are quite striking as we find that our proxies for OTC frictions reduce the value of

PC1 by 18.6 percentage points, that is, from a value of 48.4% to 29.8%. This magnitude is

also reflected in the change of the total unexplained variance, which decreases from a value

of 167 basis points to 92 basis points.

To test for the significance of the unexplained variance reduction we perform time-series

regressions of PC1 on our measures of OTC frictions and present the results in Panel C.

We find that all our friction measures jointly explain 23.4% (significant at 1%-level) of the

time-series variation of the common component. Search and bargaining frictions combined

explain 18.0% (significant at 1%-level) and thus, more than the 13.9% of inventory frictions

(see Panel C in Table VI).

Overall, our results show that a substantial proportion of the latent factor uncovered by

CDGM is indeed related to time-varying systematic OTC frictions.

E. Additional Evidence and Robustness

In this section, we demonstrate that the results are not driven by the crisis period and that

our measures of OTC market frictions convey additional information for yield spread changes

beyond other factors that are usual candidates in asset pricing studies. Further, we show

that the results are invariant to alternative definitions of the CDGM variables.

E.1. Excluding the Crisis Period

In the subsequent analysis, we show that the overall nature of our results is not driven by

the crisis period. To do so, we follow Dick-Nielsen, Feldhütter, and Lando (2012), Friewald,
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Jankowitsch, and Subrahmanyam (2012), and Bao, O’Hara, and Zhou (2017) in defining the

period between July 2007 to April 2009 as the crisis period. We exclude observations from

this period and rerun the full regression model in Equation (9). Note that exclusion of the

crisis period shrinks the sample to 864 bonds and 107 monthly observations. We report the

results in Table X. When considering each friction type separately, all measures of OTC

market frictions keep their signs and remain statistically significant, apart from chain.len,

which becomes marginally insignificant. The increase in explanatory power remains basically

the same. That is, OTC frictions increase the mean adjusted R2 value by 8.3 percentage

points, from 17.1% to 25.4%. Similarly, the median adjusted R2 value increases by 12.6

percentage points, from 14.8% to 27.4%. In Panel B, we report the results of the PCA. We

find that the remaining common variation of the CDGM model is reduced by 15.7 percentage

points, that is, from 39.5% to 23.8%.

Further, Panel C provides the results of a time-series regression of the common component

on our OTC friction proxies. Using all friction variables jointly we explain 13.7% (significant

at the 1%-level) of the variation of PC1. When considering each friction type separately in

the regression specifications, we find that inventory proxies capture 12.2% and bargaining

proxies capture 9.1%, respectively (both significant at the 1% level) while search proxies

become insignificant.
Table
X
about
hereE.2. Other Potential Drivers of Yield Spread Changes

Factors that successfully explain equity returns should also be informative in describing

corporate yield spreads, because bonds and stocks are claims on the same underlying assets.

We therefore investigate the marginal impact of the Fama and French (2015) five-factor

model (FF5) in explaining yield spread changes by extending Equation (9) with the factors

SMB, HML, RMW , and CMA.14 We report the results in Column (2) of Table IA.I and,

14We do not consider the MKT factor in the regression because of potential multicollinearity with S&P

500 returns.
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to facilitate comparison, we repeat the model of Equation (9) in Column (1). Although we

find that the FF5 factors are all significant, the additional explanatory power is rather weak,

with an incremental mean adjusted R2 value of 0.9 percentage points. Extending the model

with the FF5 factors hardly affects the coefficients of our proxies. The only variable that

becomes insignificant at the 10%-level is svc.sales. Further, the incremental adjusted R2

value obtained in the time-series regression is negligible.

In a next step, we examine the liquidity factor proposed by Pastor and Stambaugh (2003),

PS, which is supposed to capture the price impact of order flow in the equity market. We

report the results in Column (3) of Table IA.I. While we find that PS is negative and

statistically significant, extending our model of OTC market frictions by PS virtually does

not affect the coefficients of our proxies. Thus, we conclude that the informational content

of our measures of OTC frictions for yield spread changes is basically unrelated to liquidity

risk in the equity market. The incremental adjusted R2 value in the time-series regression

is non-negligible, confirming the findings of Bongaerts, de Jong, and Driessen (2017) that

equity liquidity risk affects bond prices systematically.

Recent empirical asset pricing literature (Adrian, Etula, and Muir, 2014; He, Kelly, and

Manela, 2017) emphasizes the role of financial intermediaries as marginal investors. Their

marginal value of wealth should thus be important in pricing assets. We investigate whether

the intermediary capital risk factor, ICR, of He, Kelly, and Manela (2017) affects yield

spreads. We report the result of the corresponding specification in Column (4) and find that

the coefficient of ICR exhibits the expected negative sign; that is, yield spreads narrow when

intermediaries have higher capital ratios. The addition of ICR to our model of OTC market

frictions does not essentially affect our measures, with one notable exception. Among the

inventory frictions, the coefficient of ted becomes insignificant, which suggests an interaction

between funding costs and dealers’ debt capacity. Note that this result was to be expected,

given that dealers can more easily raise debt and lower their capital ratios when funding

becomes less expensive. Thus, the addition of ICR improves the mean adjusted R2 value
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across bonds slightly, by 1.9 percentage points, however, there is basically no change in the

explanatory power of the common component.

Finally, we focus on the role of asymmetric information. Babus and Kondor (2018) argue

that central dealers are less exposed to adverse selection. Hence, in their model, informa-

tional frictions give rise to changes in search frictions over time. In a similar vein, Glode

and Opp (2016) provide a theory of intermediation chains based on asymmetric information.

To investigate the effect of informational frictions on yield spreads, we follow the method-

ology of Easley, Hvidkjaer, and O’Hara (2002) and estimate the marketwide probability of

information-based trading, PIN . We augment our model of market frictions by PIN and

report the results in Column (5) of Table IA.I. The coefficient of PIN is positive, as ex-

pected, but turns out to be insignificant. More important, we find that the coefficients of

our measures remain virtually unaffected by the addition of PIN . Further, the explanatory

power of PC1 remains basically unchanged. Hence, it seems unlikely that informational

frictions drive search frictions over time.

Overall, the additional tests confirm that OTC market frictions are major determinants

of the dynamics of yield spread changes.

E.3. Alternative Definitions of CDGM Variables

We further demonstrate the robustness of our results in Table IA.II, using alternative defi-

nitions of the CDGM variables. First, we replace V IX with the firm’s asset volatility, which

is, according to structural models, the crucial input. As an approximation of asset volatility,

we compute the firm’s stock return volatility based on daily returns in a given month. We

show the results of the CDGM baseline regression in Column (1) and report the results of

the model augmented by OTC market frictions in Column (2). The results remain essen-

tially unaffected in terms of statistical significance, the signs of the OTC friction measures,

and explanatory power. In a next step, we replace each firm’s leverage ratio by the stock

return and show the results in Columns (3) and (4), respectively. Again, the results are
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basically unaffected. Systematic OTC frictions account for around one-third of the total

explained variation of yield spread changes and explain around 23% of the variation of the

common component. Replacing both the VIX and the firm’s leverage by their corresponding

alternative proxies does not influence the results either, as reported in Columns (5) and (6).

