
Asset Pricing with Heterogeneous Agents

and Long-Run Risk∗

Walter Pohl

University of Groningen

Karl Schmedders

University of Zurich

Ole Wilms

Tilburg University

May 12, 2020

Abstract

This paper shows that belief differences have strong effects on asset prices in consump-

tion-based asset-pricing models with long-run risks. Belief heterogeneity leads to time-

varying consumption and wealth shares of the agents. This time variation can resolve

several asset-pricing puzzles, including the large countercyclical variation of expected

risk premia, the volatility of the price–dividend ratio, the predictability of cash flows

and returns, and the large predictability of returns in recessions. These findings show

that belief differences, a widely observed attribute of investors, significantly improve the

explanatory power of long-run risk asset-pricing models.
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1 Introduction

This paper shows that belief differences have large effects on asset prices in consumption-

based asset-pricing models with recursive preferences. The simplifying assumption of a rep-

resentative investor is standard in modern asset-pricing models with recursive preferences;

see, for example, Bansal and Yaron (2004), Wachter (2013), Ju and Miao (2012), and many

others. While this assumption greatly simplifies model solutions, it ignores an important de-

gree of realism—namely, differences between investors. We demonstrate that for Epstein–Zin

preferences, which are widely used in modern asset-pricing models, belief differences—a well

documented feature on financial markets1—have long-lasting effects on prices. Even small

differences in beliefs lead to time-varying consumption and wealth shares of the agents. This

time variation can resolve a large number of asset-pricing puzzles, such as the excess volatility

of the market portfolio (Shiller, 1981), the large countercyclical variation of expected risk pre-

mia (Martin, 2017), the predictability of cash-flows and returns (Beeler and Campbell, 2012),

and the countercyclical variation of return predictability (Henkel, Martin, and Nardari, 2011;

Dangl and Halling, 2012). Hence, investor heterogeneity can play a leading role in explaining

financial market data in modern asset-pricing models.

The Bansal–Yaron long-run risk model (Bansal and Yaron, 2004) has emerged as one of

the premier consumption-based asset-pricing models. It can generate many of the features of

aggregate stock prices that have long been considered puzzles. The model generates a high

equity premium by combining two mechanisms—investors with a taste for the early resolution

of uncertainty, and very persistent shocks to the growth rate of consumption. For long-run risk

to generate a high equity premium, the level of persistence must be very close to a unit root.

The amount of persistence in the data is very difficult to measure, and arguments for a range

of estimates have appeared in the literature; see Bansal, Kiku, and Yaron (2016), Schorfheide,

Song, and Yaron (2018), and Grammig and Küchlin (2018). This literature suggests that

there is considerable scope for disagreement over the true value.

The classical market selection hypothesis of Alchian (1950) and Friedman (1953) argues

that this type of agent heterogeneity does not matter in the long run, because prices will

ultimately be set by the agent with correct beliefs. This argument was confirmed for von

Neumann-Morgenstern expected utility by the work of Sandroni (2000) and Blume and Easley

(2006). This argument does not generalize to recursive utility, as shown by Borovička (2019)

in the continuous-time setting with i.i.d. consumption growth and Dindo (2019) in a similar

1See, for example, Anderson, Ghysels, and Juergens (2005), Patton and Timmermann (2010), Buraschi, Trojani,
and Vedolin (2014), and Carlin, Longstaff, and Matoba (2014).
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setting in discrete time. So, given that agents can easily disagree over difficult-to-measure

parameters and given that agents with wrong beliefs can persistently affect market prices,

what are the consequences for asset pricing?

We show that a small amount of agent disagreement can significantly improve the realism

of long-run risk as an explanation of asset-pricing puzzles. Starting with the Case I model

of Bansal and Yaron (2004), which features long-run risk but does not introduce exogenous

stochastic volatility to the model, we demonstrate that a small difference of opinion leads to

endogenous fluctuations in the wealth distribution, which strongly affect prices. These price

changes can explain the significant excess volatility of the market portfolio (Shiller, 1981),

the large countercyclical variation of expected risk premia (Martin, 2017), the predictability

of cash-flows and returns (Beeler and Campbell, 2012), and the countercyclical variation of

return predictability (Henkel, Martin, and Nardari, 2011; Dangl and Halling, 2012).

We begin the paper by showing how to solve consumption-based asset-pricing models with

heterogeneous agents and recursive preferences. Solving such models reveals a critical differ-

ence from the representative-agent model. Even for Markovian shocks, equilibrium allocations

are no longer a function of the exogenous state alone. As a result, the standard solution meth-

ods from consumption-based asset pricing are not applicable. We employ a reformulation of

the first-order conditions for the equilibrium that is recursive, through the device of intro-

ducing new endogenous state variables. These state variables have a clear interpretation in

terms of time-varying weights in a social planner’s problem. The weights capture the relative

trend in an agent’s consumption—an agent who has a declining share of consumption will

have a declining weight.2 To solve for the equilibrium, we propose a new numerical solution

technique for heterogeneous-agent continuous-state asset-pricing models. The methodology is

not limited to long-run risk models, but it can be applied to solve a broad class of models

featuring heterogeneous agents, recursive utility, and continuous or discrete state processes.

Using the theoretical framework for the heterogeneous-agent asset-pricing model, we con-

duct an in-depth analysis of the effects of belief differences in long-run risk models. For this

purpose, we first provide some helpful economic intuition on the different effects of belief het-

erogeneity in models with CRRA (constant relative risk aversion) preferences and in models

with Epstein–Zin preferences. Most importantly, we show why the general result (Sandroni,

2000; Blume and Easley, 2006; Yan, 2008) for CRRA preferences—namely, that agents with

2Similar approaches have been used to solve models with multiple goods (Colacito and Croce, 2013), discrete-
state models without growth and risk-sensitive preferences (Anderson, 2005), overlapping generation models
with different preference parameters (Gârleanu and Panageas, 2015) and different beliefs (Collin-Dufresne,
Johannes, and Lochstoer, 2016a), and models with i.i.d. consumption growth and belief differences (Borovička,
2019).
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wrong beliefs do not survive in the long run—does not always hold for Epstein–Zin agents.

For CRRA preferences, the changes in the consumption shares only depend on the subjective

beliefs of the agent about the future state—we call this the speculation motive. Importantly,

investors have no incentive to hedge long-term risks and in the long run only the investors with

the correct beliefs survive. For Epstein–Zin utility with a preference for the early resolution

of risks, agents do care about long-run consumption risks. In particular, agents believing in a

higher persistence have an incentive to hedge low growth states. Investors believing in lower

persistence are willing to provide the insurance for the bad states and collect a premium in the

form of higher future wealth in return—we call this the risk-sharing motive. As long as risk

premia in the economy are sufficiently large, this motive will, on average, transfer wealth to

the agents who believe in a lower persistence irrespective of which investor holds the correct

beliefs.

The interaction of the economic effects resulting from the two motives has strong economic

implications. To analyze these implications we perform a comprehensive numerical analysis of

the complete-markets heterogeneous-agent economy. As our baseline calibration of the model,

we employ the calibration (without stochastic volatility) of Bansal and Yaron (2004, Case I)

with the only exception being that we use two different persistence levels. We replace the

original persistence value of the long-run risk process with two different values; compared

to the original value, the first agent believes in a slightly larger and the second agent in a

slightly smaller persistence level. We show that belief heterogeneity endogenously adds priced

consumption risks to the model due to persistent changes in the wealth distribution. These

risk premia are countercyclical and time varying and are consistent with the empirical findings

recently reported in Martin (2017) and Martin and Wagner (2019). When there are negative

shocks to the long-run risk component, the risk-sharing motive implies that the insurance

provided by the investors with lower beliefs about the persistence pays off. Hence, when the

economy enters a recession (multiple negative shocks to the long-run risk component), there

is a wealth transfer to the investor who believes in a larger value for the persistence. As these

are the investors that demand the larger risk premia, belief heterogeneity adds significant

countercyclical variation in risk premia to the long-run risk model.

We report a standard deviation of expected risk premia of 5.73 percent in line with the

values reported in Martin (2017). Standard representative-agent long-run risk models are not

able to replicate this finding even when including exogenous stochastic volatility, a feature that

is deliberately included to obtain time variation in risk premia (see Bansal and Yaron (2004)).

Furthermore, the heterogeneous-belief model generates a large and significant equity premium

4



and also addresses other empirical deficiencies of the representative-agent model, which have

been emphasized by Beeler and Campbell (2012). Beeler and Campbell (2012) show that the

long-run risk model cannot explain the large volatility of the price–dividend ratio observed in

the data (a value of 0.45 compared to 0.18 in the model). In the heterogeneous-agent setup,

the shifts in the wealth distribution increase the volatility of the price–dividend ratio to levels

close to the data (0.38) as the impact of the different agents on asset prices varies over time.

The variation in the wealth distribution also helps to address the predictability puzzle pointed

out by Beeler and Campbell (2012). The endogenous variation in asset prices increases the

predictability of returns while simultaneously decreasing the predictability of consumption and

dividend growth. Furthermore, Henkel, Martin, and Nardari (2011) and Dangl and Halling

(2012) provide evidence that return predictability is particularly high in recessions, while it

is significantly lower in economic expansions. We show that our heterogeneous-agent model

endogenously explains these predictability patterns. In bad economic times, the consumption

shares of the agents believing in a higher persistence increase as the insurance against the

low growth states pays off. This in turn increases risk prices and hence return predictabil-

ity becomes larger in recessions. This endogenous mechanism to explain the countercyclical

variation in return predictability is absent in the representative-agent model.

Our paper builds on the recent work by Colacito and Croce (2013) and Colacito, Croce, Liu,

and Shaliastovich (2018b) who analyze the effects of risk sharing with recursive preferences

in the context of two-country models. They suggest that the risk sharing can significantly

affect marginal utilities and hence price dynamics. Due to exogenous shocks and a home bias,

the agents in different countries have a strong motive for risk sharing, particularly since they

have Epstein–Zin utility with a preference for the early resolution of risk. The reasons for risk

sharing in these models are different than those in our economy. In their setting, agents in

the two countries trade in response to idiosyncratic endowment shocks. In our setting, it is

the subjective disagreement that motivates trade, but some of the intuition carries over, as

explained in Section 3.2.

There are several other papers that analyze the influence of different kinds of heterogene-

ity in economies with Epstein–Zin preferences. For example, Gârleanu and Panageas (2015)

analyze the influence of preference heterogeneity on asset prices. They show that combining

preference heterogeneity with an overlapping-generations (OLG) setup can generate interest-

ing asset-pricing dynamics. By assuming that one group of investors has a large degree of

risk aversion together with a very low elasticity of intertemporal substitution (EIS) while the

second group of investors has a significantly lower risk aversion and higher EIS, their OLG
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model can generate a high equity premium, volatile returns, and a low and smooth risk-free

rate as well as long-run predictability of the price–dividend ratio.

Our results are complementary to the findings of Collin-Dufresne, Johannes, and Lochstoer

(2016b) and Bidder and Dew-Becker (2016), which show that the asset-pricing implications

of long-run risk can emerge endogenously from parameter uncertainty, even without long-run

risk being present. Collin-Dufresne, Johannes, and Lochstoer (2016b) show that if investors

learn the growth rate from the data, then innovations to expectations of growth rates are

permanent. Agents then price in the risk from this permanent shock into their expected

growth rates. Bidder and Dew-Becker (2016) show that ambiguity-averse investors will price

in long-run risk if they cannot rule it out a priori. In our setup, neither investor suffers from

model uncertainty, but despite this difference a clear picture of the effect of long-run risk

emerges.

While in the present paper the agents agree to disagree about the long-run risks in the

economy, Andrei, Carlin, and Hasler (2019a) provide an explanation of how this disagreement

can arise from model uncertainty as market participants calibrate their models differently.

They find that uncertainty about long-run risks can explain many stylized facts of stock return

volatilities, such as large volatilities during recessions and booms and persistent volatility

clustering. Andrei, Hasler, and Jeanneret (2019b) show how model uncertainty can lead to

long-run-risk-like behavior in the presence of a noisy signal of the growth rate.

The remainder of this paper is organized as follows. In Section 2 we describe the general

asset-pricing model with heterogeneous investors and recursive preferences. Section 3 explains

the main economic mechanism of the two-agent economy in a stylized version of the model and

Section 4 shows the effects of belief differences on asset prices. In Section 5 we examine the

sensitivity of the model’s predictions to alternative specifications of agents’ beliefs and levels

of risk aversion. Section 6 concludes. Online appendices containing a discussion of additional

literature, the proofs of all theoretical results, a description of the numerical solution method,

a report on numerical errors, and additional results complete the paper.

2 Theoretical Framework

We consider a standard infinite-horizon discrete-time endowment economy with a finite num-

ber of heterogeneous agents. Agents can differ with respect to both their utility functions

and their subjective beliefs. We restrict our attention to the complete-markets setting, which

allows us to reformulate the problem as a social planner’s problem. Here we run into a critical
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difference from the representative-agent problem—even for a Markov economy, equilibrium

allocations are no longer required to be functions of the exogenous state alone. This failure

of recursiveness occurs for essentially economic reasons—even if aggregate consumption does

not contain a trend, the individual consumption allocations can do so. This feature defeats

most of the approaches to solving for equilibrium in an infinite-horizon asset-pricing model.

We present a reformulation of the first-order conditions for equilibrium that is recursive.

This reformulation involves introducing new endogenous state variables. These state variables

have a clear interpretation in terms of time-varying weights in the social planner’s problem.

The weights capture the relative trend in an agent’s consumption—an agent who has a de-

clining share of consumption will have a declining weight.

2.1 The Heterogeneous-Agents Economy

Time is discrete and indexed by t = 0, 1, 2, . . .. Let yt denote the exogenous state of the

economy in period t. The state has continuous support and may be multidimensional. The

economy is populated by a finite number of infinitely lived agents, h ∈ H = {1 . . . H}. Agents

choose individual consumption at time t as a function of the entire history of the exogenous

state, yt, where yt = (y0, . . . , yt). Let Ch(yt) be the individual consumption for agent h.

Similarly, C(yt) ∈ R++ denotes the aggregate consumption of all agents as a function of the

history, yt. The individual consumption levels satisfy the usual market-clearing condition,

H∑
h=1

Ch(yt) = C(yt). (1)

Agents have subjective beliefs about the stochastic process of the exogenous state. We denote

the expectation operator for agent h at time t by Eh
t . Each agent has recursive utility.

Let {Ch}t = {Ch(yt), Ch(yt+1), . . .} denote the consumption stream of agent h from time t

forward. The utility of agent h at time t, Uh({Ch}t), is specified by an aggregator, F h(c, x),

and a certainty equivalence, Gh(x),

Uh({Ch}t) = F h
(
Ch(yt), Rh

t

[
Uh({Ch}t+1)

])
, (2)

with

Rh
t [x] = G−1

h

(
Eh
t [Gh(x)]

)
. (3)
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We assume that the functions F h and Gh are both continuously differentiable. This preference

framework includes both Epstein–Zin utility and discounted expected utility, for the appro-

priate choices of F h and Gh. To simplify the analysis, we ensure that agents never choose zero

consumption, in any state of the world, by imposing an Inada condition on the aggregator

F h; so, F h
1 (c, x) → ∞ as c → 0, where F h

1 denotes the derivative of F h with respect to the

first argument.

We also impose a condition on the agents’ beliefs. Let P h
t,t+1 be the subjective conditional

distribution of yt+1 given yt, and Pt,t+1 be the true conditional distribution. We assume that

each agent’s expectation can be written in terms of the true distribution as

Eh
t [x] = Et

[
x

dPh
t,t+1

dPt,t+1

]
,

for some measurable function dPh
t,t+1/dPt,t+1. In mathematical terms, every agent’s condi-

tional distribution is absolutely continuous with respect to the true distribution. Then, by

the Radon–Nikodym theorem (see Billingsley (1999, Chapter 32)) such a dPh
t,t+1/dPt,t+1 must

exist. Accordingly, dPh
t,t+1/dPt,t+1 is known as the Radon–Nikodym derivative of Ph

t,t+1 with

respect to Pt,t+1. We also assume that, vice versa, the true distribution is absolutely continu-

ous with respect to every agent’s subjective distribution.

To solve for equilibrium, we assume that markets are complete so that we can reformulate

equilibrium as a social welfare problem (Mas-Colell and Zame, 1991). The social planner

maximizes a weighted sum of the individual agents’ utilities at t = 0. Let λ =
(
λ̄1, . . . , λ̄H

)
∈

RH
++ be a vector of positive Negishi weights and let {C}0 =

(
{C1}0, . . . , {CH}0

)
be an H-

vector of the agents’ consumption processes. Then, the social planner maximizes

SP ({C}0;λ) =
H∑
h=1

λ̄hUh
(
{Ch}0

)
(4)

subject to the market-clearing equation (1). We denote an optimal solution to the social

planner’s problem for given Negishi weights λ by {C}∗0. For each agent h ∈ H, let Uh
t =

Uh({Ch}∗t ) be the utility in period t at the optimal solution. Also, for ease of notation, we

suppress the state dependence of consumption and simply write Ch
t for Ch(yt).

