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Abstract

Scientific research is a fundamental driver of innovation. Yet, corporate investment

in scientific research is declining relative to patent development, potentially delaying

the economic benefits of valuable scientific research. This study investigates how Sci-

entists on Corporate Boards (BdScis), drawn from industry and academia, support

corporate innovation by bridging the scientific research to patent gap. We measure

scientific expertise using BdScis’ publications. Network analysis shows that firms are

more successful in recruiting and retaining talented inventors from their BdScis’ profes-

sional networks. To address endogeneity concerns, we examine local supplies of BdSci

candidates and the Human Genome Project’s technological shock to establish causality.
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1 Introduction

Scientific research has long been considered an essential input in the innovation process,1 as

it provides the technology foundation for innovation activity,2 it improves R&D efficiency,3 and

enhances the usefulness and economic value of patents.4 However, concerns persist about the

capacity of firms to fully appropriate the economic benefits of scientific research due to its vast

volume and inherent complexity. Critically, scientific knowledge is not freely accessible to all; only

organizations with substantial scientific capabilities can successfully realize its value (Cohen and

Levinthal, 1989; Rosenberg, 1990).

A common narrative in the innovation literature is that firms maintain their scientific capabil-

ities through their costly scientific research.5 However, this view appears less relevant in the 21st

century. More recently, US firms have significantly reduced their investments in scientific research,

with the share of research expenses in total corporate R&D dropping from 38.26% in 1955 to be-

low 20% in recent years, as illustrated in Figure 1. Mezzanotti and Simcoe (2023) document that

firms typically cut investment in scientific research first when facing high funding costs, and such

reductions lead to lower innovation output. Also, Arora et al. (2018) shows a decreased willingness

of firms to invest in science, possibly due to managerial short-termism. The rising cost of scientific

research, particularly the high cost of scientists, further discourages firms from conducting scien-

tific research. All this evidence suggests that the trend toward reduced investment in corporate

research is unlikely to be reversed in the near future. Thus, firms need a new channel to strengthen

their ability to utilize advances in scientific knowledge to spawn innovation. Given the increasing

reliance of corporate innovation on public domain scientific research, as highlighted by the rise

in the percentage of firms’ patents based on scientific research from 7.37% in 1980 to 35.18% in

2016,6 identifying new channels to bridge the expanding gap between scientific research and patent

development is more urgent than ever.

In this study, we explore a potential channel for bridging the gap between scientific research

and patent development by appointing academic or industry scientists to corporate boards, namely

Board Scientists (BdScis). We define BdScis as outside directors: (1) who have scientific publica-

tions; (2) who are inventors with doctoral degrees. Contrary to common assumptions, we find that

70% of BdScis are industry scientists, working in government, research institutes, or other firms. In

recent years, BdScis have become increasingly prevalent among publicly listed firms, being repre-

sented in 50% of firms and accounting for 40% of firm-year observations over our 1996–2018 sample

period.

Typical BdScis are prestigious scientists at the cutting edge of their scientific fields, enabling

1see Lerner et al. (2024); Nelson (1986); Mansfield (1991)
2see Marx and Fuegi (2020); Ahmadpoor and Jones (2017); Arora et al. (2023)
3see Sorenson and Fleming (2004); Griliches (1986)
4see Krieger et al. (2024); Arora et al. (2024a)
5see Berchicci (2013); Fabrizio (2009)
6see Figure 2
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them to identify promising scientific ideas with commercial promise and to tap into their profes-

sional networks of talented inventors and scientists. This first function of BdScis is consistent with

the suggestion of Satell (2016) that firms can effectively access scientific research simply by ap-

pointing scientists who can consistently monitor related scientific research in the public domain.

As important boardroom advisors, BdScis can also shape a firm’s long-term innovation strategy

and help mitigate managerial short-termism, which Arora et al. (2018) identify as a major reason

why many firms withdrew from internal scientific research projects. More specifically, we investi-

gate how BdScis contributes to a firm’s innovation success through their scientific knowledge and

assistance in recruiting skilled inventors and scientists from their professional networks.