V. Conclusions

Existing empirical evidence shows that yield spread changes exhibit a large unexplained

common factor, thereby leaving their economic determinants rather poorly understood. In

this paper, we examine whether systematic intermediation frictions that arise specifically

in the corporate bond market, given its OTC structure, contribute to an understanding of

the common component in yield spread changes. We find that systematic inventory, search,

and bargaining frictions capture 23.4% of the variation of the common component. Hence,

systematic OTC frictions contribute substantially to the explanatory power of yield spread

changes and account for around one-third of their total explained variation. Furthermore,

our results show that search and bargaining frictions taken together explain more in the

common variation of yield spread changes as inventory frictions.

In summary, we provide novel insights into the latent common driver of yield spread

changes by elaborating on the role of systematic intermediation frictions in OTC markets.
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Table I: Summary Statistics. This table reports summary statistics of the data. We report the number
of observations, the mean, the standard deviation, and 5%, 50%, and 95% quantiles of bond characteristics
and the yield spread in Panel A and daily trading activity variables in Panel B. The bond characteristics
in Panel A comprise the offering amount, the bond age, the coupon rate, the time to maturity, and the
credit rating, where we assign integer numbers to the credit ratings (i.e., AAA=1, AA+=2, . . .). In Panel
B we report the number of daily trades and the trade sizes of interdealer trades, customer trades, dealer
buy trades from customers, and dealer sell trades to customers, respectively. The sample is based on U.S.
corporate bond transaction data from TRACE for the period 2003–2013.

Panel A: Bond Characteristics and the Yield Spread

Variable Observations Mean Std. dev. Q05 Q50 Q95

Offering amount [$ millions] 44207081 909.26 807.38 250.00 650.00 2000.00
Age [years] 44207081 4.05 3.96 0.35 2.95 8.95
Time to maturity [years] 44207081 8.50 7.93 1.93 6.25 22.34
Coupon rate [%] 44207081 6.49 1.96 4.12 6.45 8.88
Credit rating 44207081 9.67 4.11 5.00 9.00 16.00
Yield spread [%] 105810 2.98 2.76 0.82 2.01 6.25

Panel B: Trading Activity

Variable Mean Std. dev. Q05 Q50 Q95

Number of Daily Trades

Interdealer 4071 2428 1544 2821 7513
Customer 7643 3149 4368 7214 11863
Dealer buy from customer 3209 1340 1827 2971 5044
Dealer sale to customer 4477 1924 2438 4184 7214

Trade Sizes in $1,000

Interdealer 387 1198 5 25 1000
Customer 831 4720 5 40 2250
Dealer buy from customer 995 5426 5 50 3000
Dealer sale to customer 714 4135 5 30 2000
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Table II: Determinants of Yield Spread Changes in the Collin-Dufresne, Goldstein, and Martin
(2001) Framework. For each industrial bond i with at least 25 monthly observations of yield spread
changes, ∆Y Si,t, we estimate the following model:

∆Y Si,t = αi + β′
i∆Fi,t + εi,t

The vector ∆Fi,t :=
[
∆LEVi,t, ∆RFt, (∆RFt)

2, ∆SLOPEt, ∆V IXt, RMt, ∆JUMPt

]
refers to the

structural model variables defined in Section II, where ∆LEV is the firm’s leverage ratio, ∆RF the change
in the 10-year Treasury rate, (∆RF )2 the squared change in the 10-year Treasury rate, ∆SLOPE the change
in the slope of the yield curve, ∆V IX the change in the market volatility, RM the return on the S&P 500
index, and ∆JUMP the change in a jump component. We assign each bond to a cohort based on the firm’s
average leverage ratio and report the average coefficients across bonds, the associated t-statistics, the mean
and median adjusted R2 values, and the numbers of observations and bonds in the sample, respectively.
We also report the results across all bonds. The t-statistics are calculated from the cross-sectional variation
over the estimates for each coefficient. That is, we divide each reported coefficient value by the standard
deviation of the estimates and scale by the square root of the number of bonds. The sample is based on U.S.
corporate bond transaction data from TRACE for the period 2003–2013.

<15% 15%–25% 25%–35% 35%–45% 45%–55% >55% All

Intercept 0.091∗∗∗ 0.071∗∗∗ 0.024∗∗ 0.023 0.062∗∗∗ 0.131∗∗∗ 0.066∗∗∗

(5.226) (5.186) (2.346) (1.477) (2.740) (4.162) (9.074)
∆LEVi,t 0.057∗∗ 0.003 0.019∗∗∗ 0.032∗∗∗ 0.039∗∗∗ 0.107∗∗∗ 0.036∗∗∗

(2.290) (0.419) (3.065) (4.530) (5.695) (7.927) (6.065)
∆RFt −0.071 −0.203∗∗∗ −0.299∗∗∗ −0.437∗∗∗ −0.520∗∗∗ −0.198∗ −0.254∗∗∗

(−1.180) (−3.597) (−4.102) (−4.920) (−4.504) (−1.705) (−7.978)
(∆RFt)

2 −0.373∗∗ −0.198 0.144 0.161 −0.022 −0.245 −0.110
(−2.219) (−1.590) (0.970) (0.741) (−0.087) (−0.693) (−1.401)

∆SLOPEt 0.441∗∗∗ 0.392∗∗∗ 0.350∗∗∗ 0.405∗∗∗ 0.754∗∗∗ 0.373∗∗ 0.426∗∗∗

(4.843) (3.992) (3.613) (3.076) (4.174) (2.087) (8.753)
∆V IXt 0.012∗∗∗ 0.013∗∗∗ 0.015∗∗∗ 0.020∗∗∗ 0.023∗∗∗ 0.005 0.014∗∗∗

(2.934) (3.842) (4.298) (4.886) (2.808) (0.438) (6.807)
RMt −0.007 −0.014∗∗∗ −0.024∗∗∗ −0.027∗∗∗ −0.037∗∗∗ −0.099∗∗∗ −0.028∗∗∗

(−1.284) (−3.550) (−5.776) (−4.594) (−4.328) (−8.412) (−10.746)
∆JUMPt 0.005 0.003 0.007∗ 0.008∗∗ 0.011∗ −0.001 0.005∗∗∗

(1.314) (1.041) (1.952) (2.022) (1.804) (−0.241) (3.128)

Mean adj. R2 0.156 0.146 0.233 0.295 0.271 0.329 0.217
Median adj. R2 0.143 0.122 0.239 0.336 0.285 0.331 0.201
Observations 9596 11802 8304 6407 3760 5481 45350
Bonds 203 256 179 141 84 111 974
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Table III: Principal Component Analysis. For each industrial bond i with at least 25 monthly obser-
vations of yield spread changes, ∆Y Si,t, we estimate the following model:

∆Y Si,t = αi + β′
i∆Fi,t + εi,t

The vector ∆Fi,t :=
[
∆LEVi,t, ∆RFt, (∆RFt)

2, ∆SLOPEt, ∆V IXt, RMt, ∆JUMPt

]
refers to the

structural model variables defined in Section II, with ∆LEV as the firm’s leverage ratio, ∆RF the change in
the 10-year Treasury rate, (∆RF )2 the squared change in the 10-year Treasury rate, ∆SLOPE the change
in the slope of the yield curve, ∆V IX the change in the market volatility, RM the return on the S&P 500
index, and ∆JUMP the change in a jump component. We then assign each month’s residuals to one of
18 bins defined by three maturity groups (short denotes less than five years, medium denotes five to eight
years, long is over eight years) and six leverage groups (low is less than 15%, 2 is 15%–25%, 3 is 25%–35%,
4 is 35%–45%, 5 is 45%–55%, high is greater than 55%) and compute an average residual. We extract
the principal components of the covariance matrix of these residuals. For each bin, we report the number
of bonds, the number of observations, the loadings, and the proportions of the variance of the residuals
explained by the first and second principal components, PC1 and PC2, respectively. We further report the
total unexplained variance of the regression in percentage points. The sample is based on U.S. corporate
bond transaction data from TRACE for the period 2003–2013.

Maturity Leverage Bonds Observations PC1 PC2

Short Low 223 4107 0.109 0.168
Short 2 324 5190 0.135 0.213
Short 3 288 2719 0.174 0.218
Short 4 227 1894 0.246 0.456
Short 5 160 1360 0.325 0.456
Short High 162 2257 0.478 −0.208
Medium Low 188 2211 0.101 0.082
Medium 2 264 2919 0.129 0.045
Medium 3 233 1890 0.181 −0.070
Medium 4 225 1576 0.247 0.046
Medium 5 187 1447 0.234 0.129
Medium High 152 1622 0.351 −0.087
Long Low 262 3893 0.093 0.014
Long 2 329 3797 0.110 −0.003
Long 3 277 2934 0.129 −0.033
Long 4 264 2140 0.189 −0.024
Long 5 181 1427 0.211 −0.198
Long High 130 1967 0.358 −0.583

Proportion of variance explained by PC 0.484 0.095
Unexplained variance 1.666
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Table IV: Intermediation Chains. We classify intermediation chains by the number of dealers involved
and the number of sales to customers in the chain. We then report, for each group, the number of observations
and the acquired chain volume in $1,000. The sample is based on U.S. corporate bond transaction data from
TRACE for the period 2003–2013.

Dealers Customer Sales Observations Chain Volume

1 1 755268 1239.56
1 2 40388 1466.92
1 ≥3 8329 811.28

2 1 69650 357.98
2 2 5116 761.00
2 ≥3 1308 915.69

3 1 38272 193.98
3 2 3938 443.98
3 ≥3 910 640.71

≥4 1 14667 40.95
≥4 2 5071 87.92
≥4 ≥3 661 301.37
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Table VI: Inventory Frictions and Yield Spread Changes. For each industrial bond i with at least
25 monthly observations of yield spread changes, ∆Y Si,t, we estimate the model

∆Y Si,t = αi + β′
i∆Fi,t + γ′

i∆It + εi,t,

where ∆Fi,t :=
[
∆LEVi,t, ∆RFt, (∆RFt)

2, ∆SLOPEt, ∆V IXt, RMt, ∆JUMPt

]
is the vector of the

structural model variables defined in Section II. The vector ∆It := [∆invt, ∆amt.outt, ∆match.trdt, ∆tedt]
refers to the proxies for systematic inventory frictions introduced in Section III.A. Panel A reports the
average coefficients across bonds, the associated t-statistics, the mean and median adjusted R2 values, and
the numbers of observations and bonds in the sample, respectively. The t-statistics are calculated from the
cross-sectional variation over the estimates for each coefficient. That is, we divide each reported coefficient
value by the standard deviation of the estimates and scale by the square root of the number of bonds. Panel
B reports the results of a principal component analysis on the residuals. We assign each month’s residuals
to one of 18 bins defined by three maturity groups (less than five years, five to eight years, greater than
eight years) and six leverage groups (less than 15%, 15%–25%, 25%–35%, 35%–45%, 45%–55%, greater than
55%). For each bin and month we compute an average residual and then extract the principal components
of the covariance matrix of these residuals. We report the proportions of variance explained by the first and
second principal components, PC1 and PC2, respectively, and the total unexplained variance in percentage
points. In Panel C we report the R2 values, the F -statistics and corresponding p-values of a Wald-test of
the following time-series regression model:

PC1t = α+ γ′∆It + εt

The sample is based on U.S. corporate bond transaction data from TRACE for the period 2003–2013.
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(1) (2) (3) (4) (5) (6)

Panel A: Individual Bond Regressions

Intercept 0.066∗∗∗ 0.060∗∗∗ 0.026∗∗∗ 0.057∗∗∗ 0.071∗∗∗ 0.029∗∗∗

(9.074) (7.567) (3.084) (7.956) (9.883) (3.414)
∆LEVi,t 0.036∗∗∗ 0.036∗∗∗ 0.035∗∗∗ 0.035∗∗∗ 0.038∗∗∗ 0.036∗∗∗

(6.065) (5.965) (5.673) (6.040) (6.453) (5.940)
∆RFt −0.254∗∗∗ −0.324∗∗∗ −0.292∗∗∗ −0.252∗∗∗ −0.271∗∗∗ −0.328∗∗∗

(−7.978) (−9.882) (−8.622) (−7.848) (−8.063) (−9.268)
(∆RFt)

2 −0.110 −0.002 −0.114 0.004 −0.183∗∗ 0.037
(−1.401) (−0.030) (−1.401) (0.054) (−2.291) (0.416)

∆SLOPEt 0.426∗∗∗ 0.473∗∗∗ 0.509∗∗∗ 0.411∗∗∗ 0.504∗∗∗ 0.537∗∗∗

(8.753) (9.663) (10.339) (8.436) (9.922) (10.316)
∆V IXt 0.014∗∗∗ 0.011∗∗∗ 0.014∗∗∗ 0.015∗∗∗ 0.013∗∗∗ 0.010∗∗∗

(6.807) (5.170) (6.708) (7.069) (6.086) (4.445)
RMt −0.028∗∗∗ −0.029∗∗∗ −0.028∗∗∗ −0.027∗∗∗ −0.028∗∗∗ −0.029∗∗∗

(−10.746) (−11.165) (−10.752) (−10.301) (−10.765) (−10.939)
∆JUMPt 0.005∗∗∗ 0.005∗∗∗ 0.004∗∗ 0.005∗∗∗ 0.007∗∗∗ 0.007∗∗∗

(3.128) (3.206) (2.394) (3.083) (4.118) (3.854)
∆invt 24.099∗∗∗ 20.849∗∗∗

(10.244) (9.120)
∆amt.outt 3.260∗∗∗ 3.019∗∗∗

(3.512) (3.126)
∆match.trdt 1.811∗∗∗ 3.489∗∗∗

(3.630) (6.581)
∆tedt 0.524∗∗∗ 0.486∗∗∗

(9.466) (8.514)