Theorem 1. The vector of consumption processes {C}∗0 solves the social planner’s problem

(4,1) for given Negishi weights λ =
(
λ̄1, . . . , λ̄H

)
if and only if the consumption processes
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satisfy the following first-order conditions in each period t ≥ 0:

λht F
h
1 (Ch

t , R
h
t

[
Uh
t+1

]
) = λ1

tF
1
1 (C1

t , R
1
t

[
U1
t+1

]
), (5)

where the weights λht satisfy

λh0 = λ̄h, (6)

λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht
λ1
t

, t ≥ 0, h ∈ {2, . . . H}, (7)

with Πh
t+1 given by

Πh
t+1 = F h

2

(
Ch
t , R

h
t [Uh

t+1]
)
·

G′h(U
h
t+1)

G′h(R
h
t [Uh

t+1])

dPh
t,t+1

dPt,t+1

. (8)

Appendix B contains the proof of this theorem as well as those of the theoretical results

presented later in this section.

In each period t, the weights λht are only determined up to a scalar factor, so we are free

to choose a normalization. For numerical purposes, the normalization requiring the weights

λht to lie in the unit simplex in every period is convenient. From a conceptual point of view,

an attractive choice is to let λ1
t+1 = Π1

t+1λ
1
t , because then for all h, λht+1 = Πh

t+1λ
h
t .

If the aggregator F h is additively separable, then the allocation of consumption in (5)

depends only on the current value for the weights λht . Additive separability is the most common

case in applications. Discounted expected utility is additively separable, while Epstein–Zin can

be transformed to be so. In this particular case, the Negishi weights and individual agents’

consumption allocations are closely linked. The following theorem provides an asymptotic

result relating the limits of weights λht to the limits of consumption.

Theorem 2. Suppose that F h is additively separable for all h ∈ H and that the aggregate

endowment is bounded, Ct ∈ [C,C] for finite constants C ≥ C > 0. If λjt/λ
i
t → ∞, then

Ci
t → 0. If Ci

t → 0, then for at least one other agent j, lim supt λ
j
t/λ

i
t =∞.

Note that lim supt λj/λi is a random variable—the limit can depend on the history. The-

orem 2 generalizes a similar result by Blume and Easley (2006).

2.2 The Growth Economy with Epstein–Zin Preferences

We now consider the special case of our heterogeneous-agent economy in which aggregate

consumption is expressed exogenously in terms of growth rates and agents have Epstein–Zin
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preferences (see Epstein and Zin (1989) and Weil (1989)). For this popular parametrization of

asset-pricing models, we can sharpen the general results of Theorems 1 and 2. Here we state

the equilibrium conditions for this model parametrization and refer any interested reader to

Appendix B.2 for a proper derivation of those conditions.

If agent h has Epstein–Zin preferences, then

F h(c, x) =
[
(1− δh)cρh + δhxρ

h
]1/ρh

(9)

Gh(x) = xα
h

(10)

with parameters ρh 6= 0, αh < 1. In this case, the equations are all homogeneous, so we can

divide through by aggregate consumption and express the equilibrium allocations in terms of

individual consumption shares, sht = Ch
t /Ct. Market clearing (1) implies that

H∑
h=1

sht = 1. (11)

Let V h
t be agent h’s value function. We also normalize this function by aggregate consumption,

vht = V h
t /Ct. Let ct = logCt and ∆ct+1 = ct+1 − ct. The normalized value function of agent h

satisfies the following fixed-point equation:

vht =
[
(1− δh)(sht )ρ

h

+ δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

, h ∈ H, (12)

with Rh
t (x) =

(
Eh
t

[
xα

h
]) 1

αh

. The parameter δh is the discount factor, ρh = 1− 1
ψh

determines

the elasticity of intertemporal substitution (EIS), ψh, and αh = 1−γh determines the relative

risk aversion, γh, of agent h.

To accompany the normalized value function we introduce a normalized Negishi weight,

λht =
λht

(vht )ρh−1
. In Appendix B.2 we show that the consumption share sht of agent h is given by

λht (1− δh)(sht )ρ
h−1 = λ1

t (1− δ1)(s1
t )
ρ1−1. (13)

Finally, the equations for λht simplify to

λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht
λ1
t

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh , h ∈ H−.

(14)
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This simplification gives us H − 1 nonlinear equations for the equilibrium. In our numerical

calculation, we complete the system by requiring that
∑
λht = 1 when we solve for the weights,

λht , given by

λht+1 =
λht Π

h
t+1∑H

h=1 λ
h
t Π

h
t+1

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1︸ ︷︷ ︸
CRRA-Term

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh︸ ︷︷ ︸

Additional EZ-Term

, h ∈ H−.
(15)

Unlike in the discounted expected utility case, the dynamics of the weights λht depend on

the value functions (12), which in turn depend on the consumption decisions (13). Hence, to

compute the equilibrium we need to jointly solve equations (11)–(15). As there are—to the

best of our knowledge—no closed-form solutions for the general model, we present in Appendix

C.1 a numerical solution approach, which is based on projection methods as proposed in Pohl,

Schmedders, and Wilms (2018) to approximate for the equilibrium functions. In Appendix

C.2 we provide a detailed analysis of the accuracy of the solution approach.

In this setting, we can derive an improvement over Theorem 2—the limiting behavior for λht

drives the limiting behavior for an agent’s share of aggregate consumption. This result requires

no assumptions on aggregate consumption, only that agents have utility in the Epstein–Zin

family.

Theorem 3. Suppose all agents in the economy have Epstein–Zin preferences. If λjt/λ
i
t →∞,

then sit → 0. If sit → 0, then for at least one agent, j, lim supt λ
j
t/λ

i
t =∞.

This completes our discussion of the theoretical framework for our analysis. Appendix B

provides proofs for the three theorems in this section. Along the way, we derive a system of

first-order conditions for Epstein–Zin preferences. This system constitutes the foundation for

our numerical solution method (see Appendix C).

3 Heterogeneous Beliefs about Consumption Growth

In the following we use the theoretical framework from Section 2 to analyze the influence of

belief differences in long-run-risk asset-pricing models. For this purpose, we use the standard

model of Bansal and Yaron (2004), but without stochastic volatility so that risk premia would

be constant in a model populated by a single representative agent. Log aggregate consumption
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growth, ∆ct+1, and log aggregate dividend growth, ∆dt+1, are given by

∆ct+1 = µc + xt + ηc,t+1

xt+1 = ρxxt + ηx,t+1

∆dt+1 = µd + Φxt + ηd,t+1.

(16)

The key feature of the long-run risk model is that there are small but highly persistent shifts in

the growth rate of consumption and dividends. The xt process captures this long-run variation

in the means of consumption and dividend growth. The shocks ηc,t+1, ηx,t+1, and ηd,t+1 are

independent and normally distributed with mean 0 and standard deviations σ, φxσ, and φdσ,

respectively. With a preference for early resolution of risks (γ > 1
ψ

), investors will dislike

shocks in xt and require a large premium for bearing the resulting risks. To generate a high

enough equity premium, xt must be very persistent and thus ρx must be close to one (0.979 in

the original calibration of Bansal and Yaron (2004)). If investors must deduce the value of ρx

from experience, it is reasonable to assume that investors disagree—at least slightly—about

that value. In Section 3.1, we provide evidence that even for 500 years of data, point estimates

of ρx show significant variation. Hence, as there are less than 100 years of data available, it is

reasonable to assume that there are differences in the beliefs about ρx.

In our calibrations, we consider a model with H = 2 agents, denoted by A and B, in which

agents disagree on ρx but agree on all other parameters. We denote by ρhx the belief of agent

h about ρx. As xt+1 conditional on time t information is normally distributed with mean ρhxxt

and variance σ2
x = φ2

xσ
2, agents’ beliefs dPh

t,t+1 are given by

dPh
t,t+1 =

1√
2πσx

exp

(
−1

2

(
xt+1 − ρhxxt

σx

)2
)
. (17)

For xt = 0 both agents have the same beliefs and the belief difference increases the further

away xt is from its long-run mean of 0. Hence, the state of the economy plays an important

role for the beliefs and thus the equilibrium consumption shares. We can analyze the first-

order effects of different beliefs about xt on the consumption shares for ψh = ψ for all h ∈ H

directly by plugging equation (13) into equation (15). The equilibrium consumption shares
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are then given by3

sAt+1

sBt+1

=
sAt
sBt

(
dPA

t,t+1

dPB
t,t+1

)ψ

︸ ︷︷ ︸
CRRA-Term

 (vAt+1)
RAt (vAt+1)

(vBt+1)
RBt (vBt+1)


1−γψ

︸ ︷︷ ︸
Additional EZ-Term

.
(18)

For γ = 1
ψ

the second term vanishes and we obtain the standard case of CRRA preferences.

In this case, the changes in the consumption shares only depend on the subjective beliefs of

the agents about the future state. If agent A believes that a state tomorrow is more likely

compared to the belief of agent B, her consumption share will increase if this state materializes.

Hence, investors trade purely based on their subjective probabilities but do not care about the

long-term effects of changes in xt. Therefore, we call the motivation for trading based purely

on the subjective beliefs the “speculation motive.” As we show below, for CRRA preferences,

both investors believe that their consumption share will increase in the future. Hence, the

investor who holds the correct beliefs will dominate the economy in the long run; see, for

example, Blume and Easley (2006) and Yan (2008).

This result does not hold true for Epstein–Zin preferences where we obtain an additional

effect. As in Colacito and Croce (2013) and Borovička (2019), investors want to hedge states

that they particularly dislike. Assume, for example, that a state materializes where the

continuation utility of investor A, vAt+1, is low compared to her certainty equivalent RA
t

(
vAt+1

)
.

So, there is an unexpected bad shock that lowers agent A’s utility. Furthermore, assume that

investor B does not dislike this state as much, and so the deviation to his certainty equivalent

is smaller. The equilibrium consumption shares in the model change such that investor A

will obtain some compensation in the form of a higher consumption share from investor B to

make up for the loss in her continuation utility. (The setup implies that the EZ-term inside

the brackets is smaller than 1. If investors have a preference for the early resolution of risks

(γ > 1
ψ

), the exponent is negative and thus the EZ-term will be larger than 1.) Put differently,

the EZ-term alone would lead to an increase in the consumption share of investor A compared

to the share of investor B. And so, investor A obtains some of the consumption share of

investor B to compensate for her utility loss. In return, investor B will obtain compensation

in states that investor A is less concerned about. We show later that in our economy with

long-run risks, investors with a high belief about ρx particularly dislike states of low growth

(small xt). So investors who believe in a lower ρx are providing insurance for these low xt

3We make use of the model property that investors disagree about the distribution of xt but share the same
beliefs about the distribution of shocks to ∆ct+1. As the agents have the same preference parameters, the
term ∆ct+1 cancels out in the equation.
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states and earn an insurance premium in return. These motivations will transfer wealth on

average to the investors who believe in a lower ρx. We call this reason for trading the “risk

sharing motive.”

We show that these two motivations for trading, the motive based on the subjective beliefs

and the motive for risk sharing to insure against bad states, can be balanced such that both

investors maintain significant consumption shares in long simulations. The changes in the

wealth distribution over time then help explain several asset-pricing puzzles including the

large countercyclical variation of expected risk premia, the volatility of the price–dividend

ratio, and the predictability of cash flows and returns.

For the calibration of our model, we stick to the literature as close as possible in order

to be able to isolate the influence of the heterogeneous-agent setup on asset prices. Hence,

we use the standard calibration of Bansal and Yaron (2004, Case I)—the calibration without

stochastic volatility—so ψA = ψB = 1.5, γA = γB = 10, δA = δB = 0.998, µc = µd =

0.0015, σ = 0.0078,Φ = 3, φd = 4.5, and φx = 0.044. The only exception is the value for

the long-run risk parameter, ρx = 0.979. We perturb this value so that agent A believes

in a slightly larger value and agent B believes in a slightly smaller value. Specifically, we

assume that investor A strongly believes in long-run risks (ρAx = 0.99) while investor B is

more skeptical about them (ρBx = 0.96). Furthermore, we assume that investor A holds the

correct beliefs, ρx = ρAx = 0.99, so long-run risks indeed exist and are strong. We choose

this particular calibration for several reasons. First, in the long run, both investors have a

mean consumption share of about 50 percent, so both investors are important for asset prices.

Second, in the finite samples we do not encounter issues with one type of investors being

driven out of the market. Third, the equity premium in this economy is in line with the

data—a necessary condition for a reasonable consumption-based asset-pricing model. And

finally, the speculation and risk-sharing motives in the economy are strong and hence we

observe interesting asset-pricing implications.

We emphasize that we do not attempt to find a perfect calibration but instead try to

impose only minimal changes to the standard calibration to highlight the influence of the

heterogeneous-agent setup. We stick to this calibration for the main parts of the paper and

provide a detailed sensitivity analysis in Section 5, examining the influence of the value of

the true persistence parameter and of the magnitude of the belief differences on the model

predictions. To help motivate our results, we begin by motivating the plausibility of belief

differences in the next section.
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3.1 Plausibility of Belief Differences

Does it make sense for agents to disagree over the persistence of long-run risk? We provide

two pieces of evidence that it does, one technical and one empirical. First we show that, if

long-run risk is present, when agents try to estimate the persistence parameter from historical

consumption data, it will take a long time for such an estimate to be reasonably accurate.

So, agent disagreement would be consistent with the small samples of historical data that are

available. Second, we use individual forecasts of real consumption growth to show that, in

practice, agent forecasts do disagree significantly in terms of persistence.

Suppose the true persistence parameter of the long-run risk process is ρx = 0.99, which

is the value we use for ρAx in our main calibrations. Now suppose an investor does not know

this parameter but estimates it from a finite sample. How long will it take before estimates

of this parameter are guaranteed to be near the true value? To answer this question, we

simulate 1,000 time series consisting of 500 years of monthly data and calculate estimates of

the persistence after different time periods. Monthly U.S. consumption data has been reported

since 1959, so there are currently about 60 years of data available. Annual data points start

from 1930 onward. However, using annual instead of monthly data would significantly increase

the standard errors in our estimation and the variation in the estimates of the persistence

would be even larger. Nevertheless, we report estimates of the persistence after 60 years and

100 years as well as long-term estimates for 500 years.

As a first estimation approach, we assume that the investor directly observes xt and simply

estimates the AR(1) process

xt+1 = µx + ρxxt + σxηx,t+1. (19)

Note that in the long-run risk model µx = 0. So as a second approach, we assume that the

agent knows that µx = 0. In both cases we estimate the model using least squares.

In the data, we do not directly observe xt but only aggregate consumption growth ∆ct+1.

Hence, we also consider the case when xt is unobserved but must be inferred from the time

series of consumption growth. To do this, we estimate the full state-space model (16) using

the Kalman filter:

∆ct+1 = µc + xt + σηc,t+1

xt+1 = ρxxt + σxηx,t+1.
(20)

Table 1 reports the mean point estimate of the three estimation approaches over the 1,000

simulated time series, as well as the 5% and 1% quantiles. We observe that for 60 years of

15



Table 1: Parameter Estimates from Simulated Data

xt observable xt unobservable

with constant w/o constant all parameters

60 Years
ρ̂x 0.9836 0.9872 0.9613
ρ̂x,0.05 0.9699 0.9750 0.9116
ρ̂x,0.01 0.9583 0.9641 0.5120

100 Years
ρ̂x 0.9865 0.9886 0.9813
ρ̂x,0.05 0.9764 0.9803 0.9566
ρ̂x,0.01 0.9713 0.9756 0.9154

500 Years
ρ̂x 0.9893 0.9897 0.9887
ρ̂x,0.05 0.9862 0.9865 0.9828
ρ̂x,0.01 0.9844 0.9847 0.9783

The table shows the mean point estimates of ρx as well as the 5% and 1% quantiles after 60, 100,
and 500 years obtained from simulating 1,000 monthly time series of data. In the first approach,
Equation (19) is used for xt, assuming the process is directly observable, and least squares is used
to estimate the model parameters; we distinguish two cases of estimating the AR(1) model, the case
with and the case without a constant. The second approach assumes that xt is unobservable and the
full state-space model (20) is estimated using the Kalman filter. For the data-generating process, we
use µx = 0, ρx = 0.99, σx = 0.0003432, µc = 0.0015, and σ = 0.0078.

data there is the usual finite-sample downward bias in the mean of the point estimates ρ̂x (see,

for example, James and Smith (1998, Case I)). Kendall (1954, Case I) shows that the bias is

approximately −(1 + 3ρx)/T . In our application, the resulting value is -0.0055 for the model

with a constant and 60 years of data (T = 720), which is in accordance with the value we

observe. (The investor can approximate the bias using the point estimate, ρ̂x, and the number

of periods, T .) The table also reports the 5% and 1% quantiles of the point estimates from

the 1,000 simulations. After 60 years, the range of estimates is still large with 5% quantiles

of 0.9699 and 0.9750 for the case with and without the constant. Note that here we assumed

that xt is observable, which is not true in reality. If xt is unobserved instead and needs to

be inferred by the Kalman filter, the range of estimates increases dramatically with 5% and

1% quantiles of 0.9116 and 0.5120, respectively. For our benchmark calibration, we assume a

value of ρBx = 0.96 which is well within the 5% quantile. Furthermore, we observe that while

for 100 years of data the quantile estimates become tighter, our calibrated value of 0.96 is

still well within the 5% quantile and it takes a long time for the investor to obtain precise

estimates for the highly persistent xt process (see results after 500 years).

In light of the estimation results, we conclude that even if the investor might learn about

the true data-generating process after 500 or more years, it is reasonable to assume that any
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nontrivial initial belief differences persist for at least 60 years, if not for much longer.

We can also find direct evidence of disagreement in persistence by considering the predic-

tions for U.S. real consumption growth collected for the Survey of Professional Forecasters

(SPF). This is a panel dataset that began collecting real-consumption-growth forecasts in

1981. Each survey, the forecaster makes a forecast for several quarters ahead, which allows

us to measure the persistence in changes to consumption growth. We compare the forecast

for 2 quarters ahead with the forecast for 1 quarter ahead. Note that both forecasts are made

simultaneously in the same survey.