Recent anecdotal evidence suggests that corporate directors are becoming more deeply involved

in their firms’ innovation activities. For example, the percentage of firms with science and technol-

ogy board committees has more than doubled in the past five years (Spencer, 2023). Unlike regular

board meetings, which typically occur four times a year, science and technology board commit-

tees have more flexible schedules and may meet as frequently as circumstances require (Regeneron,

2021). Corporate CEOs also hold a positive view of the value added by their BdScis scientific

knowledge and advice. For example, Bionovo’s CEO highlighted the role of BdSci John Baxter in

advancing the firm’s clinical trial programs (PRNewswire, 2008). Sundar Pichai, Alphabet’s CEO,

expressed enthusiasm on the appointment of Nobel laureate Frances Arnold to their corporate

board, emphasizing the potential benefits of her extensive scientific knowledge.

Empirically, we compile a novel dataset that includes detailed publication profiles of BdScis

and comprehensive information on firms’ patents. Using the firms’ patent citations to scientific

articles and BdScis’ publications profiles, we construct two dynamic measures of BdScis’ scientific

knowledge that track both their evolving expertise and its changing relevance to the technologies

referenced in a firm’s current patent filings. Additionally, we introduce a new innovation measure,

called ‘fundamental patents’, which are patents strongly rooted in basic scientific research and that

serve as a foundational basis for many subsequent patents. Fundamental patents aim to capture a

firm’s activities in transforming scientific ideas into valuable innovations, which can be built upon.

These fundamental patents are more valuable and innovative than comparable patents of the same

firm, technology class, and grant year. Lastly, using BdScis’ professional network, comprising 1

million individuals and 20 million connections among scientific authors and inventors, we examine

the role of BdScis in recruiting skilled inventors to their firms.

Our first measure of the scientific knowledge of BdScis captures the direct influence of their

publications on a firm’s patents, which is based on the fraction of a firm’s patents that directly

cite a BdSci’s publications after she joins the board, scaled by the total number of firm patents

awarded over this same period. Direct patent citations to a BdSci’s publications indicate that a

patent builds directly on a BdSci’s scientific knowledge, clearly indicating the influence of a BdSci’s

expertise on a firm’s innovation activities. Empirically, we analyze how time-series variations in a

BdSci’s influence is associated with the quality of the firm’s patents, utilizing director × firm fixed
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effects for this purpose. We find new evidence that firms produce higher-quality innovations as

a BdSci’s influence on a firm’s patents rises through her currently established scientific expertise

and with the increasing focus of a firm’s innovative activities in fields that overlap with a BdSci’s

expertise. This provided direct evidence that a BdSci contributes to a firm’s innovation by drawing

on the knowledge of their recent scientific work.

Patent citations to BdSci’s publications are direct evidence of a BdSci influence, but relying

solely on them can be overly conservative, as patents typically cite only prior art that is immedi-

ately related to the current invention (e.g., Giczy et al., 2022; Lerner and Seru, 2021). Thus, we

also employ a second measure to account for the fact that BdSci can influence a firm’s innovation

in areas that, while not directly cited by a patent, nevertheless remain highly relevant to the firm’s

patent technologies. We use a Large Language Model (LLM) to categorize patents into subject

areas relevant to the development of the focal patent. Specifically, we use the SciBERT model,

a BERT-based framework fine-tuned on millions of scientific articles, designed to understand and

classify scientific concepts. We train the SciBERT model on multi-label classification assignments

using over 340,000 abstracts of BdScis’ publications and patents that cite at least one scientific

publication.7 Next, we use the trained model to categorize patents into relevant, non-mutually ex-

clusive scientific subject areas, including Biochemistry, Chemistry, Computer Science, Engineering,

Materials Science, Medicine, Pharmacology, and Physics. Intuitively, we ask the LLM to learn to

associate specific words, phrases, and sentence structures with scientific subject areas during the

training process and then classify the remaining patents by recognizing patterns based on these

learned associations.