Mean adj. R2 0.217 0.243 0.237 0.232 0.237 0.277
Median adj. R2 0.201 0.233 0.224 0.218 0.227 0.280
Observations 45350 45350 45350 45350 45350 45350
Bonds 974 974 974 974 974 974

Panel B: Principal Component Analysis

PC1 0.484 0.448 0.464 0.478 0.472 0.403
PC2 0.096 0.101 0.100 0.094 0.103 0.115
Unexpl. var. 1.666 1.579 1.634 1.586 1.512 1.289

Panel C: Time-Series Regression of PC1 on Inventory Frictions

∆inv ∆amt.out ∆match.trd ∆ted ∆I

Adj. R2 0.139
R2 0.078 0.009 0.011 0.046 0.166
F -statistic 10.782 1.167 1.400 6.167 6.149
p-value 0.001 0.282 0.239 0.014 0.000
Observations 129 129 129 129 129
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Table VII: Search Frictions and Yield Spread Changes. For each industrial bond i with at least 25
monthly observations of yield spread changes, ∆Y Si,t, we estimate the model

∆Y Si,t = αi + β′
i∆Fi,t + γ′

i∆St + εi,t,

where ∆Fi,t :=
[
∆LEVi,t, ∆RFt, (∆RFt)

2, ∆SLOPEt, ∆V IXt, RMt, ∆JUMPt

]
is the

vector of the structural model variables defined in Section II. The vector ∆St :=
[∆centrt, ∆chain.lent, ∆lvc.salest, ∆svc.salest] refers to the proxies for systematic search frictions
introduced in Section III.B. Panel A reports the average coefficients across bonds, the associated t-statistics,
the mean and median adjusted R2 values, and the numbers of observations and bonds in the sample,
respectively. The t-statistics are calculated from the cross-sectional variation over the estimates for each
coefficient. That is, we divide each reported coefficient value by the standard deviation of the estimates
and scale by the square root of the number of bonds. Panel B reports the results of a principal component
analysis on the residuals. We assign each month’s residuals to one of 18 bins defined by three maturity
groups (less than five years, five to eight years, greater than eight years) and six leverage groups (less than
15%, 15%–25%, 25%–35%, 35%–45%, 45%–55%, greater than 55%). For each bin and month we compute
an average residual and then extract the principal components of the covariance matrix of these residuals.
We report the proportions of variance explained by the first and second principal components, PC1 and
PC2, respectively, and the total unexplained variance in percentage points. In Panel C we report the R2

values, the F -statistics and corresponding p-values of a Wald-test of the following time-series regression
model:

PC1t = α+ γ′∆St + εt

The sample is based on U.S. corporate bond transaction data from TRACE for the period 2003–2013.
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(1) (2) (3) (4) (5) (6)

Panel A: Individual Bond Regressions

Intercept 0.066∗∗∗ 0.067∗∗∗ 0.069∗∗∗ 0.064∗∗∗ 0.067∗∗∗ 0.067∗∗∗

(9.074) (9.091) (9.313) (8.634) (8.971) (8.708)
∆LEVi,t 0.036∗∗∗ 0.037∗∗∗ 0.034∗∗∗ 0.036∗∗∗ 0.037∗∗∗ 0.035∗∗∗

(6.065) (5.816) (5.781) (5.811) (5.908) (5.170)
∆RFt −0.254∗∗∗ −0.250∗∗∗ −0.218∗∗∗ −0.267∗∗∗ −0.240∗∗∗ −0.222∗∗∗

(−7.978) (−7.846) (−6.920) (−8.149) (−7.319) (−6.720)
(∆RFt)

2 −0.110 −0.105 −0.159∗∗ −0.092 −0.084 −0.086
(−1.401) (−1.299) (−2.040) (−1.146) (−1.025) (−1.021)

∆SLOPEt 0.426∗∗∗ 0.419∗∗∗ 0.418∗∗∗ 0.530∗∗∗ 0.414∗∗∗ 0.500∗∗∗

(8.753) (8.597) (8.541) (10.557) (8.321) (9.610)
∆V IXt 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.015∗∗∗ 0.013∗∗∗ 0.014∗∗∗

(6.807) (6.488) (6.858) (7.331) (6.022) (5.613)
RMt −0.028∗∗∗ −0.027∗∗∗ −0.027∗∗∗ −0.026∗∗∗ −0.029∗∗∗ −0.025∗∗∗

(−10.746) (−10.288) (−10.441) (−9.936) (−10.572) (−9.015)
∆JUMPt 0.005∗∗∗ 0.004∗∗ 0.004∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.005∗∗∗

(3.128) (2.552) (2.241) (3.609) (3.465) (2.754)
∆centrt −0.899∗∗∗ −1.167∗∗∗

(−5.639) (−6.853)
∆chain.lent −0.961∗∗∗ −0.619∗∗

(−3.685) (−2.066)
∆lvc.salest −3.317∗∗∗ −3.272∗∗∗

(−10.881) (−9.751)
∆svc.salest 0.796∗∗∗ 1.145∗∗∗

(3.185) (4.262)

Mean adj. R2 0.217 0.220 0.228 0.228 0.219 0.244
Median adj. R2 0.201 0.209 0.217 0.214 0.206 0.250
Observations 45350 45350 45350 45350 45350 45350
Bonds 974 974 974 974 974 974

Panel B: Principal Component Analysis

PC1 0.484 0.476 0.488 0.457 0.479 0.445
PC2 0.096 0.099 0.093 0.100 0.094 0.101
Unexpl. var. 1.666 1.576 1.612 1.554 1.622 1.384

Panel C: Time-Series Regression of PC1 on Search Frictions

∆centr ∆chain.len ∆lvc.sales ∆svc.sales ∆S

Adj. R2 0.063
R2 0.000 0.017 0.079 0.000 0.092
F -statistic 0.052 2.210 10.939 0.051 3.148
p-value 0.820 0.140 0.001 0.822 0.017
Observations 129 129 129 129 129
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Table VIII: Bargaining Frictions and Yield Spread Changes. For each industrial bond i with at
least 25 monthly observations of yield spread changes, ∆Y Si,t, we estimate the model

∆Y Si,t = αi + β′
i∆Fi,t + γ′

i∆Bt + εi,t,

where ∆Fi,t :=
[
∆LEVi,t, ∆RFt, (∆RFt)