To test for the presence of heterogeneous beliefs, we estimate a simple AR(1) model for

each forecaster. We restrict to forecasters who have provided predictions for at least 8 surveys.

This restriction leaves a sample of 145 different forecasters. The forecasters can enter and leave

the sample at different times, so to control for time variation we use a panel regression with

quarterly fixed effects.4 The overall model is

∆c′t,i = Ai + β∆ct,i + βi∆ct,i +Kt + et,i, (21)

where ∆ct,i is the log prediction made at time t of consumption growth by forecaster i one

quarter ahead, and ∆c′t,i is the log prediction two quarters ahead. The sum β + βi measures

the total persistence for each forecaster i, so if the βi are all zero, then the forecasters all

share the same β. To test the joint hypothesis that the βi are identically zero, we use an

F -test to compare the model with and without individual βi. The F -statistic is 14.65, so we

can strongly reject the null even at the 0.1% level and hence we find significant evidence for

differences in the persistence parameter.

Figure 1 shows the distribution of AR(1) coefficients (β + βi) for the group of forecasters.

The spread of estimates is large, with a 5% quantile of −0.299 and a 95% quantile of 0.57

at the quarterly frequency. We, therefore, can conclude that in the forecasts by professionals

there is significant disagreement about the persistence of real consumption growth.

In sum, forecasts from the U.S. SPF reveal large discrepancies in the persistence of real-

consumption-growth forecasts among professional forecasters. Furthermore, under the as-

sumption of long-run risk in consumption growth, statistical estimates of the persistence of

such risk—relying on available data sets—likely contain nontrivial margins of error. In light

of these observations, we believe that our assumption of heterogeneous beliefs about the per-

4We show the results of the individual regressions without fixed effects in Figure 17 in Section F of the Appendix.
The results show a similar spread of regression coefficients as in the panel regressions. So the findings are
robust with regard to the different specifications.

17



Figure 1: Individual Forecaster AR(1) Coefficients
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The figure shows a histogram of the AR(1) coefficients (β+βi) for real-consumption-growth forecasts,
see model (21), for a group of forecasters from the U.S. Survey of Professional Forecasters. Only
forecasters with predictions in at least 8 surveys are included in the sample. Regressions have been
performed with quarterly fixed effects. For the presentation of the histogram, the two highest and
the two lowest coefficients have been removed.

sistence of long-run risk is well justified. In the following, we analyze the economic effects

that disagreement on persistence generates in our two-agent economy.

3.2 Discrete-State Model

To illustrate the economic intuition of the two-agent economy, we first work in a simplified

setting. Results for our full model appear in Section 4. Colacito and Croce (2013) provide a

simple explanation of how Epstein–Zin investors behave in terms of the mean-variance trade-

off of their continuation utilities. Let v̄ht =
(vht )ρ

h

ρh
. The value functions of the investors (12)

are then given by

v̄ht = (1− δh)(sht )
ρh

ρh
+ δhEh

t

(
(v̄ht+1)

αh

ρh eα
h∆ct+1

) ρh

αh

, h ∈ H. (22)
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If v̄ht+1 is lognormally distributed, then Colacito and Croce (2013) show that this can be

approximated as

v̄ht ≈ (1− δh)(sht )
ρh

ρh
+ δhkht E

h
t (v̄ht+1)− δhkht

ρh − αh

2ρh
Varht (v̄

h
t+1)

Eh
t (v̄ht+1)

, h ∈ H, (23)

where kht = Eh
t (eα

h∆ct+1)
ρh

αh .

If an agent has CRRA preferences, then ρh = αh, and the third term in the equation

vanishes. The agent is only interested in the expectation of future utility. In contrast, once

an agent has a preference for the early resolution of risk, ρh > αh, the second term becomes

negative, since ρhEh
t (v̄ht+1) is positive. In that case, a subjectively higher variance of the

continuation utility, Varht (v̄
h
t+1), reduces welfare. Thus unlike the CRRA case, the agent is

willing to trade off expected future utility, Eh
t (v̄ht+1), to reduce uncertainty about future utility,

Varht (v̄
h
t+1). As there is a monotonic relationship between continuation values and agent’s

wealth (Epstein and Zin, 1989), this means the agent is willing to give up future wealth to

avoid future volatility. This trade-off generates an additional motivation to trade compared

to the CRRA case as the investors have an incentive to share risks that affect continuation

utility.

To illustrate how this trade-off affects equilibrium consumption shares in the long-run risk

model, we consider a very simplified model where xt follows a two-state Markov chain instead

of a continuous AR(1) process. Long-run risk then simplifies into whether the economy is in

a “good” state or a “bad” state, and the agents disagree on how persistent the current state

is. Let zt be the current state, zt ∈ {1, 2}. We assume that state 1 is the bad state and state

2 is the good state. The state xt can take on one of two levels, x1, x2, where x1 < x2. We

assume that ρAx = 0.99 and ρBx = 0.96 so that investor B believes in faster mean reversion.

We use the discretization method of Rouwenhorst (1995)5 to discretize this highly persis-

tent process. With this method, we obtain xzt = {−0.0024, 0.0024} and the (subjective) state

transition probabilities P h = phij,

PA =

0.995 0.005

0.005 0.995

 , PB =

0.98 0.02

0.02 0.98

 .
We compare the mean-variance trade-off in two different equilibria: the trade equilibrium, in

5The moment-matching technique of Rouwenhorst (1995) is better suited for highly persistent processes com-
pared to standard techniques such as, for example, the method proposed by Tauchen and Hussey (1991); see
Flodén (2008).
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which the agents can trade freely in a complete market, and the no-trade autarky equilibrium,

in which each agent receives a fixed share of the aggregate endowment and the agents are not

allowed to trade future consumption claims. Figure 2 illustrates the trade-off for the bad

state. (The corresponding figure for the good state is Figure 16 in Appendix F.)

Figure 2: Conditional Mean and Variance of Continuation Utilities
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The figure plots the conditional mean and the variance of the continuation utilities as a function
of the consumption share of investor B for the discrete-state economy. The top graphs show the
difference in expected utility between an economy in which the agents are allowed to trade and an
economy with no trade. The lower panel shows the conditional variance for both, the trade and
no-trade case. The left graphs show the results for investor A, who believes in higher persistence
and the right graphs show the results for investor B, who believes in lower persistence. The results
are shown for economy being in the bad state 1.

The lower panel shows the conditional variances of the investors for the trade and no-

trade setup. Investor B is willing to take on significantly more variance compared to the

no-trade case. In return for taking on this additional variance, investor B subjectively receives

additional future utility. So investor B is willing to take on additional risk in return for higher

future wealth. We can think of this as if investor B is willing to provide insurance against
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the higher volatility in the bad state. On the flip side, investor A can significantly reduce the

variance of her utility by trading with the other investor (left graphs). In return she is willing

to give up part of her future utility if her consumption share is large (small sBt ). For large sBt ,

there is so much supply of the insurance for the bad state that investor A can simultaneously

reduce her variance and achieve larger expected continuation utility compared to the no-trade

regime. The willingness to give up some of her utility to reduce future variance prevents the

traditional market selection argument from always holding. Even if investor A has the correct

beliefs, she is giving up future wealth to avoid volatility for large sAt . This prevents agent

B from being driven out of the market. To demonstrate this mechanism, we explain how

consumption shares change in terms of the two motives to trade—the speculation motive and

the risk-sharing motive. This is crucial to understand the effects of trading on asset prices

which we discuss in Section 4.

For this explanation, we first consider the case of CRRA preferences, for which the risk-

sharing motive is absent and so we can analyze the speculation motive in isolation. This setup

leads to the classical market selection result: in the long-run only the investors with correct

beliefs survive. Recall that the changes in the consumption shares are given by

sAt+1

sBt+1

=

(
dPA

t,t+1

dPB
t,t+1

) 1
γ
sAt
sBt
, (24)

see equation (18). As explained above, the changes in the consumption shares only depend on

the subjective beliefs about the states in t+ 1 and the degree of risk aversion γ. Importantly,

they do not depend on the value of the current state xzt itself, even though it affects the

long-run growth rate of the economy. In other words, whether xzt = {−0.0024, 0.0024}, as we

assume, or xzt = {−1000, 1000} has no effect on the consumption sharing rule. The values

of xzt will affect the value functions of the investors. But as the consumption shares do not

depend on continuation utility for the CRRA case (see equation (18)), the values of xzt have

no effect on the consumption shares. So the investors trade solely based on their subjective

probabilities about the state in the next period. For γ = 10, the multiplicative effect on the

consumption-share ratio,
(

dPAt,t+1

dPBt,t+1

) 1
γ

, is given by the corresponding value in the matrix

1.0015 0.8706

0.8706 1.0015

 .
For example, when the economy is in the bad state 1 at time t and remains in that state at
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time t + 1, then
sAt+1

sBt+1
= 1.0015

sAt
sBt

, and so the consumption share of agent A increases relative

to that of agent B. When the economy is in state 1 at time t and transitions to the “good”

state 2 at time t+1, then
sAt+1

sBt+1
= 0.8706

sAt
sBt

, and so the consumption share of agent A decreases

relative to that of agent B. While we use specific numbers here to demonstrate the channel,

it is straightforward to show that, as long as ρAx > ρBx , the multipliers are> 1 < 1

< 1 > 1

 .
As investor A believes in higher persistence and thus she always puts a larger weight on

the economy staying in the same state relative to investor B, her consumption share always

increases if the economy either remains in state 1 or in state 2, while the share of investor B

increases if the economy transitions from one state to the other one.

Next we turn to the case of Epstein–Zin preferences. In this case, the investors have the

additional incentive to share risks, which is reflected in the subjective mean-variance trade-off

in consumption utility. For Epstein–Zin utility, the equilibrium consumption shares are given

by

sAt+1

sBt+1

=
sAt
sBt

(
dPA

t,t+1

dPB
t,t+1

)ψ
 (vAt+1)

RAt (vAt+1)

(vBt+1)
RBt (vBt+1)


1−γψ

,

see again equation (18). Recall that for Epstein–Zin preferences the changes in the consump-

tion shares do not only depend on the subjective probabilities, but also on the continuation

utilities of the investors. This property introduces the new risk-sharing mechanism as investors

would like to insure against states that they particularly dislike. Assume, for example, that

sAt = 0.5. For the calibration of this example with EZ-utility the multiplicative effect on the

consumption-share ratio, (
dPA

t,t+1

dPB
t,t+1

)ψ
 (vAt+1)

RAt (vAt+1)

(vBt+1)
RBt (vBt+1)


1−γψ

,

takes the corresponding value in the matrix1.0005 0.6699

1.0363 1.0010

 .
For example, when the economy is in the bad state 1 at time t and transitions to the good
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state 2 at time t+1, then
sAt+1

sBt+1
= 0.6699

sAt
sBt

, and so the consumption share of agent A decreases

substantially relative to that of agent B. The two off-diagonal elements are quite different for

EZ-utility than for CRRA utility. The investors have a preference for the early resolution of

risk, so they dislike shocks that affect the long-run growth rate (see Bansal and Yaron (2004)).

This preference is especially strong for investor A who believes in a higher persistence. Assume

for example that the economy is in the good state. Investor A believes in higher persistence

of the low growth state 1 compared to agent B, so she particularly dislikes if the economy

enters this state (her continuation utility vAt+1 is low relative to the certainty equivalent in the

good state RA
t

(
vAt+1

)
). When the economy enters the bad state, investor B is willing to forego

some of his consumption share and compensates the utility loss of investor A (the multiplier

is 1.0363 and hence there is a significant increase compared to the multiplier of 0.8706 for

CRRA utility). On the other hand, investor A also believes in higher persistence of the good

state 2. So she believes that periods of high growth are longer lasting. If the economy goes

from the bad state 1 to the good state 2, her continuation utility will be higher compared to

the utility of agent B and hence she is willing to forego some of her consumption in this case

(the multiplier is 0.6699 compared to the multiplier of 0.8706 for CRRA utility).

There is also a striking difference in the subjective experience of the agents in the Epstein–

Zin case compared to the CRRA case. For CRRA utility, both investors believe that their

consumption share is going to increase on average (see Appendix D for an analytic derivation

of this result). For the Epstein–Zin case, investor A is deliberately willing to give away part of

her consumption share to obtain compensation whenever the economy enters a recession state.

Figure 3 shows the expected changes in the consumption shares of the two investors. The left

graph shows the change in the consumption share of investor A under her own subjective

beliefs and the right graph shows the change in the consumption share of investor B under

his beliefs.

For CRRA utility (dotted lines), both investors believe that their consumption share is

going to increase on average. This property is the reason why under CRRA preferences the

agents make “speculative bets.” Which investor then becomes wealthier over time is purely

determined by the true distribution of the underlying process. If investor A (B) holds the

correct beliefs, she (he) will drive investor B (A) out of the market.

For the Epstein–Zin case (solid lines) and small sBt under both, the subjective beliefs of

investor A and those of investor B, the consumption share of investor B is increasing on

average. In other words, investor A is deliberately giving away part of her consumption share,

on average. She is willing to accept this trade, as she obtains an “insurance” payment from
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Figure 3: Expected Change in the Consumption Shares in the Discrete-State Model
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The figure shows the expected changes in the consumption shares sht+1 − sht , h ∈ {A,B}, as a
function of sBt for the stylized economy with a two-state Markov chain for xt. The left graph shows
the expected change in the consumption share of agent A under the subjective beliefs of agent A.
The right graph shows the expected change in the consumption share of agent B under the subjective
beliefs of agent B. The solid lines show the expected changes for Epstein–Zin preferences and the
dashed lines show the corresponding results for CRRA preferences.

investor B, whenever the economy transitions from the good state 2 to the bad state 1. The

larger sBt , the larger is the supply and the lower is the demand for the insurance. Hence,

the insurance becomes cheaper and so the influence of the speculation motive increases. So

for large sBt , investor A believes that her consumption share increases on average also for the

Epstein–Zin case.

This concludes the analysis on why and how the investors trade in the two-investor two-

state economy. In the following, we transfer the findings to the continuous-state models and

analyze the effects of shifting consumption shares and asset trading on asset prices.

4 Belief Differences and Asset Prices

In the following we analyze the influence of belief differences for the fully stochastic infinite-

horizon economy with the exogenous processes given in system (16). We first briefly explain

how the speculation and risk-sharing motives affect the equilibrium outcomes and then analyze

the asset-pricing implications of the belief differences.
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4.1 Speculation and Risk-Sharing Motives

This section examines how the consumption shares change over time in the full model. We

rely on the discussion of speculative and risk-sharing motives from Section 3.2. Figure 4 shows

the change in the consumption share of investor B, sBt+1 − sBt , as a function of sBt . The three

graphs display results for xt = 0 and for ±1 unconditional standard deviation of xt around

its unconditional mean of xt = 0. The blue lines depict the case of a negative shock in xt+1

(xt+1−ρxxt = −0.0005), the yellow lines that of a positive shock in xt+1 (xt+1−ρxxt = 0.0005),

and the red lines show the average over all shocks.

Figure 4: Changes in the Consumption Shares for ρx = ρ1
x = 0.99 and ρBx = 0.96
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The figure shows the change in the consumption share sBt+1 − sBt as a function of sBt . Results are
shown for xt = 0 and for ±1 unconditional standard deviations of xt around its unconditional mean
of xt = 0. The blue lines depict the case of a negative shock in xt+1 (xt+1 − ρxxt = −0.0005),
the yellow lines that of a positive shock in xt+1 (xt+1 − ρxxt = 0.0005), and the red lines show the
average over all shocks. Agent A has the correct beliefs with ρAx = ρx = 0.99 and agent B has the
belief ρBx = 0.96.

In the special case of xt = 0 (center panel), both investors agree on the distribution of

xt+1 and hence there is no speculation motive. In a model with identical CRRA preferences,

investors would therefore not be willing to trade and there would be no changes in the con-

sumption shares; see also the closed-form solutions derived in Appendix D. As shown in Section

3.2, for Epstein–Zin preferences, investor A (ρAx = 0.99) has a stronger aversion than investor

B to negative shocks to xt. A low xt+1 implies a relatively lower utility of agent A compared

to agent B. Investor B is willing to absorb some of this utility risk in return for higher future

wealth; recall also Figure 2. Hence, the consumption share of investor B increases on average

(red line). In case a bad shock materializes (low future xt), investor A obtains compensation
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from investor B for her utility loss, hence the consumption share of type A investors increases

(blue line). In return, investor B receives a larger consumption share in future good states

(yellow line).

Next, consider the case of a positive xt (right panel), when the economy is in a good state.

In this case, the demand for risk sharing is much smaller than for xt ≤ 0; compare also Figure

2 to Figure 16 in the appendix. Now low values of xt+1 are significantly less likely due to

the high persistence of the long-run-risk shocks. However, the speculation motive increases as

investors now disagree on the state tomorrow. Investor B believes (incorrectly) in faster mean

reversion—that is, he has stronger beliefs in smaller values for xt+1 than investor A does.

Put differently, investor B bets on smaller values of xt+1. Therefore, his consumption share

increases for a negative shock to xt. As investor A has the correct belief, her consumption

share increases, on average. So in this case, the speculation motive dominates the risk-sharing

motive.