Our second measure is based on the recent publications of a BdSci, linking her publication

activities to a firm’s patents based on LLM-assigned scientific subject areas for these patents.

Recent BdSci publications are likely to be exogenous to a firm’s innovation activities, thereby

mitigating concerns about the endogeneity of direct citations to a BdSci’s publications, which firms

might strategically use to signal the value of their innovations. More specifically, we measure the

scientific expertise of a BdSci by examining their recent publications over the prior three years.

Recent publications provide a more current and relevant assessment of a BdSci’s state-of-the-art

expertise. Moreover, the outcome variables we measure include both the quality and quantity of a

firm’s subsequent patents, each associated with a BdSci’s dynamically changing areas of expertise.

Our empirical evidence suggests that in areas where a BdSci has recently published more papers

or received more citations, a firm produces more patents, and these patents are of better quality.

Moreover, we show that firms produce 1.77 times more high-quality patents built on the scientific

research in areas where their BdScis have recently been actively conducting research.

7More specifically, a large portion of the abstracts in our training dataset consists of BdScis’ scientific
publications. We collect the subject areas for this portion using Scopus 2-digit subject area codes. The
remaining part of the training dataset includes patents that cite scientific publications, and we determine
the scientific subject areas of these patents based on the Scopus 2-digit subject area codes of the cited
publications.
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We argue that our two measures of a BdSci’s technical expertise are superior to the existing

measures of specialists’ expertise in the literature. The existing literature relies on static measures of

expertise such as a BdSci’s past life experience (Masulis et al., 2012; Chen et al., 2020), professional

career experience (Burak Güner et al., 2008; Huang et al., 2014; Dass et al., 2013), or educational

qualifications (Field et al., 2013) to capture expertise. However, these commonly used measures

are very noisy and, more importantly, assume a specialist’s expertise remains static over time and

that a homogeneous level of specialist expertise exists for all individuals in the same expertise

category. In contrast, our measures account for changes in a specialist’s expertise over time, and

they recognize that specialists possess varying levels of relevant expertise depending on their recent

publication activity and the technology classes that support a firm’s recent patents.

Regarding the BdSci network channel, we investigate whether tapping into the BdSci’s pro-

fessional network can reduce a firm’s asymmetric information problem when hiring an inventor of

unknown ability. We refer to this hiring practice as BdSci-affiliated network hiring. From a BdSci’s

professional network of all past scientific co-authors and co-inventors, we construct the inner com-

munity of professional connections. These inner communities consist of co-authors and co-inventors

who connect more closely with a BdSci than with other individuals within their professional net-

works.

We investigate a BdSci’s role in enhancing the human capital of a firm through the firm’s

hiring of inventors who are in a BdSci’s inner community. On average, BdSci-affiliated inventors

hired by a firm are more productive and have better innovation outcomes than other inventors in a

BdSci’s community, i.e., suggesting that BdSci recommends high-quality candidates in their inner

community to join their firms. Furthermore, BdSci-affiliated inventors continue to outperform the

cohort of non-affiliated inventors joining the firm in the same year measured over the subsequent

years of their employment at the firm. This suggests that BdScis also help retain affiliated inventors.

Our findings are new to the literature and reflect how a BdSci’s professional network can provide

valuable soft information about potential inventor appointments and help select and recruit these

inventors to the firm, and increase their retention after they are hired.

A possible alternative explanation for the positive correlation between firm innovation outcomes

and the presence of BdScis at a firm is an endogenous matching of firms and BdScis based on un-

observable characteristics associated with successful innovation. It is plausible that firms achieving

successful innovation actively establish connections with universities and their professors, which in

turn increases the likelihood of having BdScis on their boards as well as increasing the likelihood

of successful new patents. To address these concerns, we adopt a strategy that utilizes a scientific

breakthrough as an exogenous source of variation on board structure to estimate the economic

benefits that BdScis provide to their firms.

In our study, we focus on a major scientific breakthrough achieved in the early 21st century as a

result of the US and UK government-funded research project, the Human Genome Project (HGP).