2, ∆SLOPEt, ∆V IXt, RMt, ∆JUMPt

]
is the

vector of the structural model variables defined in Section II. The vector ∆Bt :=
[∆outside.optt, ∆block.trdt, ∆dlr.conct, ∆ig2junkt] refers to the proxies for systematic bargaining
frictions introduced in Section III.C. Panel A reports the average coefficients across bonds, the associated
t-statistics, the mean and median adjusted R2 values, and the numbers of observations and bonds in the
sample, respectively. The t-statistics are calculated from the cross-sectional variation over the estimates for
each coefficient. That is, we divide each reported coefficient value by the standard deviation of the estimates
and scale by the square root of the number of bonds. Panel B reports the results of a principal component
analysis on the residuals. We assign each month’s residuals to one of 18 bins defined by three maturity
groups (less than five years, five to eight years, greater than eight years) and six leverage groups (less than
15%, 15%–25%, 25%–35%, 35%–45%, 45%–55%, greater than 55%). For each bin and month we compute
an average residual and then extract the principal components of the covariance matrix of these residuals.
We report the proportions of variance explained by the first and second principal components, PC1 and
PC2, respectively, and the total unexplained variance in percentage points. In Panel C we report the R2

values, the F -statistics and corresponding p-values of a Wald-test of the following time-series regression
model:

PC1t = α+ γ′∆Bt + εt

The sample is based on U.S. corporate bond transaction data from TRACE for the period 2003–2013.
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(1) (2) (3) (4) (5) (6)

Panel A: Individual Bond Regressions

Intercept 0.066∗∗∗ 0.064∗∗∗ 0.068∗∗∗ 0.067∗∗∗ 0.068∗∗∗ 0.070∗∗∗

(9.074) (8.782) (8.741) (9.436) (9.252) (9.064)
∆LEVi,t 0.036∗∗∗ 0.035∗∗∗ 0.039∗∗∗ 0.035∗∗∗ 0.036∗∗∗ 0.035∗∗∗

(6.065) (5.498) (6.510) (5.797) (5.665) (5.347)
∆RFt −0.254∗∗∗ −0.231∗∗∗ −0.246∗∗∗ −0.223∗∗∗ −0.242∗∗∗ −0.189∗∗∗

(−7.978) (−7.318) (−7.438) (−7.086) (−7.323) (−5.482)
(∆RFt)

2 −0.110 −0.100 −0.190∗∗ −0.099 −0.156∗∗ −0.200∗∗

(−1.401) (−1.250) (−2.380) (−1.288) (−2.023) (−2.566)
∆SLOPEt 0.426∗∗∗ 0.421∗∗∗ 0.508∗∗∗ 0.368∗∗∗ 0.415∗∗∗ 0.437∗∗∗

(8.753) (8.568) (9.824) (7.646) (8.471) (8.446)
∆V IXt 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.013∗∗∗

(6.807) (6.707) (6.673) (6.625) (6.624) (6.043)
RMt −0.028∗∗∗ −0.027∗∗∗ −0.027∗∗∗ −0.026∗∗∗ −0.028∗∗∗ −0.026∗∗∗

(−10.746) (−10.502) (−9.936) (−10.012) (−10.601) (−9.470)
∆JUMPt 0.005∗∗∗ 0.005∗∗∗ 0.007∗∗∗ 0.009∗∗∗ 0.005∗∗∗ 0.009∗∗∗

(3.128) (3.149) (4.310) (4.999) (3.066) (4.946)
∆outside.optt −0.035∗∗∗ −0.021∗∗∗

(−7.413) (−4.407)
∆block.trdt −19.528∗∗∗ −16.136∗∗∗

(−10.657) (−8.582)
∆dlr.conct 7.163∗∗∗ 5.806∗∗∗

(14.607) (10.039)
∆ig2junkt 0.003∗∗∗ 0.004∗∗∗

(4.662) (5.416)

Mean adj. R2 0.217 0.226 0.232 0.228 0.221 0.246
Median adj. R2 0.201 0.206 0.227 0.224 0.204 0.262
Observations 45350 45350 45350 45350 45350 45350
Bonds 974 974 974 974 974 974

Panel B: Principal Component Analysis

PC1 0.484 0.460 0.439 0.449 0.475 0.389
PC2 0.096 0.099 0.111 0.101 0.100 0.123
Unexpl. var. 1.666 1.604 1.566 1.589 1.625 1.436

Panel C: Time-Series Regression of PC1 on Bargaining Frictions

∆outside.opt ∆block.trd ∆dlr.conc ∆ig2junk ∆B

Adj. R2 0.154
R2 0.051 0.100 0.083 0.007 0.180
F -statistic 6.868 14.120 11.531 0.881 6.816
p-value 0.010 0.000 0.001 0.350 0.000
Observations 129 129 129 129 129
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Table IX: OTC Market Frictions and Yield Spread Changes. For each industrial bond i with at
least 25 monthly observations of yield spread changes, ∆Y Si,t, we estimate the following model:

∆Y Si,t = αi + β′
i∆Fi,t + γ′

i,1∆It + γ′
i,2∆St + γ′

i,3∆Bt + εi,t

The vector ∆Fi,t refers to the structural model variables defined in Section II. The vector ∆It :=
[∆invt, ∆amt.outt, ∆match.trdt, ∆tedt] refers to the proxies for systematic inventory frictions intro-
duced in Section III.A, the vector ∆St := [∆centrt, ∆chain.lent, ∆lvc.salest, ∆svc.salest] refers
to the proxies for systematic search frictions introduced in Section III.B, and the vector ∆Bt :=
[∆outside.optt, ∆block.trdt, ∆dlr.conct, ∆ig2junkt] refers to the proxies for systematic bargaining proxies
introduced in Section III.C. Panel A reports the average coefficients across bonds, the associated t-statistics,
the mean and median adjusted R2 values, and the numbers of observations and bonds in the sample, respec-
tively. The t-statistics are calculated from the cross-sectional variation over the estimates for each coefficient.
That is, we divide each reported coefficient value by the standard deviation of the estimates and scale by the
square root of the number of bonds. Panel B reports the results of a principal component analysis on the
residuals. We assign each month’s residuals to one of 18 bins defined by three maturity groups (less than
five years, five to eight years, greater than eight years) and six leverage groups (less than 15%, 15%–25%,
25%–35%, 35%–45%, 45%–55%, greater than 55%). For each bin and month we compute an average resid-
ual and then extract the principal components of the covariance matrix of these residuals. We report the
proportions of variance explained by the first and second principal components, PC1 and PC2, respectively,
and the total unexplained variance in percentage points. In Panel C we report the R2 values, the F -statistics
and corresponding p-values of a Wald-test of the following time-series regression model:

PC1t = α+ γ′
1∆It + γ′

2∆St + γ′
3∆Bt + εt

The sample is based on U.S. corporate bond transaction data from TRACE for the period 2003–2013.
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(1) (2) (3) (4) (5)