Finally, we turn to the case of a negative xt (left panel), when the economy is in a bad

state. Now both the risk-sharing and the speculation motives are present and strong. Investors

disagree on the future state of the economy (speculation motive) and, as the economy is in a

bad state, investor A would like to hedge against a further decline into an even worse state

(risk-sharing motive). The speculation motive implies that investor B bets money on more

positive shocks to xt+1 as he believes in faster mean reversion; recall Section 3.2. So in this

case, both the risk-sharing and the speculation motive imply that the consumption share of

investor A increases for a negative shock to xt+1 while, on the contrary, the share of investor

B increases for a positive shock to xt+1. Hence, the magnitude of the changes in consumption

shares is much larger compared to the other cases. Which effect dominates on average? For

an explanation of the average effect, we need to take into account how the consumption

share influences the risk-sharing motive. Recall from Figure 2 that a small amount of type B

investors is sufficient to induce a lot of risk sharing, while the amount of risk sharing decreases

for large sBt . Hence, for small sBt , type B investors are compensated by higher future wealth

in return for their willingness to take on additional risk. Therefore, the consumption share of

investor B increases on average. For large shares sBt , there is less demand from type-A investors

for risk sharing and, therefore, investor B takes on less of the variation in future wealth and

also obtains less compensation in future wealth; recall again Figure 2. The speculation motive

transfers wealth on average to investor A who holds the correct beliefs, which dominates the

effect of the risk-sharing motive for sufficiently large values of sBt . Hence, for large sBt , the

consumption share of investor B decreases, on average, in the left panel.
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The aggregate dynamics of these effects induce changes in the wealth distribution which

in return affect asset prices. In the following we analyze this mechanism and show that it

helps to resolve several financial-market patterns that have been puzzling from the viewpoint

of theoretical models.

4.2 Portfolio Allocations and Asset Prices

In this section we analyze the portfolio allocations and asset-pricing moments in the heteroge-

neous-agent economy. Since we consider a discrete-time economy with continuous states and

complete markets, the agents’ portfolio choices involve positions in an infinite set of Arrow–

Debreu securities. Clearly, it is impossible to describe continua of portfolio holdings. Instead,

as proposed by Collin-Dufresne, Johannes, and Lochstoer (2016a), we examine the changes

in investors’ wealth shares to obtain an intuition about investors’ security holdings. (Broadly

speaking, we would expect that an investor who has a more optimistic outlook about the state

of the economy is willing to invest in more risky assets and, therefore, her or his wealth share

increases (decreases) in good (bad) future states of the economy state.)

To analyze the change in the wealth shares, we define individual wealth, W h
t , as the claim

to the future consumption stream of the respective agent. Total wealth in the economy, Wt,

is given by the sum of the individual wealth levels. For Epstein–Zin utility, the individual

wealth-consumption ratio is given by

W h
t

Ch
t

=
1

1− δh

(
V h
t

Ch
t

)ρh
(25)

from which we can compute the wealth shares
Wh
t

Wt
of the investors. Figure 5 shows the change

in the wealth share
WB
t+1

Wt+1
− WB

t

Wt
as a function of the shock to x, ηx,t+1, for different wealth

share levels
WB
t

Wt
. Consider first the center panel which depicts the case of

WB
t

Wt
= 0.5. For

xt = −0.0024 (blue line), investor B is more optimistic than investor A, since he believes in

faster mean reversion. Hence, he invests in riskier assets which pay off in good future states;

as a result, his wealth share increases for positive ηx,t+1. For the good state (xt = 0.0024,

yellow line), the opposite holds true. Investor B believes that the expansion is shorter lived

compared to investor A’s beliefs, and thus he invests to insure against a downturn. Then

his wealth increases if a bad shock hits the economy (ηx,t+1 < 0). In Section 3.2, see the

explanations for Figure 2, we have seen that a small fraction of type-B investors is sufficient

for the strong risk-sharing motive to become visible. Hence, for
WB
t

Wt
= 0.1, the changes in the

wealth shares are of similar magnitude compared to the
WB
t

Wt
= 0.5 case. On the contrary, for
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Figure 5: Changes in the Wealth Shares for ρx = ρ1
x = 0.99 and ρBx = 0.96
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The figure shows the change in the wealth share of investor B,
WB
t+1

Wt+1
− WB

t
Wt

, as a function of the

shock to xt, ηx,t+1. The three graphs show the results for
WB
t

Wt
∈ {0.1, 0.5, 0.9}, respectively. The

blue lines depict the case of a bad x-state (xt = −0.0024) and the yellow lines that of a good x-state
(xt = 0.0024). Agent A has the correct beliefs with ρAx = ρx = 0.99 and agent B has the belief
ρBx = 0.96.

a large fraction of type-B investors, see the right panel, the possible risk sharing decreases

significantly and thus the effect on the wealth shares becomes much smaller.

Next we analyze how the changes in the consumption shares induced by the risk-sharing

and speculation motives affect asset prices. The stochastic discount factor for Epstein–Zin

preferences is given by

Mh
t+1 = δhe(ρh−1)∆ct+1

(
sht+1

sht

)ρh−1 (
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh , (26)

which we can use to price the claim to aggregate dividends. Figure 6 plots the log price-

dividend ratio pt − dt as a function of xt and sBt . Prices increase in xt as the investors have

a preference for the early resolution of risks; see Bansal and Yaron (2004). Furthermore, as

ρA > ρB, investor A requires a larger return than investor B for holding the risky dividend

stream and hence the price-dividend ratio increases with sBt . As investor B is willing to take

on more risk in the economy, even if he has only a small consumption share, the increase in

the price-dividend ratio is particularly strong for small sBt and negative xt. Hence, introducing

a small fraction of type-B investors—with their belief in lower persistence and faster mean

reversion of long-run risk—to the model has large effects on asset prices. In particular, the

heterogeneous-agent setup adds additional countercyclical movements and excess volatility to
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Figure 6: Log Price-Dividend Ratio for ρx = ρ1
x = 0.99 and ρBx = 0.96

The figure plots the graph of the log price-dividend ratio pt − dt as a function of xt and sBt . Agent
A has the correct beliefs with ρAx = ρx = 0.99 and agent B has the belief ρBx = 0.96.

the price-dividend ratio. In the representative-agent economy, a bad shock to xt also leads to

lower prices. In the two-agent economy, this effect is amplified as a bad shock implies that

the insurance pays off and hence the consumption share of investor A increases, see also again

Figure 4. This, in turn, lowers the demand of investor B for the risky dividend stream and

hence prices decrease even further. Next we show that this mechanism is quantitatively strong

and can lead to significant excess volatility.

We simulate 1,000 samples each containing 77 years of data initialized at the long-run

mean of sB0 = 0.5.6 The number of years is chosen to make the results comparable to the

empirical estimates that we take from Bansal, Kiku, and Yaron (2012). As described above,

the economy is calibrated such that the long-run mean consumption share is sBt = 0.5; we

observe an average standard deviation of the share sBt of about 0.18—that is, the consumption

shares display quite significant variations in response to exogenous shocks due to the agents’

risk-sharing and speculation motives.

Table 2 reports the annualized asset-pricing moments for the two-agent economy as well

as for the representative-agent economies populated by either of the two investors.7 All three

first moments for the heterogeneous-agent economy lie between the boundary cases of the

6We do not encounter any survival issues in this setup. Even after 1,000 years of simulated data, the consump-
tion shares along all paths remain significantly positive with a long-run mean share of about sBt = 0.5.

7We assume that in the representative-agent economies, the respective investor has the correct beliefs.
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Table 2: Annualized Asset-Pricing Moments

E (pt − dt) σ (pt − dt) AC1 (pt − dt) E
(
Rm
t −R

f
t

)
E
(
Rf
t

)
σ (Rm

t ) σ
(
Rf
t

)
sBt = 0 2.36 0.28 0.79 12.52 1.72 18.66 1.65
Two-Ag. 3.52 0.38 0.80 5.42 2.29 21.79 1.92
sBt = 1 3.97 0.11 0.38 1.78 2.93 14.08 0.88

Data 3.36 0.45 0.87 7.09 0.57 20.28 2.86

The table shows selected moments from 1,000 samples—each containing 77 years of simulated data—
starting with an initial share of sB0 = 0.5. It reports the mean, the standard deviation, and the
first-order autocorrelation of the annualized log price–dividend ratio as well as the mean and the
standard deviation of both the annualized equity premium and the risk-free return. Agent A has
the correct beliefs with ρAx = ρx = 0.99; agent B has the belief ρBx = 0.96. All returns are shown
in percentages, so a value of 1.5 is a 1.5% annualized figure. The estimates from the data are taken
from Bansal, Kiku, and Yaron (2012).

representative-agent economies. In line with the data, we observe a large and significant

equity premium for the two-agent economy of 5.42 percent.8 More interestingly, the volatil-

ities of prices and returns are significantly larger for the two-agent economy than for both

representative-agent economies. As argued above, this significant excess volatility is gener-

ated by the shifts in the wealth distribution in response to the exogenous shocks. As the wealth

distribution shifts consumption weights back and forth between the two types of agents, the

second moments increase in response to the time variation in the wealth shares. So instead

of adding exogenous features to the model as for example habit preferences (Campbell and

Cochrane, 1999), time varying disaster risks (Wachter, 2013) or stochastic volatility (Bansal

and Yaron, 2004), the excess volatility is generated endogenously by the agents’ belief dif-

ferences which arise naturally given the properties of the unobserved xt process (see Section

3.1).

But even with exogenous stochastic volatility, Beeler and Campbell (2012) argue that the

long-run risk model is not able to generate as much volatility of the price–dividend ratio as

observed in the data. They report a value of 0.18 for the calibration of Bansal, Kiku, and

Yaron (2012), which deliberately increases the influence of stochastic volatility, compared to

0.45 observed in the financial market data. Our results show that differences in beliefs can

resolve this puzzle, since they lead to a significant increase in excess volatility close to the

8The level of the risk-free rate is slightly too high in the two-agent economy compared to the reported data
estimate. Recall that we have deliberately taken all parameters from Bansal and Yaron (2004) and only varied
the belief in the persistence parameter. A lower risk-free rate could be achieved by slightly increasing the
subjective discount factor δ.
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value observed in the data.

4.3 Time Variation in Expected Risk Premia

In the next step of our analysis, we demonstrate that the model generates significant coun-

tercyclical time variation in expected risk premia. Figure 7 shows the annualized expected

risk premium as a function of sBt and the expectations are calculated under the true beliefs,

ρx = 0.99. We find that the expected risk premium changes significantly with the consump-

tion share. More precisely, the expected risk premium is large when investor A holds a larger

consumption share, while it is significantly smaller when agent B dominates. This effect is

particularly strong for bad states—that is, for negative values of xt. Why do risk-premia move

Figure 7: Time Variation in Expected Risk Premia
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The figure shows the annualized expected risk premium as a function of sBt . Results are shown for
xt = 0 and for ±1 unconditional standard deviations of xt around its unconditional mean of xt = 0.
Agent A has the correct beliefs with ρAx = ρx = 0.99 and agent B has the belief ρBx = 0.96.

with the consumption shares of the investors? Consider first the case of xt = 0 or negative

xt. In Section 4.1, we have shown that for small sBt the influence of the risk-sharing motive

is large (see, for example, Figure 4). So if sBt is small, the consumption share of investor B is

expected to increase. As an increase in sBt leads to larger prices (see Figure 6), the expected

increase in sBt implies an increase in the expected risk premium. Consistent with the results

from Section 4.1, this effect is even stronger for xt = −0.0024, when risk prices are larger and,

hence, the consumption share of investor B is expected to increase even faster. For xt = 0.0024

the speculation motive is stronger, consumption shares move less (see Figure 4) and prices are
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less sensitive to changes in the consumption shares (see Figure 6). Hence, the effect vanishes

and the expected risk premium is relatively flat as a function of sBt .

Furthermore belief heterogeneity can increase the model-implied expected risk premium

compared to the representative-agent cases. The changes in the consumption shares add an

additional source of risk for the investors which can potentially lead to a larger risk premium

(see Gârleanu and Panageas (2015)). The changes in the wealth distribution are highly persis-

tent due to the high persistence of xt (we obtain a persistence of sBt of 0.9926 and a standard

deviation of 0.18). In the case of CRRA preferences, the persistent changes have a negligible

effect as investors only care about the change in the consumption share in the subsequent

period (see equation (26)). For EZ preferences with a preference for the early resolution of

risks, the effect of the changes in the consumption shares on continuation utility is large (see

Figure 2) and hence investors care about the persistent changes in the wealth distribution.

As the risky asset is exposed to these changes, investors require an additional premium for

holding the stock. Figure 4 shows that for small sBt , the expected changes in the wealth

distribution are particularly large. Hence, for small but positive values of sBt , the premium

is larger than in the representative-agent case of sBt = 0. Put differently, belief heterogeneity

endogenously generates priced consumption risk—that is, investors require a premium for the

expected changes in the wealth distribution.

In the following we argue that the variation in risk-premia is countercyclical and econom-

ically significant. Recall from Section 4.1 that in normal and bad times negative shocks to xt

will increase the consumption share of investors of type A, who believe in a larger value for ρx,

as these investors buy insurance against such bad shocks (see Figure 4). So when the economy

enters a recession—that is, for a series of negative shocks to xt—the consumption share of

investor A increases. As a result, we observe a quite dramatic increase in the expected risk

premium for negative values of xt and small consumption shares of investor B; see Figure 7.

Hence, the endogenous movements in the wealth distribution lead to countercyclical variations

in the expected equity risk premium. This variation is economically large in our calibrated

economy.

Table 3 reports the mean and the standard deviation of the annualized expected risk

premia for the simulated data. Martin (2017) constructs a lower bound for the expected

risk premium in terms of its risk-neutral variance and shows that there is significantly more

time variation in the premium than previous studies have shown. We test the ability of the

heterogeneous-beliefs model to explain this finding and compare it to the standard long-run

risk model. Martin (2017) reports a mean expected risk premium of 5% per year with a
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standard deviation of 4.6%. The heterogeneous-agent setup implies similar numbers, with

a mean of 5.42% and a standard deviation of 5.73% (see Table 3). In the standard long-

run risk model without stochastic volatility, expected risk premia are constant as shown by

Bansal and Yaron (2004).9 They propose to add stochastic volatility to the model to generate

countercyclical time variation in risk premia as observed in the data. Table 3 shows that

while the model of Bansal and Yaron (2004) is able to generate a large mean premium, the

standard deviation is considerably smaller (1.13%) than in the data. In the new calibration of

Bansal, Kiku, and Yaron (2012), the influence of the stochastic volatility channel is increased in

order to match second-order moments. This adjustment should also generate more volatility

in expected risk premia. However, while the value of Bansal and Yaron (2004) is slightly

improved, it is still considerably lower (1.61%) than in the data. In sum, we observe that

Table 3: Expected Risk Premia

Data Het. Agents BY (2004) BKY (2012)

Mean 5.00 5.42 5.59 6.38
Std. dev. 4.60 5.73 1.13 1.61

The table shows the annualized mean and volatility of the expected risk premium. The first column
shows the empirical values reported in Table 1 of Martin (2017). The second column shows the
results for the heterogeneous-agent setup with ρAx = ρx = 0.99 and ρBx = 0.96 for the correct beliefs.
The data is obtained from 1,000 samples—each containing 77 years of simulated data—starting with
an initial share of sB0 = 0.5. Columns three and four show the results for the models of Bansal and
Yaron (2004, Case II) and Bansal, Kiku, and Yaron (2012), respectively, using the same size for the
simulated data set. All returns are shown in percentages, so a value of 1.5 is a 1.5% annualized
figure.

belief heterogeneity in the long-run risk model provides a solution that accounts for the large

variation in expected risk premia reported in the data.

4.4 Predictability of Returns, Consumption, and Dividends

Next we examine the implications of the two-investor economy for the predictability of returns

and cash flows. Beeler and Campbell (2012) argue that in the long-run risk model, the price–

dividend ratio has too much predictive power for consumption and dividend growth while the

predictability of returns is too low compared to the values observed in the data. Bansal, Kiku,

9Risk premia in the standard long-run risk model without stochastic volatility are only constant when solving
the model using a log-linearization. Solving the model with a global method shows that risk premia are time-
varying and pro-cyclical. But the variation is rather small for standard calibrations; see Pohl, Schmedders,
and Wilms (2016).
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and Yaron (2012) propose a solution by increasing the importance of the stochastic volatility

channel and decreasing the importance of the growth-rate channel (xt). Beeler and Campbell

(2012) acknowledge that the statistical rejections of the model are less extreme for this calibra-

tion, but it requires extremely persistent movements in the volatility process. We show that

the heterogeneous-agent economy helps to resolve the predictability puzzle. Furthermore, the

heterogeneous-agent model can reconcile the evidence on the countercyclical variation of return

predictability (see Henkel, Martin, and Nardari (2011) and Dangl and Halling (2012))—that

is, higher predictability in economically bad times and lower predictability in good times. The

time-variation in the consumption shares endogenously generates the countercyclical pattern

in the heterogeneous-agent model, while such an effect is absent in the representative-agent

framework.

Table 4 reports R2 statistics and regression coefficients from regressing cumulative log ex-

cess returns, consumption growth, and dividend growth on the lagged log price–dividend ratio.

Statistics are shown for the annualized time series with one-, three-, and five-year horizons.

We observe that the predictability of returns is low in the representative-agent economies. In

the two-agent setup, prices become more volatile and revert to the mean of the stationary dis-

tribution. Therefore, there is more return predictability, which also increases with the horizon.

For consumption and dividends, we obtain the opposite pattern. For the representative-agent

economy, predictability increases significantly with the persistence level. The two-agent setup

reduces the predictability compared to the high persistence representative-agent economy due

to the endogenous variation in the consumption shares. Overall the predictability of cash

flows is still too large compared to the data but the results show that investor heterogeneity

can contribute to resolving the predictability deficiencies of the long-run risk model.