HGP is an international scientific research project aimed at identifying, mapping, and sequencing
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human genes, that greatly relaxes the technology constraints on successful drug development and

opens up broad new possibilities in gene therapy. Despite these scientific advances, it is important

to recognize that firms still face challenges in effectively translating basic scientific knowledge into

commercialized therapies.

BdScis can serve as a valuable advisor to firms, helping them to understand scientific discover-

ies, identify feasible commercial opportunities, and navigate the complexities of translating basic

scientific research into profitable commercial applications. We investigate the potential rise in these

economic benefits of having qualified BdScis following the completion and publication of the HGP

findings, which we use as an exogenous shock to board structure in the pharmaceutical industry.

We find that following the HGP shock, firms operating in industries able to commercialize

genetics knowledge show a higher propensity to appoint new BdScis to their boards. This includes

both BdScis in general and BdScis with genetics expertise (Genetic BdScis). Our empirical finding is

consistent with a theoretical prediction of Garlappi et al. (2017) by showing that firms appoint more

BdScis who share similar expertise and can accurately evaluate the risk of a new drug project when

facing these risky new investment opportunities. To assess the impact of BdScis on firms’ innovation

quality, we compare the innovation outcomes of firms that appointed a Genetic BdSci within two

years of the HGP shock to the outcomes in other firms in the same genetic-related industry. We

find that firms with newly appointed Genetic BdScis exhibit significant improvements in both the

quantity and quality of their patents, relative to comparable firms within the same industry. The

strength of our empirical design lies in the premise that the technological progress resulting from

the HGP shock exogenously raises the demand for BdScis, which we attribute to their increased

value to pharmaceutical firms’ applied research activities. By utilizing this exogenous shock, we

can infer that the observed changes in board composition and subsequent R&D improvements are

from the specific influence of BdScis with relevant expertise. Moreover, the results are robust to

a matched sample based on firm size, ROA, annual stock return, and pre-shock patent innovation

activities.

To further strengthen our identification strategy, we employ the local supply of BdSci candidates

as an instrumental variable (IV) to predict a BdSci’s presence on a firm’s board. The local supply

of BdSci candidates is measured by the number of BdScis at other firms headquartered within

60 miles of the focal firm’s headquarters, excluding potentially competing firms within the same

industry (the same SIC4 code). In the first stage, we find a strong and statistically significant

relationship between the supply of local BdSci candidates and the presence of BdScis on the focal

firm’s board. We argue that a firm’s headquarters location is typically determined early in its life

based on economic considerations separate from local BdSci supply, and thus, it can be treated

as exogenously determined for our purposes. In addition, we control for the geographical effects

on corporate innovation by incorporating the local supply of university scientists, measured by the

number of tenured assistant, associate, and full professors at nearby universities. By employing an

IV approach, we estimate the Local Average Treatment Effect (LATE), which suggests that the
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appointment of a new BdSci to a firm’s board leads to a positive impact on patent innovation.

Scientific research often requires long gestation periods and lacks frequent, easily interpreted

milestones, making it challenging for non-expert investors to evaluate a firm’s research progress.

This uncertainty surrounding scientific research investments can cause generalist boards who lack

scientific expertise to put pressure on managers to prioritize short-term profits. In contrast, BdScis

are well-positioned to evaluate ongoing scientific research and potentially alleviate investor concerns.

In this study, we explore the relationship between stock performance and the presence of BdScis,

examining how their expertise may influence investor decisions and firm valuation.

Our analysis finds that BdScis contribute positively to firm value. First, we show that within

an industry, the presence of BdScis is positively associated with Tobin’s Q, highlighting the long-

term valuation benefits of having BdScis on the board. Second, we find an average –2.42% drop

in CAR[0, +2] following BdSci death announcements, which is significantly more negative than

the market reactions to the deaths of other outside directors. Director death announcements are

particularly useful to study because they are generally unexpected and exogenous, providing a

unique lens through which to understand investor expectations about the value that BdScis add to

a firm.