Panel A: Individual Bond Regressions

Intercept 0.066∗∗∗ 0.034∗∗∗ 0.046∗∗∗ 0.069∗∗∗ 0.048∗∗∗

(9.074) (3.578) (4.613) (8.314) (4.421)
∆invt 17.764∗∗∗ 21.825∗∗∗ 16.218∗∗∗

(6.978) (8.028) (5.656)
∆amt.outt 2.395∗ 2.586∗∗ 1.355

(1.890) (2.485) (0.982)
∆match.trdt 5.169∗∗∗ 2.146∗∗∗ 4.949∗∗∗

(7.296) (3.638) (5.721)
∆tedt 0.412∗∗∗ 0.350∗∗∗ 0.254∗∗∗

(5.663) (5.489) (3.135)
∆centrt −0.765∗∗∗ −1.519∗∗∗ −1.382∗∗∗

(−4.074) (−7.722) (−6.269)
∆chain.lent −0.908∗∗ −0.356 −1.051∗∗

(−2.227) (−1.116) (−2.479)
∆lvc.salest −2.138∗∗∗ −2.820∗∗∗ −2.347∗∗∗

(−5.859) (−7.602) (−5.237)
∆svc.salest 1.552∗∗∗ 0.752∗∗ 1.236∗∗∗

(5.321) (2.290) (3.374)
∆outside.optt −0.005 −0.021∗∗∗ −0.000

(−0.798) (−4.064) (−0.054)
∆block.trdt −12.387∗∗∗ −17.174∗∗∗ −12.200∗∗∗

(−6.398) (−8.357) (−5.502)
∆dlr.conct 5.266∗∗∗ 3.805∗∗∗ 2.260∗∗∗

(8.592) (5.860) (2.815)
∆ig2junkt 0.000 0.002∗∗ −0.001

(0.426) (2.471) (−1.533)

CDGM variables Yes Yes Yes Yes Yes

Mean adj. R2 0.217 0.292 0.293 0.271 0.307
Median adj. R2 0.201 0.312 0.311 0.288 0.345
Observations 45350 45350 45350 45350 45350
Bonds 974 974 974 974 974

Panel B: Principal Component Analysis

PC1 0.484 0.378 0.326 0.358 0.298
PC2 0.096 0.129 0.134 0.135 0.130
Unexpl. var. 1.666 1.086 1.107 1.185 0.922

Panel C: Time-Series Regression of PC1 on OTC Frictions

∆I + ∆S ∆I + ∆B ∆S + ∆B ∆I + ∆S + ∆B

Adj. R2 0.176 0.226 0.180 0.234
R2 0.227 0.275 0.231 0.306
F -statistic 4.414 5.685 4.515 4.261
p-value 0.000 0.000 0.000 0.000
Observations 129 129 129 129
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Table X: OTC Market Frictions and Yield Spread Changes, Excluding the Crisis Period.
Excluding the crisis period (July 2007 to April 2009), for each industrial bond i with at least 25 monthly
observations of yield spread changes, ∆Y Si,t, we estimate the model

∆Y Si,t = αi + β′
i∆Fi,t + γ′

i,1∆It + γ′
i,2∆St + γ′

i,3∆Bt + εi,t,

where the vector ∆Fi,t refers to the structural model variables defined in Section II. The vector
∆It := [∆invt, ∆amt.outt, ∆match.trdt, ∆tedt] refers to the proxies for systematic inventory fric-
tions introduced in Section III.A, the vector ∆St := [∆centrt, ∆chain.lent, ∆lvc.salest, ∆svc.salest]
to the proxies for systematic search frictions introduced in Section III.B, and the vector ∆Bt :=
[∆outside.optt, ∆block.trdt, ∆dlr.conct, ∆ig2junkt] to the proxies for systematic bargaining proxies in-
troduced in Section III.C. Panel A reports the average coefficients across bonds, the associated t-statistics,
the mean and median adjusted R2 values, and the numbers of observations and bonds in the sample, respec-
tively. The t-statistics are calculated from the cross-sectional variation over the estimates for each coefficient.
That is, we divide each reported coefficient value by the standard deviation of the estimates and scale by the
square root of the number of bonds. Panel B reports the results of a principal component analysis on the
residuals. We assign each month’s residuals to one of 18 bins defined by three maturity groups (less than
five years, five to eight years, greater than eight years) and six leverage groups (less than 15%, 15%–25%,
25%–35%, 35%–45%, 45%–55%, greater than 55%). For each bin and month we compute an average resid-
ual and then extract the principal components of the covariance matrix of these residuals. We report the
proportions of variance explained by the first and second principal components, PC1 and PC2, respectively,
and the total unexplained variance in percentage points. In Panel C we report the R2 values, the F -statistics
and corresponding p-values of a Wald-test of the following time-series regression model:

PC1t = α+ γ′
1∆It + γ′

2∆St + γ′
3∆Bt + εt

The sample is based on U.S. corporate bond transaction data from TRACE for the period 2003–2013.

48

 Electronic copy available at: https://ssrn.com/abstract=3082955 



(1) (2) (3) (4) (5)

Panel A: Individual Bond Regressions

Intercept 0.060∗∗∗ 0.035∗∗∗ 0.064∗∗∗ 0.060∗∗∗ 0.054∗∗∗

(7.499) (3.787) (7.453) (7.201) (4.805)
∆invt 12.545∗∗∗ 13.727∗∗∗

(5.718) (4.763)
∆amt.outt 3.345∗∗∗ 1.510

(2.901) (0.966)
∆match.trdt 2.319∗∗∗ 4.352∗∗∗

(3.938) (4.447)
∆tedt 0.617∗∗∗ 0.347∗∗∗

(9.302) (3.636)
∆centrt −0.701∗∗∗ −0.778∗∗∗

(−3.762) (−2.926)
∆chain.lent −0.357 −0.776

(−1.059) (−1.643)
∆lvc.salest −1.769∗∗∗ −1.012∗∗

(−5.097) (−2.045)
∆svc.salest 0.858∗∗∗ 1.040∗∗∗

(3.025) (2.776)
∆outside.optt −0.011∗∗ 0.006

(−2.239) (0.741)
∆block.trdt −4.436∗∗ −3.277

(−2.184) (−1.337)
∆dlr.conct 6.243∗∗∗ 2.791∗∗∗

(9.560) (2.882)
∆ig2junkt 0.006∗∗∗ 0.001

(8.025) (1.386)

CDGM variables Yes Yes Yes Yes Yes

Mean adj. R2 0.171 0.227 0.193 0.204 0.254
Median adj. R2 0.148 0.222 0.182 0.191 0.274
Observations 36514 36514 36514 36514 36514
Bonds 864 864 864 864 864

Panel B: Principal Component Analysis

PC1 0.395 0.326 0.358 0.330 0.238
PC2 0.110 0.141 0.116 0.135 0.158
Unexpl. var. 1.153 1.020 1.013 1.034 0.722

Panel C: Time-Series Regression of PC1 on OTC Frictions

∆I ∆S ∆B ∆I + ∆S + ∆B

Adj. R2 0.122 0.009 0.091 0.137
R2 0.155 0.047 0.126 0.235
F -statistic 4.693 1.251 3.667 2.404
p-value 0.002 0.294 0.008 0.009
Observations 107 107 107 107
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Figure 1: Intermediation Chains. This figure provides two examples of intermediation chains. Panel A
shows a non-split intermediation chain and Panel B a split intermediation chain. Each node either represents
a customer (denoted by C) or a dealer (denoted by D). Arrows indicate a bond transaction for which we
report the date and time, the transacted volume in $1,000, and the transaction price.
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Figure IA.1: Time-Series Dynamics of Dealer Inventory Adjusted for Amount Outstanding.
We plot the time-series of the marketwide dealer inventory adjusted for the aggregate amount outstanding,
that is, we estimate the following regression model:

∆invt = α+ β∆amt.outt + ut

Then we compute the cumulative residuals and obtain an adjusted time-series of the dynamics of the level of
dealer inventory, inv∗t =

∑t
s=0 us. Inventory is given in $1 trillion, and the sample is based on U.S. corporate

bond transaction data from TRACE for the period 2003–2013.
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Table IA.I: OTC Market Frictions and other Potential Determinants of Yield Spread Changes.
For each industrial bond i with at least 25 monthly observations of yield spread changes, ∆Y Si,t, we estimate
the following model:

∆Y Si,t = αi + β′
i∆Fi,t + γ′

i,1∆It + γ′
i,2∆St + γ′

i,3∆Bt + γ′
i,4∆Dt + εi,t

The vector ∆Fi,t refers to the structural model variables defined in Section II. The vector ∆It :=
[∆invt, ∆amt.outt, ∆match.trdt, ∆tedt] refers to the proxies for systematic inventory frictions intro-
duced in Section III.A, the vector ∆St := [∆centrt, ∆chain.lent, ∆lvc.salest, ∆svc.salest] refers
to the proxies for systematic search frictions introduced in Section III.B, and the vector ∆Bt :=
[∆outside.optt, ∆block.trdt, ∆dlr.conct, ∆ig2junkt] to the proxies for systematic bargaining proxies intro-
duced in Section III.C. The vector ∆Dt := [SMBt, HMLt, RMWt, CMAt, PSt, ICRt, ∆PINt] refers
to other potential determinants of yield spread changes. These include the Fama and French (2015) five
factors; the liquidity factor, PS, of Pastor and Stambaugh (2003); the intermediary capital risk factor, ICR,
of He, Kelly, and Manela (2017); as well as the factor based on the probability of information-based trad-
ing, PIN , of Easley, Hvidkjaer, and O’Hara (2002). Panel A reports the average coefficients across bonds,
the associated t-statistics, the mean and median adjusted R2 values, and the numbers of observations and
bonds in the sample, respectively. The t-statistics are calculated from the cross-sectional variation over the
estimates for each coefficient. That is, we divide each reported coefficient value by the standard deviation of
the estimates and scale by the square root of the number of bonds. Panel B reports the results of a principal
component analysis on the residuals. We assign each month’s residuals to one of 18 bins defined by three
maturity groups (less than five years, five to eight years, greater than eight years) and six leverage groups
(less than 15%, 15%–25%, 25%–35%, 35%–45%, 45%–55%, greater than 55%). For each bin and month we
compute an average residual and then extract the principal components of the covariance matrix of these
residuals. We report the proportions of variance explained by the first and second principal components, PC1
and PC2, respectively, and the total unexplained variance in percentage points. In Panel C we report the
R2 values, the F -statistics and corresponding p-values of a Wald-test of the following time-series regression
model:

PC1t = α+ γ′
1∆It + γ′

2∆St + γ′
3∆Bt + γ′

4∆Dt + εt

The sample is based on U.S. corporate bond transaction data from TRACE for the period 2003–2013.
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(1) (2) (3) (4) (5)

Panel A: Individual Bond Regressions

Intercept 0.048∗∗∗ 0.068∗∗∗ 0.058∗∗∗ 0.034∗∗∗ 0.048∗∗∗

(4.421) (5.193) (5.484) (3.048) (4.190)
∆invt 16.218∗∗∗ 15.241∗∗∗ 15.870∗∗∗ 10.990∗∗∗ 16.075∗∗∗

(5.656) (4.583) (5.067) (3.409) (5.498)
∆amt.outt 1.355 −0.495 1.960 −0.228 1.857

(0.982) (−0.288) (1.454) (−0.157) (1.296)
∆match.trdt 4.949∗∗∗ 5.355∗∗∗ 4.044∗∗∗ 6.006∗∗∗ 4.607∗∗∗

(5.721) (4.496) (4.890) (6.594) (4.929)
∆tedt 0.254∗∗∗ 0.184∗ 0.339∗∗∗ 0.138 0.276∗∗∗

(3.135) (1.665) (3.939) (1.642) (3.151)
∆centrt −1.382∗∗∗ −1.612∗∗∗ −1.222∗∗∗ −1.648∗∗∗ −1.408∗∗∗

(−6.269) (−5.917) (−5.573) (−6.933) (−6.087)
∆chain.lent −1.051∗∗ −1.473∗∗∗ −0.839∗∗ −1.194∗∗∗ −0.933∗∗

(−2.479) (−2.665) (−2.180) (−2.884) (−2.215)
∆lvc.salest −2.347∗∗∗ −1.741∗∗∗ −2.067∗∗∗ −2.580∗∗∗ −2.355∗∗∗

(−5.237) (−3.193) (−4.261) (−4.843) (−4.976)
∆svc.salest 1.236∗∗∗ 0.721 1.199∗∗∗ 1.219∗∗∗ 1.240∗∗∗

(3.374) (1.556) (3.220) (3.180) (2.709)
∆outside.optt −0.000 −0.001 −0.000 −0.005 −0.002

(−0.054) (−0.172) (−0.012) (−0.701) (−0.304)
∆block.trdt −12.200∗∗∗ −16.322∗∗∗ −9.947∗∗∗ −10.861∗∗∗ −12.138∗∗∗

(−5.502) (−5.628) (−4.504) (−4.473) (−4.555)
∆dlr.conct 2.260∗∗∗ 1.571∗ 2.204∗∗∗ 1.294 2.596∗∗∗

(2.815) (1.667) (2.618) (1.454) (2.932)
∆ig2junkt −0.001 −0.001 −0.002∗∗ −0.001 −0.001

(−1.533) (−1.227) (−2.252) (−0.704) (−1.232)
SMBt −0.011∗∗∗

(−3.007)
HMLt −0.019∗∗∗

(−3.631)
RMWt −0.014∗∗

(−2.132)
CMAt 0.015∗

(1.833)
PSt −0.673∗∗∗

(−3.339)
ICRt −1.352∗∗∗

(−5.457)
∆PINt 1.361

(1.006)

CDGM variables Yes Yes Yes Yes Yes

Mean adj. R2 0.307 0.316 0.313 0.326 0.317
Median adj. R2 0.345 0.367 0.353 0.371 0.350
Observation 45350 45350 45350 45350 45350
Bonds 974 974 974 974 974

Panel B: Principal Component Analysis

PC1 0.298 0.280 0.296 0.287 0.291
PC2 0.130 0.136 0.127 0.125 0.135
Unexpl. var. 0.922 0.763 0.837 0.844 0.877