Furthermore, Henkel, Martin, and Nardari (2011) and Dangl and Halling (2012) provide

empirical evidence that the predictability of returns by, for example, the price-dividend ratio

is significantly larger in recessions than it is in expansions. The authors argue that these

countercyclical variations in the risk premium can be explained by time-varying degrees of risk

aversion as, for example, in the external habit model of Campbell and Cochrane (1999). Our

results from Section 4.3 suggest that investor heterogeneity can add significant time variation

in risk premia to the long-run risk model—if the consumption share of the investor with the

larger beliefs about ρx increases, risk premia increase. To demonstrate this mechanism, we

again run the predictability regressions for excess returns, but now including a slope dummy
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Table 4: Predictability of Excess Returns, Consumption, and Dividends

R2 β

1Y 3Y 5Y 1Y 3Y 5Y∑H
h (rm,t+h − rf,t+h) = α + β(pt − dt) + εt+H

sBt = 0 0.0070 0.0190 0.0277 -0.0134 -0.0496 -0.1116
Two-Ag. 0.0129 0.0350 0.0540 -0.0563 -0.1676 -0.2639
sBt = 1 0.0067 0.0113 0.0150 -0.0226 -0.0824 -0.1215

Data 0.04 0.19 0.31 -0.09 -0.27 -0.43∑H
h (∆ct+h) = α + β(pt − dt) + εt+H

sBt = 0 0.5121 0.5738 0.5075 0.0829 0.2187 0.3124
Two-Ag. 0.3043 0.3346 0.2825 0.0495 0.1283 0.1805
sBt = 1 0.1522 0.1438 0.1012 0.0930 0.1941 0.2165

Data 0.060 0.01 0.000 0.01 0.01 0.00∑H
h (∆dt+h) = α + β(pt − dt) + εt+H

sBt = 0 0.4881 0.4903 0.4393 0.3044 0.7074 0.9705
Two-Ag. 0.3088 0.2868 0.2486 0.1882 0.4233 0.5910
sBt = 1 0.4283 0.2051 0.1305 0.6557 0.9187 0.9977

Data 0.09 0.06 0.04 0.07 0.11 0.09

The table reports R2 statistics and regression coefficients from regressing cumulative log excess
returns, consumption growth, and dividend growth on the lagged log price–dividend ratio from 1,000
samples—each containing 77 years of simulated data—starting with an initial share of sB0 = 0.5.
Statistics are shown for the annualized time series with one-, three-, and five-year horizons. The
estimates from the data are taken from Bansal, Kiku, and Yaron (2012).
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variable for the economy either being in a recession or being in an expansion:

H∑
h

(rm,t+h − rf,t+h) = α + β1(pt − dt) + β2d{exp,rec}(pt − dt) + εt+H , (27)

where H denotes the horizon for the cumulative excess returns and d{exp,rec} takes the value

of 1 if the economy is in a recession (expansion) and zero otherwise. So we run the regressions

twice, once only including the recession slope dummy and once only with the expansion slope

dummy. We define a recession (expansion) as the long-run risk state, xt, being below (above)

one standard deviation around its unconditional mean.10

Table 5 shows the regression results. First consider the representative-agent cases, sBt = 0

and sBt = 1. In these cases the R2 are almost the same for the regressions including the

recession slope dummy and the regressions including the expansion slope dummy. Hence, the

predictability of risk premia does not change with the business cycle. For the heterogeneous-

agent economy, the R2 values are significantly larger for the regressions including the recession

slope dummy compared to the regressions with the expansion slope dummy. The coefficients

β2 for the recession (expansion) slope dummy are negative (positive), so the aggregate slope

coefficient of the log price-dividend ratio, β1 + β2, is larger in absolute value in recessions

compared to normal times and expansions. Put differently, risk premia are more sensitive to

changes in the price-dividend ratio in recessions than they are in expansions. This counter-

cyclical variation is generated by time-varying risk prices. A recession is characterized by a

series of negative shocks to xt, which will increase the consumption share of investor A who

believes in stronger persistence (see Section 4.3). As investor A has a larger aversion against

long-run risks compared to investor B, risk prices in the economy rise. So belief heterogeneity

endogenously generates countercyclical variation in risk premia and hence can explain the

larger degree of predictability in recessions compared to expansions found in the data. This

mechanism is absent in the representative-agent model.

4.5 Endogenous vs. Exogenous Time Variation in the Persistence

A key implication of the heterogeneous-agent model is that—as the wealth distribution in the

economy shifts—the agent with beliefs in higher persistence has sometimes a greater weight in

the social welfare function, and sometimes a lesser weight. A natural comparison would be to

10To go from the simulated monthly frequency to the annual frequency, we define a recession (expansion) year
as a year with at least six recession (expansion) months. The regression results are robust with regard to
changes in these threshold values.
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Table 5: Predictability in Recessions and Expansions

R2 β1 β2

1Y 3Y 5Y 1Y 3Y 5Y 1Y 3Y 5Y

Recession Dummy

sBt = 0 0.0180 0.0393 0.0538 -0.0085 -0.0377 -0.0876 -0.0035 -0.0122 -0.0058
Two-Ag. 0.0475 0.0880 0.1182 -0.1016 -0.2465 -0.3884 -0.0259 -0.0396 -0.0426
sBt = 1 0.0190 0.0287 0.0357 -0.0217 -0.0761 -0.1121 -0.0001 -0.0003 -0.0005

Expansion Dummy

sBt = 0 0.0188 0.0395 0.0538 -0.0075 -0.0224 -0.0666 -0.0017 -0.0066 -0.0104
Two-Ag. 0.0245 0.0597 0.0941 -0.0621 -0.1806 -0.2898 0.0084 0.0210 0.0336
sBt = 1 0.0199 0.0303 0.0378 -0.0190 -0.0773 -0.1233 -0.0003 -0.0004 -0.0021

The table reports R2 statistics and regression coefficients from regressing cumulative log excess
returns on the lagged log price–dividend ratio including a recession (expansion) slope dummy,∑H

h (rm,t+h − rf,t+h) = α + β1(pt − dt) + β2d{exp,rec}(pt − dt) + εt+H . Median values are shown
for 1,000 samples—each containing 77 years of simulated data—starting with an initial share of
sB0 = 0.5. Statistics are shown for the annualized time series with one-, three-, and five-year hori-
zons.

modify the representative-agent model to directly model time-varying shifts in persistence.11

In the following section, we consider a representative agent who receives exogenous shocks to

persistence and highlight the key differences to the heterogeneous-agent model. In Section

4.5.2, we offer some more advantages of the heterogeneous-agent model over a representative-

agent model with additional exogenous processes.

4.5.1 A Representative-Agent Model with Exogenous Persistence Shocks

We consider a representative-agent long-run risk model in which ρx,t is time varying,

∆ct+1 = µc + xt + σηc,t+1

xt+1 = ρx,txt + σxηx,t+1

ρx,t+1 = µρ(1− ν) + νρx,t + σρ,xηx,t+1 + σρηρ,t+1

∆dt+1 = µd + Φxt + φdσηd,t+1,

(28)

where ηc,t+1, ηx,t+1, ηρ,t+1, and ηd,t+1 are independent and normally distributed with mean 0

and standard deviation 1. The persistence ρx,t follows an AR(1) process that exhibits the

time variation observed in the heterogeneous-agent economy. For this purpose we define the

11We thank an anonymous referee for suggesting this version of the representative-agent model as an alternative.
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aggregate persistence in the heterogeneous-agent economy as the weighted average of the per-

sistence levels of the two agents, where the weights are given by the endogenous consumption

shares,

ρAggx,t = sBt ρ
2
x + (1− sBt )ρ1

x. (29)

For the benchmark calibration in the current section, we observe the following moments for

the aggregate persistence level in the heterogeneous-agent economy:

E(ρAggx,t ) = 0.9742,

σ(ρAggx,t ) = 0.0056,

AC1(ρAggx,t ) = 0.9926,

Corr(ρAggx,t , xt) = −0.2740.

We calibrate the representative agent economy to match these numbers, and so we obtain

the following parameters: µρ = 0.9742, ν = 0.9926, σρ,x = -2.1760e-04 and σρ = 6.4425e-04.

For the remaining parameters we use the standard calibration from the heterogeneous-agent

model. We solve the model by ensuring that the process ρx,t varies in the interval [0.96, 0.99],

so the state space is bounded by the two values of the heterogeneous-agent model. This

ensures that the model is well behaved and ρx,t is bounded well below 1. Figure 8 shows

annualized expected risk premia in the model as a function of ρx,t.

Figure 8: Time Variation in Expected Risk Premia in the Model with Time-Varying Persis-
tence and a Negative Correlation
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The figure shows the annualized expected risk premium as a function of ρx,t for the representative-
agent model with time-varying persistence and a negative correlation between xt and ρx,t. Results
are shown for xt = −0.0024, xt = 0 and xt = 0.0024.
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As expected, risk premia increase the higher ρx,t. However, in contrast to the heterogeneous-

agent model, risk premia change only very little with the state xt. What explains this key

difference between the two models? In the heterogeneous-agent model, the state xt has a large

influence on future consumption shares and hence on the future aggregate persistence in the

economy. Assume, for example, that the aggregate persistence in the economy is high (low

sBt ). If simultaneously xt is low, the consumption share of investor B is expected to increase

strongly due to the strong risk-sharing motive; see Figure 4. An increase in sBt implies higher

future prices and so risk premia are expected to be high. Consider next the same scenario

with a low sBt but now assume that xt is large. In this case the consumption share is expected

to vary only very little due to the increased influence of the speculation motive; see again

Figure 4. Hence, risk premia are much lower due to the low influence of expected changes in

sBt .

This influence of xt on the distribution of the aggregate persistence is absent in the rep-

resentative agent model with a time-varying persistence. Put differently, Et(ρx,t+1|xt) is in-

dependent of xt. The shock ηx,t+1 to xt+1 negatively affects next-period persistence, ρx,t+1.

However, the level of the long-run risk state, xt, affects neither same-period persistence, ρx,t,

nor next-period persistence, ρx,t+1. Hence, Figure 8 shows only very little variation in risk

premia with regard to xt. This difference between the two models has a large influence on

the second moments of asset prices. Table 6 reports the annualized moments of the expected

risk premia. It shows that the annualized standard deviation in the representative-agent

model with a time-varying persistence is significantly lower compared to the heterogeneous-

agent economy. Hence, the representative-agent model cannot explain the large variation in

expected risk premia. We find similar differences for the annualized volatility of the price-

dividend ratio: the volatility of the heterogeneous-agent model is 0.38 while its only 0.20 in

the representative-agent economy with the time-varying persistence.

The results show that the presented representative-agent models with time-varying persis-

tence cannot match the empirical predictions generated by the trading in the heterogeneous-

agent economy. Possibly, adding more and more exogenous features to the model could help to

improve the model. While this might eventually lead to a better explanation of the financial-

market data, we believe that a simple model with small belief differences—as proposed in

this paper—is a more compelling argument to explain asset-price variation. In the following

section, we provide economic arguments in favor of the heterogeneous-belief model.
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Table 6: Expected Risk Premia in the Model with Time-Varying Persistence

Data Het. Agents TV Pers.

Mean 5.00 5.42 8.80
Std. dev. 4.60 5.73 2.49

The table shows the annualized mean and volatility of the expected risk premium. The first column
shows the empirical values reported in Table 1 of Martin (2017). The second column shows the
results for the heterogeneous-agent setup with ρAx = ρx = 0.99 and ρBx = 0.96 for the correct beliefs.
Column three shows the results for the representative-agent model with time-varying persistence.
All returns are shown in percentages, so a value of 1.5 is a 1.5% annualized figure.

4.5.2 Advantages of the Heterogeneous-Belief Model

Detecting the persistent component xt in the consumption data is already rather challenging

since we cannot observe this variable directly. Therefore, additionally identifying a time-

varying persistence (another unobservable) will be very difficult, particularly with the limited

amount of data we have. Adding additional exogenous variation requires additional parameters

that must be matched to fit the data. It also carries with it that all agents in the model agree

on the values of these difficult-to-estimate parameters. In Section 3.1 we provided evidence

on the plausibility that agents could naturally disagree over such a parameter. Any such

disagreement automatically enriches the model dynamics endogenously.

In general, a sufficiently complex representative-agent model could capture the same effects

as the heterogeneous-belief model. (Ultimately, we could use the social planner’s objective as

the utility of a representative agent.) Thus a logical criterion for comparing models is their

parsimony. Our model is a very parsimonious extension of the simple Case I model of Bansal

and Yaron (2004). We introduce exactly one extra parameter (the persistence parameter of the

second agent), and that by itself is sufficient to generate several effects visible in the data, such

as excess volatility, and increased return predictability. Belief heterogeneity gives rich asset-

pricing dynamics endogenously. To get excess volatility in Case II of Bansal and Yaron (2004)

requires adding an additional stochastic volatility shock, three additional parameters, and

assuming that the effects of these shocks are extremely persistent. While the representative-

agent framework has long been the workhorse of asset pricing, it leads to a paradigm where

rich dynamics are built into the model through postulating additional exogenous shocks. This

derives from the fact that we shut off the most natural channel in economics, which is trade

among agents. In a setting where market heterogeneity is no longer relevant, trade again

becomes an important channel, one that works endogenously.
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Skepticism in the field about the persistence parameter in long-run risk is easy to come

by—many finance researchers object to how close to a unit root the long-run risk process must

be. With our new calibration we show that paradoxically this can be a strength of the model.

With a moderate amount of disagreement, agents trading on their skepticism naturally create

empirically plausible outcomes which are absent in the model with a representative agent.

5 Sensitivity to Agents’ Beliefs about Persistence

In the following we conduct several robustness checks, which highlight the role of belief dif-

ferences about the persistence of long-run risks on the risk sharing between the agents.

5.1 Long-Run Simulations

In the discussion of our main model in Section 4, we emphasized that none of the agents were

driven out of the market in the finite sample simulations each containing 77 years of data.

We now show that this property was a result of the carefully chosen difference between the

agents’ persistence parameters, ρAx = 0.99 and ρBx = 0.96. For this purpose, we now examine

simulations of the two alternative model specifications for longer time periods.

Figure 9 displays the consumption share of agent B in a model with ρAx = 0.985 and

ρBx = 0.975 over time for different initial shares sB0 = {0.01, 0.05, 0.5}. We report the median,

5%, and 95% quantile paths using 1,000 samples each consisting of 500 years of simulated

data. To minimize the influence of the initial value of xt, we initialize each simulated path

by running a “burn-in” period of 1,000 years before using the output. The left panel shows

the results for ρx = ρAx = 0.985 (agent A has the correct beliefs) and the right panel those for

ρx = ρBx = 0.975 (agent B has the correct beliefs).

The figure shows that in all cases the consumption share of agent B strongly increases over

time. This can be rationalized by the findings from Section 3.2, which considers the same

calibration for the discretized model, and shows that for Epstein–Zin preferences the investor

with the high belief about ρx is deliberately giving away future wealth to insure against low

growth states; see Figures 2 and 3. The increase in the share of agent B occurs faster if agent

B has the correct beliefs (Figure 9, right panel), but the increase is almost as strong if agent A

has the correct beliefs (left panel) due to the small influence of the speculation motive for small

belief differences. Hence, given a small difference in the beliefs and independent of whether

agent A or agent B has the correct beliefs, in the long run the agent who believes in a smaller ρx

will dominate the economy. So the influence of the risk-sharing motive dominates the influence
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Figure 9: Consumption Shares—Simulations

(a) ρx = 0.985, sB0 = 0.5

0 100 200 300 400 500

t

0

0.2

0.4

0.6

0.8

1

s
B t

(b) ρx = 0.975, sB0 = 0.5

0 100 200 300 400 500

t

0

0.2

0.4

0.6

0.8

1

s
tB

(c) ρx = 0.985, sB0 = 0.05

0 100 200 300 400 500

t

0

0.2

0.4

0.6

0.8

1

s
B t

(d) ρx = 0.975, sB0 = 0.05

0 100 200 300 400 500

t

0

0.2

0.4

0.6

0.8

1

s
tB
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The figure shows the median, 5%, and 95% quantile paths of the consumption share of agent B for
1,000 samples each consisting of 500 years of simulated data. Agent B believes that ρBx = 0.975
and agent A believes that ρAx = 0.985. Results are shown for different initial consumption shares
(sB0 = {0.01, 0.05, 0.5}). The left panel depicts the case where agent B has the wrong beliefs about
the long-run risk process (ρx = 0.985 = ρAx ) and in the right panel agent B has the right beliefs
(ρx = 0.95 = ρBx ).
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of the speculation motive. If the economy is initially almost entirely populated by agent A,

sB0 = 0.01, her consumption share decreases sharply, leading the agent to lose significant share

in a short amount of time. Again, this is in line with Figure 2 which shows that risk sharing

is especially strong for small sBt . So for the calibration with small belief differences about the

persistence, the risk-sharing motive will quickly shift wealth to the investors who believe in a

lower persistence, independent of the true data generating process.