Lastly, BdScis are uniquely positioned to search for promising scientific ideas due both to their

intensive and extensive scientific knowledge, while as board members, this gives them strategic

influence over a firm’s long-term innovation direction. However, there is another possible channel

to drive innovation output, which could have a similar influence on firm innovation as BdScis,

namely hiring an inventor CEO or a PhD CEO who can also have an important influence on firm

innovation (Islam and Zein, 2020; He and Hirshleifer, 2022). Both Islam and Zein (2020) and He

and Hirshleifer (2022) focus primarily on the role of the CEO in the patent development stage. In

contrast, we highlight the role of BdSci in enhancing firms’ capabilities to utilize scientific research.

Specifically, we address the rising concern regarding the widening gap between scientific research

and patent innovation. Also, our results are robust when we alternatively include an indicator for

an inventor CEO.

Regarding the role in bridging research and development, CEO scientists and other corporate

scientists can have similar expertise to BdScis. Thus, it is important to distinguish the influence

of BdScis from those of CEO scientists and corporate scientists. On average, we find that scientist

CEOs publish fewer papers and these papers attract fewer citations than is typically the case for

BdScis, and CEO scientists’ research activities decline dramatically after they assume the CEO

role8. Scientist CEOs appear less frequently in the sample, and our results remain robust when

controlling for scientist CEOs in our analysis.

Our paper makes several contributions to the existing literature. Firstly, the literature on

scientific research and innovation previously established a link between scientific research and suc-

cessful innovation, highlighting the role of scientific knowledge in driving innovation activities and

8Research activities are measured by both publications numbers and citations counts.
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enhancing innovation efficiency (e.g. Nelson, 1959a; Kline and Rosenberg, 2009; David et al., 1994;

Fleming and Sorenson, 2004; Griliches, 1986; Arora et al., 2021). However, a noticeable trend has

emerged since the 1980s, with firms reducing investments in research, closing research laboratories,

and publishing fewer scientific papers (Mezzanotti and Simcoe, 2023; Arora et al., 2018). This

raises a critical question: If firms are cutting back on internal research activities, how do they

effectively utilize scientific research to support their corporate innovations? This question is im-

portant not only because it negatively impacts corporate innovation, but also because it leads to

social opportunity losses (Arora et al., 2020, 2018). Social opportunity losses occur when a large

gap exists between scientific research and resulting corporate innovations that remain unrealized

for longer than necessary. For example, Penicillin was discovered in 1928, but it did not become

commercially available until 1945 (Satell, 2016).

Our study contributes to the above mentioned literature by introducing a new channel through

which basic scientific research is connected to firm innovation. Specifically, by having a BdSci

with cutting-edge scientific knowledge on the board, firms can benefit from a BdSci’s expertise and

understanding of the latest scientific advances and insights into how to effectively utilize scientific

research to fuel the firm’s long-term innovations. In addition, BdScis can assist in selecting and

hiring particularly talented inventors from their professional networks and then assisting the firm

in retaining these valuable employees. Importantly, we highlight the increased economic benefits of

having BdScis following major scientific breakthroughs, such as the release of the Human Genome

Project findings. Although our paper draws inspiration from Yao et al. (2024), it differs by focus-

ing exclusively on directors with scientific publications, addressing concerns that having doctoral

degrees alone may not indicate scientific expertise or inventor capability. This narrower definition

enables a more precise analysis of the role of scientific expertise in firm innovation.

Second, we develop a novel method for mapping patents based on BdScis underlying scientific

knowledge, which offers new insights into how scientific research influences patented innovations. A

primary challenge in understanding the impact of scientific research on innovations is in establishing

a connection between scientific research and patents. Initially, research in this area was not scalable

due to the complexity of scientific knowledge and focused solely on knowledge from a single scientific

field or innovations by firms within a single industry (e.g., Henderson and Cockburn, 1994; Zucker

and Darby, 1996; Zucker et al., 1998). More recent studies utilize scientific non-patent literature

citations by patents to link scientific knowledge to specific technologies (e.g., Ahmadpoor and