Panel C: Time-Series Regression of PC1 on OTC Frictions and Other Variables

Adj. R2 0.234 0.240 0.289 0.232 0.235
R2 0.306 0.335 0.361 0.310 0.313
F -statistic 4.261 3.524 5.002 3.980 4.025
p-value 0.000 0.000 0.000 0.000 0.000
Observations 129 129 129 129 129
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Table IA.II: OTC Market Frictions and Yield Spread Changes, Alternative Variable Specifi-
cations. For each industrial bond i with at least 25 monthly observations of yield spread changes, ∆Y Si,t,
we estimate the following model:

∆Y Si,t = αi + β′
i∆Fi,t + γ′

i,1∆It + γ′
i,2∆St + γ′

i,3∆Bt + εi,t

The vector ∆Fi,t :=
[
∆LEVi,t, ∆Ri,t, ∆RFt, (∆RFt)

2, ∆SLOPEt, ∆V IXt, ∆σi,t, RMt, ∆JUMPt

]
is a modified version of the structural model variables defined in Section II. The vector ∆It :=
[∆invt, ∆amt.outt, ∆match.trdt, ∆tedt] refers to the proxies for systematic inventory frictions in-
troduced in Section III.A, the vector ∆St := [∆centrt, ∆chain.lent, ∆lvc.salest, ∆svc.salest] to
the proxies for systematic search frictions introduced in Section III.B, and the vector ∆Bt :=
[∆outside.optt, ∆block.trdt, ∆dlr.conct, ∆ig2junkt] to the proxies for systematic bargaining proxies in-
troduced in Section III.C. Panel A reports the average coefficients across bonds, the associated t-statistics,
the mean and median adjusted R2 values, and the numbers of observations and bonds in the sample, respec-
tively. The t-statistics are calculated from the cross-sectional variation over the estimates for each coefficient.
That is, we divide each reported coefficient value by the standard deviation of the estimates and scale by the
square root of the number of bonds. Panel B reports the results of a principal component analysis on the
residuals. We assign each month’s residuals to one of 18 bins defined by three maturity groups (less than
five years, five to eight years, greater than eight years) and six leverage groups (less than 15%, 15%–25%,
25%–35%, 35%–45%, 45%–55%, greater than 55%). For each bin and month we compute an average resid-
ual and then extract the principal components of the covariance matrix of these residuals. We report the
proportions of variance explained by the first and second principal components, PC1 and PC2, respectively,
and the total unexplained variance in percentage points. In Panel C we report the R2 values, the F -statistics
and corresponding p-values of a Wald-test of the following time-series regression model:

PC1t = α+ γ′
1∆It + γ′

2∆St + γ′
3∆Bt + εt

The sample is based on U.S. corporate bond transaction data from TRACE for the period 2003–2013.
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(1) (2) (3) (4) (5) (6)

Panel A: Individual Bond Regressions

Intercept 0.082∗∗∗ 0.059∗∗∗ 0.072∗∗∗ 0.052∗∗∗ 0.088∗∗∗ 0.067∗∗∗

(9.920) (5.380) (8.317) (3.998) (10.153) (5.605)
∆LEVi,t 0.034∗∗∗ 0.029∗∗∗

(4.703) (3.055)
∆Ri,t −0.008∗∗∗ −0.009∗∗∗ −0.008∗∗∗ −0.009∗∗∗

(−7.179) (−6.851) (−6.999) (−6.940)
∆RFt −0.216∗∗∗ −0.180∗∗∗ −0.262∗∗∗ −0.269∗∗∗ −0.223∗∗∗ −0.208∗∗∗

(−6.065) (−3.691) (−7.890) (−5.955) (−6.679) (−4.704)
(∆RFt)2 −0.275∗∗∗ −0.205∗ −0.147∗ −0.055 −0.321∗∗∗ −0.262∗∗

(−3.225) (−1.683) (−1.709) (−0.461) (−3.800) (−2.129)
∆SLOPEt 0.384∗∗∗ 0.486∗∗∗ 0.459∗∗∗ 0.670∗∗∗ 0.422∗∗∗ 0.567∗∗∗

(7.476) (6.380) (8.793) (8.905) (7.953) (7.152)
∆V IXt 0.014∗∗∗ 0.008∗∗∗

(6.415) (2.608)
∆σi,t 0.070∗∗∗ 0.025∗ 0.075∗∗∗ 0.030∗∗

(8.037) (1.745) (8.793) (1.971)
RMt −0.037∗∗∗ −0.032∗∗∗ −0.024∗∗∗ −0.021∗∗∗ −0.032∗∗∗ −0.026∗∗∗

(−13.526) (−11.345) (−8.094) (−5.846) (−12.212) (−10.374)
∆JUMPt 0.003∗ 0.008∗∗∗ 0.005∗∗∗ 0.005∗∗ 0.004∗∗ 0.008∗∗∗

(1.847) (2.875) (3.029) (2.300) (2.013) (3.026)
∆invt 16.304∗∗∗ 14.459∗∗∗ 14.417∗∗∗

(5.154) (4.495) (4.652)
∆amt.outt 1.853 1.093 1.599

(1.225) (0.741) (1.054)
∆match.trdt 4.156∗∗∗ 5.289∗∗∗ 4.359∗∗∗

(4.848) (5.493) (4.751)
∆tedt 0.279∗∗∗ 0.219∗∗ 0.232∗∗

(3.159) (2.431) (2.505)
∆svc.salest 1.298∗∗∗ 1.273∗∗∗ 1.251∗∗∗

(3.413) (3.733) (3.454)
∆lvc.salest −1.790∗∗∗ −2.340∗∗∗ −1.799∗∗∗

(−3.587) (−4.748) (−3.620)
∆chain.lent −0.886∗ −1.223∗∗∗ −0.968∗∗

(−1.941) (−2.659) (−2.027)
∆centrt −1.042∗∗∗ −1.362∗∗∗ −1.037∗∗∗

(−4.188) (−5.580) (−4.313)
∆outside.optt −0.010 0.002 −0.008

(−1.382) (0.302) (−1.119)
∆dlr.conct 2.944∗∗∗ 1.845∗∗ 2.481∗∗∗

(3.377) (2.237) (2.778)
∆block.trdt −11.026∗∗∗ −12.762∗∗∗ −11.896∗∗∗

(−4.384) (−5.506) (−4.858)
∆ig2junkt −0.001 −0.001 0.000

(−0.760) (−1.087) (0.256)

Mean adj. R2 0.231 0.323 0.226 0.316 0.239 0.331
Median adj. R2 0.227 0.370 0.211 0.349 0.231 0.376
Observations 45350 45350 45350 45350 45350 45350
Bonds 974 974 974 974 974 974

Panel B: Principal Component Analysis

PC1 0.465 0.285 0.477 0.293 0.462 0.279
PC2 0.089 0.126 0.098 0.130 0.089 0.130
Unexpl. var. 1.618 0.888 1.626 0.891 1.578 0.860

Panel C: Time-Series Regression of PC1 on OTC Frictions

Adj. R2 0.234 0.232 0.230
R2 0.306 0.304 0.302
F -statistic 4.266 4.224 4.192
p-value 0.000 0.000 0.000
Observations 129 129 129
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