Figure 10 shows the corresponding results for ρBx = 0.95 and an initial allocation of sB0 =

0.01. The right panel shows the results for ρx = 0.95 (agent B has the correct beliefs). In this

case, both the speculation and risk-sharing motives will transfer wealth on average to agent

B and hence we observe a strong increase in his consumption share. The left panel shows the

Figure 10: Consumption Shares for ρBx = 0.95—Simulations
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The figure shows the median, 5%, and 95% quantile paths of the consumption share of agent B for
1,000 samples—each consisting of 500 years of simulated data—as well as a sample path (grey line).
Agent B believes that ρBx = 0.95 and agent A believes that ρAx = 0.985. Results are shown for an
initial consumption share of sB0 = 0.01. The left panel depicts the case where agent B has the wrong
beliefs about the long-run risk process (ρx = 0.985 = ρAx ) and in the right panel agent B has the
right beliefs (ρx = 0.95 = ρBx ).

results for ρx = 0.985 (agent A has the correct beliefs). We observe that the median share

increases initially but then remains at about 40 percent. For small sBt the influence of the

risk-sharing motive is large as there is a large demand for insurance against negative shocks

to xt+1 from the first group of investors; recall Figure 2. Therefore, the consumption share

of agent B increases on average. When the consumption share of agent B becomes larger,

the supply (demand) of the insurance against long-run risks increases (decreases) and hence

the influence of the risk-sharing motive becomes smaller; see also Figure 4. Furthermore, the

influence of the speculation motive is large in this case of large belief differences. As agent
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B has the wrong beliefs, this motive on average transfers wealth to investor A. We observe

that the two motives are roughly equally strong for a consumption share of investor B of

about 40 percent. Furthermore, the 5% and 95% quantile paths and the grey sample path

show that there is significant variation in the consumption shares. So the interaction between

the speculation and risk-sharing motives induces large changes in the wealth distribution over

time.

In sum, the long-run simulations of the various specifications of the heterogeneous-agent

economy give us some critical insights. If the belief difference between the two agents is suf-

ficiently small, then agent B—who believes in a smaller persistence—dominates the economy

rather quickly. Similarly, a heterogeneous-agent model with a sizable belief difference and in

which agent B—the agent with the smaller persistence parameter—has the correct belief also

quickly reduces to a model that is essentially a representative-agent model. On the contrary,

if agent A—the agent with the higher persistence parameter—has the correct belief then both

investors have a significant consumption share in the long run and the risk sharing of the

investors will have a large impact on asset prices.

5.2 Robustness of the Results

We complete our analysis with several other robustness checks. In Figure 11a we show the

median consumption share of agent B (as in Figure 9) for different degrees of risk aversion

γh = {2, 5, 10}. The risk-sharing motive should increase with the degree of risk aversion,

while the speculation motive decreases (see equation (24)). Hence, the smaller γ is, the less

wealth should be transferred to type B investors, who hold the wrong beliefs. And indeed,

this is exactly what we observe in Figure 11a. For γh = 10 (yellow line) the influence of

the risk-sharing motive is strong. Hence, agent B profits from selling the insurance against

long-run risks and rapidly accumulates wealth. For γh = 5 (red line) this effect becomes

less severe and agent B’s consumption share increases less quickly. For γh = 2 (blue line)

the risk-sharing motive has little influence as investor A is less averse to long-run risks and

the speculation motive dominates equilibrium outcomes. As ρx = ρAx , the speculation motive

works in favor of agent A (agent B bets on states that have a smaller probability under the

true probability measure) and agent A dominates the economy in the long run. If agent B

has the correct beliefs, ρx = ρBx , the speculation motive works in favor of agent B. We show

this case in Figure 11b. The blue line shows the consumption shares for ρx = ρAx and the red

line those for ρx = ρBx . So, in the absence of the risk-sharing motive, the speculation motive

determines equilibrium outcomes.
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In Figure 11c we depict the robustness of our findings with regard to the persistence levels

of xt. We show the consumption paths for ρBx = 0.6 and ρAx = 0.5 instead of 0.975 and

0.985, respectively. Lowering the persistence will—similarly to the decrease in risk aversion—

decrease the risk-sharing motive. Risk premia in the economy are only large for ρx close to

1 but collapse for smaller ρx; see Bansal and Yaron (2004). Hence, even those investors who

believe in a larger (but significantly smaller than 1) value for ρx have only small hedging

demands. Consequently, we observe that in this setup the dynamics of the consumption

shares strongly depend on the true value of ρx as the speculation motive dominates—that is,

the agent with the correct beliefs will dominate the economy.
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Figure 11: The Risk-Sharing and Speculation Motives
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(b) γh = 2, ρAx = 0.985, ρBx = 0.975
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(c) γh = 10, ρBx = 0.6, ρAx = 0.5
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The figure shows the median consumption share of agent B for 1,000 samples each consisting of
500 years of simulated data. Panel (a) shows the time series for different degrees of risk aversion
γh ∈ {2, 5, 10}. Agent B believes that ρBx = 0.975 and agent A has the correct beliefs with ρAx =
ρx = 0.985. Panel (b) shows the time series for γh = 2, ρAx = 0.985, and ρBx = 0.975 for the two cases
in which either agent A (blue line) or agent B (red line) has the correct beliefs. Panel (c) shows the
time series for γh = 10, ρAx = 0.6, and ρBx = 0.5 for the two cases where either agent A (blue line) or
agent B (red line) has the correct beliefs.
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6 Conclusion

In this paper, we show that belief differences can solve several asset-pricing puzzles. In partic-

ular, we demonstrate that even small belief differences have large effects on prices in models

with Epstein–Zin preferences and long-run consumption risks. Solving models with heteroge-

neous agents and recursive preferences is not a simple task as equilibrium allocations are no

longer a function of the exogenous state alone. Therefore, we first derive a recursive formula-

tion of the first-order conditions for equilibrium and present a numerical solution method to

solve for the equilibrium. This methodology can be applied to solve a broad class of models

featuring multiple agents with recursive utility and continuous or discrete state processes.

We then apply the methodology and analyze the influence of belief heterogeneity in long-

run risk asset-pricing models. For this purpose, we take a standard long-run risk model

with persistent changes in the mean growth rate of consumption as in Bansal and Yaron

(2004, Case I), with the only exception that we use two different persistence levels: one agent

believes in a slightly smaller amount of persistence relative to the original paper, while one

agent believes in a slightly larger amount (and is correct). This model not only generates

a large and significant equity premium, it also addresses many of the empirical deficiencies

of the representative-agent model. Notably, it adds significant countercyclical time variation

in expected risk premia to the model, consistent with the data reported in Martin (2017).

Furthermore, shifts in the wealth distribution increase the volatility of the price–dividend

ratio to levels close to the data as the impact of the different agents on asset prices varies over

time. The variation in the wealth distribution also helps to address the predictability puzzle

pointed out by Beeler and Campbell (2012) as well as the countercyclical variation in return

predictability reported by Henkel, Martin, and Nardari (2011) and Dangl and Halling (2012).

The endogenous variation in asset prices increases the predictability of returns especially in

recessions while simultaneously decreasing the predictability of consumption and dividend

growth. Therefore, belief heterogeneity in long-run risk models can explain many empirical

patterns on financial markets that seem puzzling from the viewpoint of the representative-

agent model. While our analysis in this paper focuses on investor heterogeneity in the long-run

risk model, we expect the key channel—namely the strong influence of belief differences on

asset prices—to carry over to other asset-pricing models with recursive preferences.
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Borovička, J. (2019): “Survival and Long-Run Dynamics with Heterogeneous Beliefs

Under Recursive Preferences,” Journal of Political Economy, Forthcoming.

48



Branger, N., I. Dumitrescu, V. Ivanova, and C. Schlag (2011): “Preference

Heterogeneity and Survival in Long-Run Risk Models,” Working Paper, Goethe Uni-

versity.

Branger, N., P. Konermann, and C. Schlag (2019): “Optimists and Pessimists in

(In)Complete Markets,” Journal of Financial and Quantitative Analysis, Forthcom-

ing.

Buraschi, A., F. Trojani, and A. Vedolin (2014): “Economic Uncertainty, Dis-

agreement, and Credit Markets,” Management Science, 60, 1281–1296.

Campbell, H. and J. Cochrane (1999): “By Force of Habit: A Consumption-Based

Explanation of Aggregate Stock Market Behavior,” Journal of Political Economy, 107,

205–251.

Carlin, B. I., F. A. Longstaff, and K. Matoba (2014): “Disagreement and asset

prices,” Journal of Financial Economics, 114, 226–238.

Chen, H., S. Joslin, and N.-K. Tran (2012): “Rare Disasters and Risk Sharing with

Heterogeneous Beliefs,” Review of Financial Studies, 25, 2189–2224.

Colacito, R. and M. M. Croce (2013): “International Asset Pricing with Recursive

Preferences,” The Journal of Finance, 68, 2651–2686.

Colacito, R., M. M. Croce, S. W. Ho, and P. Howard (2018a): “BKK the EZ

Way: International Long-Run Growth News and Capital Flows,” American Economic

Review, Forthcoming.

Colacito, R., M. M. Croce, Y. Liu, and I. Shaliastovich (2018b): “Volatility

Risk Pass-Through,” Working paper.

Colacito, R., M. M. Croce, and Z. Liu (2018c): “Recursive Allocations and Wealth

Distribution with Multiple Goods: Existence, Survivorship, and Dynamics,” Quanti-

tative Economics, Forthcoming.

Collin-Dufresne, P., M. Johannes, and L. A. Lochstoer (2015): “A Robust

Numerical Method for Solving Risk-Sharing Problems with Recursive Preferences,”

Working Paper.

——— (2016a): “Asset Pricing when ‘This Time is Different’,” Review of Financial

Studies, 30, 505–535.

——— (2016b): “Parameter Learning in General Equilibrium: The Asset Pricing Impli-

cations,” American Economic Review, 106, 664–698.

49
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Appendix

A Additional Literature

The study of agent belief heterogeneity begins with the market selection hypothesis of Alchian

(1950) and Friedman (1953). By analogy with natural selection, the market selection hypoth-

esis states that agents with systematically wrong beliefs will eventually be driven out of the

market. The influence of agent heterogeneity on market outcomes under the standard assump-

tion of discounted expected utility is well understood, and consistent with market selection.

Sandroni (2000) and Blume and Easley (2006) find strong support for this hypothesis under

the assumption of time-separable preferences in an economy without growth. Yan (2008) and

Cvitanić, Jouini, Malamud, and Napp (2012) analyze the survival of investors in a continuous-

time framework where there are not only differences in beliefs but also potentially differences

in the utility parameters of the investors. They show that it is always the investor with

the lowest survival index12 who survives in the long run. David (2008) considers a similar

model setup, in which both agents have distorted estimates of the mean growth rate of the

economy, showing that—as agents with lower risk aversion undertake more aggressive trading

strategies—the equity premium increases the lower the risk aversion is. Chen, Joslin, and

Tran (2012) analyze how differences in beliefs about the probability of disasters affect asset

prices. They show that even if there is only a small fraction of investors who are optimistic

about disasters, this fraction sells insurance for the disaster states and so eliminates most of

the risk premium associated with disaster risk. Bhamra and Uppal (2014) consider the case

of habit utility.

For recursive utility, this qualitative behavior changes fundamentally. However, there has

been less research in this area as solving such models is anything but trivial. Lucas and

Stokey (1984) observe in the deterministic case that the problem of finding all Pareto-optimal

allocations can be made recursive if we allow the weights in the social welfare function to be

time varying. This approach is extended by Kan (1995) to the stochastic case with finite state

spaces. Anderson (2005) develops an extensive theory for the special case of risk-sensitive

preferences, no growth, and finite state spaces, and finds first-order conditions similar to

12Yan (2008) shows that the survival index increases with belief distortion, risk aversion, and the subjective
time discount rate of the investor.
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those we use below. In particular, he shows how to characterize the equilibrium by a single

value function instead of one value function for each agent. Collin-Dufresne, Johannes, and

Lochstoer (2015) derive similar first-order conditions to ours for recursive utility by equating

marginal utilities, but use a different procedure to solve for their allocations. Duffie, Geoffard,

and Skiadas (1994) formulate the problem in continuous time, while Dumas, Uppal, and Wang

(2000) reformulate it in terms of variational utility. Borovička (2019) uses this formulation

to explore the question of the survival of agents with recursive utility in continuous time,

and shows that agents with fundamentally wrong beliefs can survive or even dominate. So,

inferences about market selection and equilibrium outcomes fundamentally differ under the

assumption of general recursive utility compared to the special case of standard time-separable

preferences. While Borovička (2019) concentrates on the special case of i.i.d. consumption

growth, Branger, Dumitrescu, Ivanova, and Schlag (2011) generalize the results to a model

with long-run risks as a state variable.

However, most papers with heterogeneous investors and recursive preferences consider only

an i.i.d. process for consumption growth. For example, Gârleanu and Panageas (2015) analyze

the influence of heterogeneity in the preference parameters on asset prices in a two-agent OLG

economy. Roche (2011) considers a model in which the heterogeneous investors can only invest

in a stock but there is no risk-free bond. Hence, as there is no savings trade-off, the impact

of recursive preferences on equilibrium outcomes will be quite different.

Exceptions that relax the i.i.d. assumptions include the papers by Branger, Konermann,

and Schlag (2019) and Collin-Dufresne, Johannes, and Lochstoer (2016a). Both papers re-

examine the influence of belief differences regarding disaster risk with Epstein–Zin instead of

CRRA preferences as in Chen, Joslin, and Tran (2012). Branger, Konermann, and Schlag

(2019) provide evidence that the influence of investors with more optimistic beliefs about dis-

asters is less profound when the disaster occurs to the growth rate of consumption and show

that the risk-sharing mechanism persists even when markets are incomplete. Collin-Dufresne,

Johannes, and Lochstoer (2016a) make a similar claim but for a different reason. They show

that if the investors can learn about the probability of disasters and if they have recursive

preferences, the impact of the optimistic investor on asset prices decreases. Optimists are un-

certain about the probability of disasters and hence will provide less insurance to pessimistic

investors.

A different strand of the literature, which does not rely on the i.i.d. assumption, is com-

prised of papers on international asset pricing. This area (advanced by Riccardo Colacito and

Mariano Croce in particular) considers models with Epstein–Zin preferences, two investors,
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and also two goods for which investors have different preferences (home bias). For example,

Colacito and Croce (2013) argue that a model with highly correlated international long-run

components in output can explain both the low correlation between consumption differentials

and the tendency of high interest rate currencies to appreciate. The authors furthermore show

that an increase in capital mobility can explain the structural break in the data for the pre-

and post-1970 period. Colacito, Croce, and Liu (2018c) provide the theoretical foundation for

the multiple good economy by providing results on equilibrium existence and agents’ survival;

they also compare computational methods for solving the model. Furthermore, Colacito,

Croce, Ho, and Howard (2018a) use a model with Epstein–Zin preferences and short- and

long-run productivity shocks to study the effects of these shocks on international investment

flows.

In a different direction, Epstein, Farhi, and Strzalecki (2014) argue that an Epstein–Zin

investor dislikes long-run risk to the extent that he or she would pay a substantial premium

to get rid of it. In a model with two agents, the agent who believes that risk is longer term

than the other is willing to pay an insurance premium to the other agent to hedge against

long-run risk.

B Proofs and Details

In this appendix, we provide proofs for the theoretical results presented in Section 2. Along

the way, we derive a system of first-order conditions for Epstein–Zin preferences. This system

constitutes the foundation for our numerical solution method (see Appendix C).

B.1 Proofs for Section 2.1

Proof of Theorem 1. Let λ = {λ̄1, . . . , λ̄H} be a set of Negishi weights and let {C}0 =

{{C1}0, . . . , {CH}0} denote a vector of agents’ consumption processes. The optimal decision

{C}∗0 of the social planner in the initial period assigns consumption streams to all individ-

ual agents for all periods and possible states. Obviously, the optimal decisions must satisfy

the market-clearing condition (1) in all periods and states. For ease of notation we again

abbreviate the state dependence; we use Ch
t for Ch(yt) and Uh

{t} for Uh
(
{Ch}t

)
.

To derive the first-order conditions, we borrow a technique from the calculus of variations.
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For any function ft, we can vary the consumption of two agents by

Ch
t → Ch

t + εft

C l
t → C l

t − εft.
(30)

It is sufficient to consider the variation with l = 1 and h ∈ H−. For an optimal allocation it

must be true that
dSP ({C}0;λ)

dε

∣∣∣∣
ε=0

= 0. (31)

This gives us

λ̄hÛh
0,t = λ̄1Û1

0,t, h ∈ H−, (32)

where Ûh
t,t+k is defined as

Ûh
t,t+k =

dUh(Ch
t , . . . , C

h
t+k + εft+k, . . .)

dε

∣∣∣∣
ε=0

. (33)

Using the expression given in Equation (2), the derivative Ûh
t,t+k satisfies a recursive equation

with the initial condition

Ûh
t,t =

dUh(Ch
t + εft, . . .)

dε

∣∣∣∣
ε=0

= F h
1

(
Ch
t , Rt[U

h
{t+1}]

)
· ft, (34)

where F h
k

(
Ch
t , R

h
t [Uh
{t+1}]

)
denotes the derivative of F h

(
Ch
t , R

h
t [Uh
{t+1}]

)
with respect to its

kth argument. The recursive step is given by

Ûh
t,t+k =

dF h
(
Ch
t , R

h
t

[
Uh(Ch

t+1, . . . C
h
t+k + εft+k, . . .)

])
dε

∣∣∣∣
ε=0

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·

dRh
t

[
Uh(·)

]
dε

∣∣∣∣
ε=0

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·

dG−1
h

(
Eh
t Gh

[
Uh(·)

])
dEh

t Gh[Uh(·)]
· dEh

t Gh[U
h(·)]

dε

∣∣∣∣
ε=0

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
· 1

G′h(G
−1
h (Eh

t Gh[Uh
{t+1}]))

· Eh
t

(
G′h(U

h
{t+1}) · Ûh

t+1,t+k

)

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·
Eh
t

(
G′h(U

h
{t+1}) · Ûh

t+1,t+k

)
G′h(R

h
t [Uh
{t+1}])

, (35)

where we use ∂G−1(x)
∂x

= 1
G′(G−1(x))

and abbreviate Uh(Ch
t+1, . . . C

h
t+k + εft+k, . . .) by Uh(·). We

can recast this recursion into a useful form. For this purpose, we define a second recursion
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Uh
t,t+k by

Uh
t,t = F h

1

(
Ch
t , R

h
t [Uh
{t+1}]

)
(36)

and

Uh
t,t+k = Πh

t+1 · Uh
t+1,t+k, (37)

where

Πh
t+1 = F h

2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·

G′h(U
h
{t+1})

G′h(R
h
t [Uh
{t+1}])

dPh
t,t+1

dPt,t+1

. (38)

A simple induction shows that

Ûh
t,t+k = Et(U

h
t,t+kft). (39)

Plugging (39) into the optimality condition (32) we obtain

E0

(
(λ̄hUh

0,t − λ̄1U1
0,t)ft

)
= 0, h ∈ H−. (40)

Under a broad range of regularity conditions, this condition implies that

λ̄hUh
0,t = λ̄1U1

0,t, h ∈ H−. (41)

For example, if λ̄hUh
0,t− λ̄1U1

0,t has finite variance, then this holds for the Riesz Representation

Theorem for L2 random variables. We can then split Expression (41) into two parts. First

define λh0 ≡ λ̄h to obtain

λh0
λ1

0

=
U1

0,t

Uh
0,t

=
Π1

1

Πh
1

U1
1,t

Uh
1,t

=
Π1

1

Πh
1

λh1
λ1

1

, h ∈ H−,

where λh1 denotes the Negishi weight in the social planner’s optimal solution in t = 1. Gen-

eralizing this equation for any period t, we obtain the following dynamics for the optimal

weight13 λht+1:
λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht
λ1
t

, h ∈ H−. (42)

Inserting the initial condition (36) into (41) for t = 0 and generalizing it for any social planner’s

optimal solution at time t yields

λht F
h
1

(
Ch
t , R

h
t [Uh
{t+1}]

)
= λ1

tF
1
1

(
C1
t , R

1
t [U

1
{t+1}]

)
, h ∈ H−. (43)

13Note that we can either solve the model in terms of the ratio
λh
t

λ1
t

(this is equal to setting λ1t = 1 for all t as

done in Judd, Kubler, and Schmedders (2003)) or we can normalize the weights so that they remain bounded
in (0, 1). Our solution method uses the latter approach as it obtains better numerical properties.
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Equation (43) states the optimality conditions for the individual consumption choices at any

time t. This completes the proof of Theorem 1.

Note that for time-separable utility, F h
1

(
Ch
t , R

h
t [Uh
{t+1}]

)
is simply the marginal utility of

agent h at time t, and so we obtain the same optimality condition as, for example, Judd,

Kubler, and Schmedders (2003) (see Equation (7) on page 2209). In this special case the

Negishi weights can be pinned down in the initial period and thereafter remain constant. For

general recursive preferences this is not true. The optimal weights vary over time following

the law of motion described by Equation (42).

We can use Equations (42) and (43) together with the market-clearing condition (1) to

compute the social planner’s optimal solution. We therefore define λ−t = {λBt , λ3
t , . . . , λ

H
t }

and let V h denote the value function of agent h ∈ H. We are looking for model solutions of

the form V h(λ−
t , y

t). So the model solution depends on both the exogenous state yt and the

time-varying Negishi weights λ−t . An optimal allocation is then characterized by the following

four equations:

• the market-clearing condition (1)

H∑
h=1

Ch(λ−
t , y

t) = C(yt); (44)

• the value functions (2) of the individual agents

V h(λ−
t , y

t) = F h
(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)
, h ∈ H; (45)

• the optimality conditions (43) for the individual consumption decisions for h ∈ H−

λht F
h
1

(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)

= λ1
tF

1
1

(
C1(λ−

t , y
t), R1

t [V
1(λ−

t+1, y
t+1)]

)
; (46)

• the equations (42) for the dynamics of λ−
t

λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht
λ1
t

, h ∈ H−, (47)

with

Πh
t+1 = F h

2

(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)
·

G′h(V
h(λ−

t+1, y
t+1))

G′h(R
h
t [V h(λ−

t+1, y
t+1)])

dPh
t,t+1

dPt,t+1

. (48)
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This concludes the general description of the equilibrium obtained from the social planner’s

optimization problem.

To prove Theorem 2, we first derive a variant of Lemma 1 in Blume and Easley (2006).

Lemma 1. Let X i
t , i = 1, 2, . . . , H, be a family of positive random variables for each t =

0, 1, 2, . . ., such that A ≤
∑

iX
i
t ≤ B with B ∈ R++. Let f i : R++ → R++, i = 1, 2, . . . , H,

be a family of decreasing functions such that f i(x) → ∞ as x → 0. If f i(X i
t)/f

j(Xj
t ) → ∞,

then X i
t → 0 for t→∞. If X i

t → 0, then for at least one j, lim supt f
i(X i

t)/f
j(Xj

t ) =∞.

Proof. Since X i
t is positive, X i

t ≤ B for all i, t. By assumption, 0 < f j(B) ≤ f j(Xj
t ). Thus,

f i(X i
t)/f

j(Xj
t )→∞ if and only if f i(X i

t)→∞, which happens when X i
t → 0 as t→∞.

Conversely, assume X i
t → 0. Every period, for at least one j, Xj

t ≥ A/H (otherwise∑H
i=1 X

i
t < A). Since there are only finitely many random variables, for at least one j we have

Xj
t ≥ A/H infinitely often. Then, by assumption, f j(Xj

t ) ≤ f j(A/H) infinitely often, and so

lim sup f i(X i
t)/f

j(Xj
t ) =∞.

Proof of Theorem 2. By the first-order condition (5), λjt/λ
i
t = F i

1(Ci
t , R

i
t)/F

j
1 (Cj

t , R
j
t ). Since

F h is additively separable, F h
1 is a function of consumption alone. Let f i = F i

1, f
j = F j

1 ,

A = C, and B = C, and apply Lemma 1.

B.2 Proofs for Section 2.2

In this section we provide the specific expressions for V h, F h
1 , F

h
2 , and Πh when the heteroge-

neous investors have recursive preferences as in Epstein and Zin (1989) and Weil (1989). The

value function for Epstein–Zin (EZ) preferences is given by14

V h
t =

[
(1− δh)(Ch

t )ρ
h

+ δhRh
t

(
V h
t+1

)ρh] 1

ρh

(49)

with

Rh
t

(
V h
t+1

)
= G−1

h

(
Eh
t

[
Gh(V

h
t+1)
])

Gh(V
h
t+1) =

(
V h
t+1

)αh
.

Recall that the parameter δh is the discount factor, ρh = 1 − 1
ψh

determines the EIS, ψh,

and αh = 1 − γh determines the relative risk aversion γh of agent h. The derivatives of

14For ease of notation, we again abbreviate the dependence on the exogenous state yt and the endogenous state
λ−
t . Hence we write V ht for V h(λ−

t , yt) or Cht for Ch(λ−
t , yt).
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F h
(
Ch
t , R

h
t [V h

t+1]
)

= V h
t with respect to its first and second argument are then given by

F h
1,t = (1− δh)(Ch

t )ρ
h−1(V h

t )1−ρh (50)

and

F h
2,t = δhRh

t

(
V h
t+1

)ρh−1
(V h

t )1−ρh . (51)

In this paper we focus on growth economies. Therefore, we introduce the following normal-

ization to obtain a stationary formulation of the model. We define the consumption share of

agent h by sht =
Cht
Ct

and the normalized value functions, vht =
V ht
Ct

. Recall that ∆ct+1 = ct+1−ct
with ct = log (Ct). The value function (49) is then given by

vht =
[
(1− δh)(sht )ρ

h

+ δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

. (52)

By inserting (50) into (46) we obtain the optimality condition for the individual consumption

decisions

λht F
h
1

(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)

= λ1
tF

1
1

(
C1(λ−

t , y
t), R1

t [V
1(λ−

t+1, y
t+1)]

)
,

which simplifies to

λht (1− δh)(Ch
t )ρ

h−1(V h
t )1−ρh = λ1

t (1− δ1)(C1
t )ρ

1−1(V 1
t )1−ρ1 . (53)

Recall the definition of the normalized Negishi weights, λht =
λht

(vht )ρh−1
. From Equation (53) we

obtain

λht (1− δh)(sht )ρ
h−1 = λ1

t (1− δ1)(s1
t )
ρ1−1. (54)

This equation is the optimality condition for the individual consumption decisions we employ

for solving for the model with Epstein–Zin preferences. Inserting the de-trended weight λht

into the dynamics for the weights (47), we obtain

λht+1

λ1
t+1

=
λht+1(vht+1)ρ

h−1

λ1
t+1(v1

t+1)ρ1−1
=
λht (v

h
t )ρ

h−1

λ1
t (v

1
t )
ρ1−1

Πh
t+1

Π1
t+1

, h ∈ H−. (55)

Plugging the expressions for Epstein–Zin preferences (49)–(51) into Equation (48), we obtain
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the following expression for Πh
t+1:

Πh
t+1 = δhRh

t

(
V h
t+1

)ρh−1
(V h

t )1−ρh
(
V h
t+1

)αh−1

Rh
t

(
V h
t+1

)αh−1

dPh
t,t+1

dPt,t+1

= δh(V h
t )1−ρh

(
V h
t+1

)αh−1

Rh
t

(
V h
t+1

)αh−ρh dPh
t,t+1

dPt,t+1

. (56)

Using the normalized value function vht =
V ht
Ct

, we have

Πh
t+1 = δh(vht )1−ρh

(
vht+1e

∆ct+1
)αh−1

Rh
t

(
vht+1e

∆ct+1
)αh−ρh dPh

t,t+1

dPt,t+1

. (57)

Equation (55) can then be written as

λht+1

λ1
t+1

=
λht
λ1
t

Πh
t+1

Π1
t+1

, h ∈ H−, (58)

where

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1︸ ︷︷ ︸
CRRA-Term

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh︸ ︷︷ ︸

New EZ-Term

. (59)

For αh = ρh, we obtain the standard term for CRRA preferences; the dynamics of λht+1 only

depend on the subjective discount factor, the EIS, and the subjective beliefs of the investors.

For Epstein–Zin preferences, we obtain an extra term that reflects the time trade-off. Using

the normalization
∑H

h=1 λ
h
t = 1, the dynamics for λht+1 are then given by

λht+1 =
λht Π

h
t+1∑H

h=1 λ
h
t Π

h
t+1

. (60)

Hence, for Epstein–Zin preferences we obtain the following system for the first-order con-

ditions (44)–(48):

The market-clearing condition:
H∑
h=1

sht = 1. (MC)

The optimality condition for the individual consumption decisions:

ix



λht (1− δh)(sht )ρ
h−1 = λ1

t (1− δ1)(s1
t )
ρ1−1, h ∈ H−, (CD)

with
∑H

h=1 λ
h
t = 1.

The value functions of the individual agents:

vht =
[
(1− δh)(sht )ρ

h

+ δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

, h ∈ H. (VF)

The equation for the dynamics of λht :

λht+1 =
λht Π

h
t+1∑H

h=1 λ
h
t Π

h
t+1

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh , h ∈ H−.

(Dλ)

Note that the conditions (MC, CD, VF, Dλ) are just the equilibrium conditions (11)–(15)

stated in Section 2.2. We observe that Equation (CD) and hence the individual consumption

decisions sht only depend on time t information and that there is no intertemporal dependence.

This feature allows us to first solve for sht given the current state of the economy, and in

a second step to solve for the dynamics of the Negishi weights. Hence, we can separate

solving the optimality conditions (11)–(15) into two steps in order to reduce the computational

complexity. In Appendix C we describe this approach in detail.

Using condition (CD) we can prove Theorem 3. Recall that ρh = 1− 1
ψh
< 1 for all possible

values of an agent’s EIS, ψh > 0.

Proof of Theorem 3. Condition (CD) implies

λjt
λit

=
(1− δi)(sit)ρ

i−1

(1− δj)(sjt)ρ
j−1

.

Now let f i(s) = sρ
i−1, f j(s) = sρ

j−1, and A = B = 1, and apply Lemma 1.

C Solution Method

We describe our solution method for asset-pricing models with heterogeneous agents and

recursive preferences.
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C.1 Computational Procedure—A Two-Step Approach

For ease of notation the following procedures are described for H = 2 agents and a single state

variable yt ∈ R1. However, the approach can analogously be extended to the general case of

H > 2 agents and multiple states. We solve the social planner’s problem using a collocation

projection. For this we perform the usual transformation from an equilibrium described by the

infinite sequences (with a time index t) to the equilibrium described by functions of some state

variable(s) x on a state space X. We denote the current exogenous state of the economy by

y and the subsequent state in the next period by y′ with the state space Y ∈ R. The term λ2

denotes the current endogenous state of the Negishi weight and λ′2 denotes the corresponding

state in the subsequent period with Λ2 ∈ (0, 1).

We approximate the value functions of the two agents, vh(λ2, y), h = {1, 2}, by two-

dimensional cubic splines and we denote the approximated value functions by v̂h(λ2, y). For

the collocation projection we have to choose a set of collocation nodes {λ2k
}nk=1 and {yl}ml=1 at

which we evaluate v̂h(λ2, y). The individual consumption shares only depend on the endoge-

nous state λ2k
. So in the following we show how to first solve for the individual consumption

shares at the collocation nodes shk = sh(λ2k
), which are then used to solve for the value func-

tions vh and the dynamics of the endogenous state λ2.

Step 1: Computing Optimal Consumption Allocations

Equation (13) has to hold at each collocation node {λ2k
}nk=1:

λ2k
(1− δ2)

(
s2
k

)ρ2−1
= (1− λ2k

)(1− δ1)
(
s1
k

)ρ1−1
.

Together with the market-clearing condition (11) we get

λ2k
(1− δ2)

(
s2
k

)ρ2−1
= (1− λ2k

)(1− δ1)
(
1− s2

k

)ρ1−1
. (61)

So for each node {λ2k
}n1=0 the optimal consumption choice s2

k can be computed by solving

Equation (61) and s1
k is obtained by the market-clearing condition (11).15 For the special case

of ρ2 = ρ1 we can solve for s2 as a function of λ2 analytically, and hence we do not have to

solve the system of equations for each node.

15Note that in the case of H agents we have to solve a system of H − 1 equations that pin down the H − 1
individual consumption choices sh ∈ H−.
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Step 2: Solving for the Value Function and the Dynamics of the Negishi Weights

Solving for the value function is not as straightforward as it depends on the dynamics

of the endogenous state λ2, which are unknown and follow Equation (15). We compute the

expectation over the exogenous state by a Gaussian quadrature with Q quadrature nodes.

This implies that the values for y′ at which we evaluate vh are given by the quadrature rule.

We denote the corresponding quadrature nodes by {y′l,g}
m,Q
l=1,g=1 and the weights by {ωg}Qg=1.16

We can then solve Equation (15) for a given pair of collocation nodes {λ2k
, yl}n,mk=1,l=1 and the

corresponding quadrature nodes {y′l,g}
m,Q
l=1,g=1 to compute a vector ~λ

′
2 of size n ×m × Q that

consists of the corresponding values λ′2k,l,g for each node. For each λ′2k,l,g , Equation (15) then

reads

λ′2k,l,g =
λ2k

Π2

(1− λ2k
)Π1 + λ2k

Π2

Πh = δheρ
h∆c(y′l,g)

(
vh(λ′2k,l,g , y

′
l,g)e

∆c(y′l,g)

Rh
[
vh(λ′2, y

′)e∆c(y′)|λ2k
, yl
])αh−ρh

dPh(y′l,g|yl)
dP(y′l,g|yl)

, (62)

where

Rh
[
vh(λ′2, y

′)e∆c(y′)|λ2k
, yl

]
= G−1

h

(
E

[
Gh

(
vh(λ′2, y

′)e∆c(y′)
) dPh(y′)

dP(y′)

∣∣∣∣λ2k
, yl

])
.

Note that λ′2k,l,g depends on the full distribution of λ′2 through the expectation operator. By

applying the Gaussian quadrature to compute the expectation we get

E

[
Gh

(
vh(λ′2, y

′)e∆c(y′)
) dPh(y′)

dP(y′)

∣∣∣∣λ2k
, yl

]
≈

Q∑
g=1

Gh

(
vh(λ′2k,l,g , yl,g)e

∆c(yl,g)
)
· ωg.

By computing the expectation with the quadrature rule, we do not need the full distribution of

λ′2; instead, we only have to evaluate vh at those values λ′2k,l,g that can be obtained by solving

(62) for each pair of collocation nodes {λ2k
, yl}n,mk=1,l=1 and the corresponding quadrature nodes

{y′l,g}
m,Q
l=1,g=1. So at the end we have a square system of equations with n×m×Q unknowns,

λ′2k,l,g , and as many equations (62) for each {k, l, g}.
The value function is in general not known so we have to compute it simultaneously when

16Note that the quadrature nodes {y′

l,g}
m,Q
l=1,g=1 depend on the state today, {yl}ml=1.
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solving for λ′2k,l,g . Plugging the approximation v̂h(λ2, y) into the value function (12) yields

v̂h(λ2k
, yl) =

[
(1− δh)

(
shk
)ρh

+ δhRh

(
v̂h(λ′2, y

′)e∆c(y′)

∣∣∣∣λ2k
, yl

)] 1

ρh

. (63)

The collocation projection conditions require that the equation has to hold at each colloca-

tion node {λ2k
, yl}n,mk=1,l=1. So we obtain a square system of equations with n×m×2 equations

(63) and as many unknowns for the spline interpolation at each collocation node, which we

solve simultaneously with the system for λ′2k,l,g described above.

For all results presented in the paper, we choose an approximation interval for xt that covers

±4 (unconditional) standard deviations around the unconditional mean of the process. For

λ2
t the minimum and maximum values are given by 0 and 1 so the full state space is included.

We approximate the value functions using two-dimensional cubic splines with not-a-knot end

conditions. We provide the solver with additional information that we can formally derive

for the limiting cases. For example, we know that for λ2
t = 1 (λ2

t = 0) agent 2 (1) consumes

everything, so this corresponds to the representative-agent economy populated only by agent

2 (1). Hence, we require that the value function for these cases equals the value function for

the corresponding representative-agent economy. We also know that for λ2
t = 0 (λ2

t = 1) the

consumption of agent 2 (1) is 0, and hence the value function is also 0. As the shocks in the

model are normally distributed, we compute the expectations over the exogenous states by

Gauss–Hermite quadrature using five nodes for the shock in xt+1 and three for the shock in

∆ct+1.

C.2 Accuracy of the Solution Method

In the following we provide details of the accuracy of the solution method. We report numerical

errors in the fixed-point equation (12), which determines the value functions of the two agents.

In addition, we report the errors in the equilibrium conditions (15) for the Negishi weights.

For the models with Epstein–Zin preferences, we compute these errors on a 200×200 uniform

grid for the two states of the model—the exogenous long-run risk state, xt, and the endogenous

Negishi weight, λht .

As a benchmark for our analysis, we also report numerical errors for a model with CRRA

preferences. In the CRRA case, the dynamics of λBt are exogenous and given in closed form;

see equation (15), which shows that for ρh = αh, λBt+1 does not depend on the value functions.

Thus, we only have to approximate the value functions in the fixed-point equation (12) for

the exogenous process xt specified in equation (16) and the exogenous weights λBt given by
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(15) using the probability ratio specified in equation (17). This benchmark case gives us a

first indication of the adequateness of the projection approach to precisely approximating the

value functions of the agents.

Table 7 reports the root-mean-square error (RMSE) as well as the maximum absolute error

(MAE) for different numbers of collocation nodes using a uniform grid with n nodes for the λBt

dimension and m nodes for the xt dimension. The first panel reports these errors for a CRRA

model with ψh = 1
γh

= 1.5 and persistence parameter values ρAx = 0.985 and ρBx = 0.975.

We observe that for n = 16 and m = 8, errors are already small with a maximum error in

the value function of agent A of 5.2e-4. n = 20 the MAE can be decreased to 2.8e-5 and for

n = 50 all errors are smaller then 1.0e-5. So, we observe a high accuracy of the projection

approach for the approximation of the agents’ value functions.

The second panel of Table 7 reports errors for the same calibration but with Epstein–Zin

preferences (γh = 10, ψh = 1.5) as used in Sections 3 and 5. Now the Negishi weights λBt+1

depend on the value functions and, therefore, we must solve for the value functions in equation

(12) jointly with the dynamics for the Negishi weights; see equation (15). For the small belief

difference, the numerical errors are already small for n = 16 and m = 12 nodes with a

maximum absolute error of 3.1e-5 in the equation for the Negishi weights. For n = 50 and

m = 22 the maximum error in the Negishi weights reduces to 8.6e-6 and the root-mean-square

errors are below 5e-7.

The bottom panel of Table 7 reports errors for the main economy with ρAx = 0.99 and

ρBx = 0.96, which we discussed extensively in Section 4. We observe that the numerical errors

are large for the approximation with n = 16 and m = 12 with an RMSE of 0.0016 for both vBt

and λBt and maximum absolute errors of 0.0229 and 0.0450, respectively. Figure 12 plots the

numerical errors in the value functions. We observe that the errors are especially large for λBt

close to 0. Therefore, we adjust the uniform collocation grid in order to obtain higher accuracy

close to the boundary. In particular, we choose the grid such that half the nodes are uniformly

distributed between 0 and 0.1 and the other half are uniformly distributed between 0.1 and

1. Figure 13 shows that the errors in vBt close to the boundary can be reduced by using this

adjusted grid. In Table 7 the results for the adjusted grid are marked with an asterisk (*). We

observe that using the same number of nodes, the maximum error in vBt can almost be halved

to 0.0127 and the maximum error in λBt can be reduced by more than a factor of 3 to 0.0135.

Increasing the number of collocation points reduces the errors further. For n = 50 and m = 22

the largest RMSEs is 2.3e-4 for vBt with a corresponding maximum error of 0.0100. Figure 14

shows that the errors are still large, especially close to the boundary of λBt = 0. By increasing
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Table 7: Numerical Errors

vAt vBt λB
t

n m RMSE MAE RMSE MAE RMSE MAE

ρAx = 0.985, ρBx = 0.975, CRRA

16 8 2.2e-5 5.2e-4 9.9e-6 1.7e-4 — —
20 8 2.9e-4 2.8e-4 5.2e-6 9.0e-5 — —
50 8 1.9e-6 1.0e-5 1.8e-6 7.7e-6 — —

ρAx = 0.985, ρBx = 0.975, EZ

16 12 1.4e-7 1.3e-6 7.8e-7 6.5e-6 2.7e-6 3.1e-5
50 22 1.1e-8 1.2e-7 7.7e-8 1.2e-6 4.3e-7 8.6e-6

ρAx = 0.99, ρBx = 0.96, EZ

16 12 4.7e-5 6.6e-4 0.0016 0.0229 0.0016 0.0450
16* 12 9.1e-5 6.3e-4 4.5e-4 0.0127 7.7e-4 0.0135
50* 22 1.1e-6 2.4e-5 2.3e-4 0.0100 3.2e-5 0.0032
80* 22 1.9e-7 4.3e-6 6.5e-6 2.0e-4 4.7e-6 2.6e-4

The table shows root-mean-square errors (RMSEs) as well as maximum absolute errors (MAEs)
in the value functions (12) as well as the equilibrium conditions for the Negishi weights (15) for
different model calibrations and numbers of collocation nodes. Errors are reported for a state grid
of ±4 standard deviations around the unconditional mean of xt. For λBt the full grid between 0 and
1 is used. We denote the number of collocation nodes for the λBt -dimension by n and the number
of collocation nodes for the xt-dimension by m. An asterisk (*) denotes cases where we used an
adjusted grid—instead of a uniform grid—to account for the nonlinearity close to the boundary at
λBt = 0.
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the number of nodes in the λBt dimension further to 80, the errors can be reduced significantly

with root-mean-square errors between 1.9e-7 and 6.5e-6 and maximum errors in the order of

1e-4. Note that errors are computed on a very large grid covering ±4 unconditional standard

deviations of the xt-process. To verify that the errors are not only numerically small but also

small in economic terms, we conduct two exercises. First we ask the hypothetical question by

how much one needs to change the consumption share of the respective agent in order that

the errors are exactly zero. For the high degree approximation with n = 80 we find maximum

values for agent 1 of 0.0023 and agent 2 of 0.0038. This implies that the consumption shares

need to be adjusted by a maximum of only 0.0038 in order to exactly satisfy the equilibrium

condition. As a second test for economic significance, we analyze the influence of the errors

on asset prices. We find that increasing the approximation degree does not change the model

outcomes. This is demonstrated in Table 8 which shows the annualized asset-pricing moments

as reported in Table 2 for the different approximation degrees. While the moments change

slightly for the degree 16 compared to the degree 50 approximation, there is hardly a difference

between the degree 50 and degree 80 solutions. Hence, the small errors near the boundary of

the approximation space do not affect the model outcomes and the quantitative conclusions

drawn in the paper.

Table 8: Annualized Asset-Pricing Moments

n m E (pt − dt) σ (pt − dt) AC1 (pt − dt) E
(
Rm
t −R

f
t

)
E
(
Rf
t

)
σ (Rm

t ) σ
(
Rf
t

)
16 12 3.5264 0.3823 0.8007 5.3815 2.2911 21.712 1.9147
16* 12 3.5304 0.3866 0.8005 5.4512 2.2765 21.896 1.9342
50* 22 3.5304 0.3845 0.8002 5.4203 2.2856 21.806 1.9245
80* 22 3.5305 0.3846 0.8002 5.4204 2.2856 21.807 1.9246

The table shows selected annualized moments as in Table 2 for the two-agent economy for different
approximation degrees. Agent A has the correct beliefs with ρAx = ρx = 0.99; agent B has the belief
ρBx = 0.96. n denotes the number of collocation nodes for the λBt -dimension and m denotes the
number of collocation nodes for the xt-dimension. An asterisk (*) denotes cases where we used an
adjusted grid—instead of a uniform grid—to account for the nonlinearity close to the boundary at
λBt = 0.

D Closed-Form Solutions for the CRRA Case

In this section we derive closed-form solutions for the long-run risk model (16) with two

investors and CRRA utility. Assume that the two agents A and B have CRRA utility with
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Figure 12: Numerical Errors for ρAx = 0.99, ρBx = 0.96, n = 16, and m = 12 with the Uniform
Grid

The figure plots numerical errors in the value functions (12) for ρAx = 0.99 and ρBx = 0.96. A state
grid of ±4 standard deviations around the unconditional mean of the xt-process is used. For λBt
the full grid between 0 and 1 is used. The projection method uses n = 16 collocation nodes for the
λBt -dimension and m = 12 nodes for the xt-dimension.

the same degree of risk aversion. The equilibrium conditions (58) and (54) then simplify to

(
sAt+1

sBt+1

)γ
=

(
sAt
sBt

)γ dPA
t,t+1

dPB
t,t+1

. (64)

Taking logs and using the market-clearing condition yields

log

(
sAt+1

1− sAt+1

)
= log

(
sAt

1− sAt

)
+

1

γ
log

(
dPA

t,t+1

dPB
t,t+1

)
. (65)

We log-linearize log(1− sAt+1) around log(sAt+1) = log(sAt ). This step gives us

log
(

1− elog(sAt+1)
)
≈ log

(
1− sAt

)
− sAt

1− sAt
(log

(
sAt+1

)
− log

(
sAt
)
)

= log
(
1− sAt

)
+

sAt
1− sAt

log
(
sAt
)
− sAt

1− sAt
a− sAt

1− sAt
bηx,t+1. (66)
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Figure 13: Numerical Errors for ρAx = 0.99, ρBx = 0.96, n = 16, and m = 12 with the Adjusted
Grid

The figure plots numerical errors in the value functions (12) for ρAx = 0.99 and ρBx = 0.96. A state
grid of ±4 standard deviations around the unconditional mean of the xt-process is used. For λBt
the full grid between 0 and 1 is used. The projection method uses n = 16 collocation nodes for the
λBt -dimension and m = 12 nodes for the xt-dimension. Results are shown for the adjusted grid to
account for the nonlinearity close to λBt = 0.
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Figure 14: Numerical Errors for ρAx = 0.99, ρBx = 0.96, n = 50, and m = 22

The figure plots numerical errors in the value functions (12) for ρAx = 0.99 and ρBx = 0.96. A state
grid of ±4 standard deviations around the unconditional mean of the xt-process is used. For λBt
the full grid between 0 and 1 is used. The projection method used n = 50 collocation nodes for the
λBt -dimension and m = 22 nodes for the xt-dimension. Results are shown for the adjusted grid to
account for the non-linearity close to λBt = 0.

Since x+1 ∼ N(ρxxt, σ
2
x), the probability ratio is given by

log

(
dPA

t,t+1

dPB
t,t+1

)
= log

(
e
−0.5

(ρxxt+ηx,t+1−ρ
A
x xt)

2

σ2x
+0.5

(ρxxt+ηx,t+1−ρ
B
x xt)

2

σ2x

)

=
x2
t

2σ2
x

(
(ρx − ρBx )2 − (ρx − ρAx )2

)
+
xt
σ2
x

(
ρAx − ρBx

)
ηx,t+1. (67)

Hence, we find that the consumption share in t+ 1 is a linear function of ηx,t+1,

log
(
sAt+1

)
= aCRRA + bCRRAηx,t+1 (68)

and the coefficients are given by

bCRRA =
(1− sA0 )xt(ρ

A
x − ρBx )

σ2
xγ

aCRRA = log
(
sA0
)

+
(1− sAt )x2

t

2σ2
xγ

[
(ρx − ρBx )2 − (ρx − ρAx )2

]
.

The slope bCRRA determines how the consumption share of investor A changes in response

to shocks to xt+1. Assume that ρAx > ρBx . The sign of bCRRA depends on the sign of xt. If
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Figure 15: Numerical Errors for ρAx = 0.99, ρBx = 0.96, n = 80, and m = 22

The figure plots numerical errors in the value functions (12) for ρAx = 0.99 and ρBx = 0.96. A state
grid of ±4 standard deviations around the unconditional mean of the xt-process is used. For λBt
the full grid between 0 and 1 is used. The projection method uses n = 80 collocation nodes for the
λBt -dimension and m = 22 nodes for the xt-dimension. Results are shown for the adjusted grid to
account for the nonlinearity close to λBt = 0.

xt is positive (negative), bCRRA is positive (respectively, negative); this sign implies that the

larger the shock to xt+1, the larger (smaller) will be log sAt+1 and, hence, the larger (smaller)

the consumption share of agent A. The intuition is that investor B believes in faster mean

reversion and hence puts more probability weight on states where xt+1 moves toward its long-

run mean of 0. So investors bet on states depending on the subjective probabilities they

assign to those states. We call this motivation for investments the “speculation motive” of the

investors. This motive increases with |ρAx −ρBx | and |xt| and decreases with the risk aversion γ.

The larger the difference in the beliefs, |ρAx −ρBx |, the larger is the difference in the probabilities

that the investors assign to different states. For xt = 0 investors share the same beliefs but

the larger |xt| is, the more important becomes the difference in the beliefs about the speed

of mean reversion. Finally, the more risk averse investors are, the less they are willing to

speculate on future outcomes.

We observe that this speculation motive is independent of the true persistence ρx. However,

the true persistence does influence the average change in the consumption share. Assume that

investor A has the correct beliefs, ρx = ρAx . The average change in the log consumption share
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is then given by

Et
(
log
(
sAt+1

))
− log

(
sAt
)

= aCRRA − log
(
sAt
)

=
(1− sAt )x2

t

2σ2
xγ

(ρAx − ρBx )2 ≥ 0. (69)

We observe that—independent of the states sAt and xt and whether ρAx is larger or smaller

than ρBx —the consumption share of investor A, who has the correct beliefs, will always increase

on average. So for CRRA utility, the only thing that matters for the average change in the

consumption shares is which investor has the correct beliefs. The speed at which he or she

accumulates wealth depends on the risk aversion of the investor. So the more risk averse the

investor, the less he or she will be willing to speculate on future outcomes and, hence, the

slower will be the wealth accumulation.

E Additional Details for the Model with Time-Varying

Persistence

Below we provide the state vectors as well as the Markov transition probabilities for the model

with time-varying persistence used in Section 4.5. For the two-state economy, the state vector

is given by ρx,t = [0.9686, 0.9798] and the Markov transition probabilities are given by

P =

0.9963 0.0037

0.0037 0.9963

 .
For the nine-state economy we have

ρx,t = [0.9584, 0.9623, 0.9663, 0.9702, 0.9742, 0.9782, 0.9821, 0.9861, 0.9900]

xxi



with

P =



0.9708 0.0288 0.0004 0 0 0 0 0 0

0.0036 0.9709 0.0252 0.0003 0 0 0 0 0

0 0.0072 0.9709 0.0216 0.0002 0 0 0 0

0 0 0.0108 0.9710 0.0180 0.0001 0 0 0

0 0 0.0001 0.0144 0.9710 0.0144 0.0001 0 0

0 0 0 0.0001 0.0180 0.9710 0.0108 0 0

0 0 0 0 0.0002 0.0216 0.9709 0.0072 0

0 0 0 0 0 0.0003 0.0252 0.9709 0.0036

0 0 0 0 0 0 0.0004 0.0288 0.9708



.

F Additional Results

This section presents additional results, which have been referenced in the main body of the

paper. Figure 16 shows the conditional mean and variance of continuation utilities for the

discrete state economy in the good state; see Section 3.2.

In Section 3.1, we examine the distribution of the persistence of forecaster predictions

using a panel regression. An alternative approach is to consider the regression coefficients of

individual forecasters in the following regression,

∆c′t,i = Ai + βi∆ct,i + εt,i. (70)

Figure 17 shows the distribution of βi coefficients.
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Figure 16: Conditional Mean and Variance of Continuation Utilities: Good State
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The figure plots the conditional mean and variance of continuation utilities as a function of the
consumption share of investor B for the discrete state economy. The top panel shows the difference
in expected utility between an economy in which the agents are allowed to trade and a no-trade
assumption. The lower panel shows the conditional variance for both the trade and no-trade case.
The left panel shows the results for investor A, who believes in the higher persistence and the right
panel for investor B, who believes in lower persistence. Results are shown for economy being in the
good state.
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Figure 17: Individual Forecaster AR(1) Coefficients
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The figure shows a histogram of the AR(1) coefficients (βi) for real-consumption-growth forecasts,
see model (70), for a group of forecasters from the U.S. Survey of Professional Forecasters. Only
forecasters with predictions in at least eight surveys are included in the sample. For the presentation
of the histogram, the two highest and the two lowest coefficients have been removed.
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