Jones, 2017; Arora et al., 2021; Marx and Fuegi, 2020). However, scientific non-patent literature

citations underestimate the broader impact of scientific research, as patents only need to cite the

scientific knowledge that directly influences the underlying inventions. Basic science can serve

as a more fundamental stepping stone for subsequent innovations across disparate technological

domains. For instance, while Artificial Intelligence (AI) originated as a scientific breakthrough in

computer science, AI technology now influences nearly all industries. Our novel research method

leverages the deep learning model’s contextual understanding capabilities to first comprehend the
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various categories of scientific knowledge embedded in scientific publications and then link them to

the specific types of scientific knowledge upon which these patents are based. In this regard, it is

important to recognize that patent applications include a technology classification that the USPTO

uses. However, this does not indicate the primary science on which the patent is based. We classify

patents on this latter basis so that we can link them to the scientific publications of BdScis.

Third, we document new evidence on the advisory role of outside directors by specifically

examining the impact of a BdSci on corporate innovation activities, thus helping to disentangle

directors’ monitoring and advisory functions. Unlike previous studies that often measure director

expertise by an indicator variable, our novel dataset enables us to investigate the heterogeneity

and dynamic nature of director expertise. Importantly, we demonstrate that this heterogeneity in

BdSci expertise matters for corporate innovation. For instance, a BdSci’s contributions to corporate

innovation activities vary, depending on their recent publication activities and the relevance of their

expertise to a firm’s current stream of patents. While some recent studies have examined the role of

academic directors (Francis et al., 2015; Pang et al., 2020; Xie et al., 2021), BdScis include not only

academic directors (making up 30% of BdScis), but also industry experts/practitioners. Including

these industry practitioners in our study is particularly salient because they bring together scientific

knowledge combined with practical experience needed to commercialize scientific research.

Last, our paper contributes to the existing literature on boards of directors by examining the

impact of the Human Genome Project as a novel exogenous shock to board structure and the

demand for particular types of director expertise. In contrast to prior research, which focuses on

the change in board structure due to exogenous director turnover events (Nguyen and Nielsen,

2010; Masulis et al., 2022), regulatory changes such as the introduction of the Sarbanes-Oxley

Act, the granting of Permanent Normal Trade Relations with China (Linck et al., 2008; Guo and

Masulis, 2015; Balsmeier et al., 2017; Chen et al., 2020), or cross sectional variation in the local

supply of director candidates near a firm headquarters (Knyazeva et al., 2013), our work shows that

scientific breakthroughs with potentially important commercialization opportunities also enhance

the economic benefits that firms realize from an existing BDSci, but also from appointing new

directors with related scientific expertise. In addition, scientific breakthroughs, which result in

the emergence of new product opportunities, serve as particularly useful exogenous shocks for

examining the sensitivity of corporate demand for the advisory services of outside directors. Given

the inherent complexity of such technology shocks, firms are more likely to prioritize the need for

a BdSci’s advisory services over her management monitoring ability around such events. Also, we

document the strategic practice of appointing new directors with specific expertise as part of a

firm’s strategic response to major technological changes in related fields.
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2 Data and Method

Our core dataset consists of information on firms’ innovation, board membership, directors’

publication profiles and patent portfolios. For each firm-year observation in the sample, we collect

the financial characteristics, innovation output, and board structures. Board structures include

directors’ names, classifications (inside or outside), employment, educational credentials, scientific

publications, and patents to enable us to examine the relation between firm innovations and direc-

tors’ scientific knowledge. Our combined data are from six sources: (i) BoardEx provides board

composition and director profiles; (ii) The CRSP and Compustat Merged data (CCM) provide firm

stock and accounting information; (iii) Scopus provides author profiles and scientific publications;

(iv) United States Patent and Trademark Office (USPTO) PatentView provides patents and patent

citations; (v) Marx and Fuegi (2020) provides patents’ Non-Patent Literature (NLP) citations; (vi)

Kogan et al. (2017) provides data on patent market values. All variable definitions are provided in

Table A1.

Our sample starts with the entire set of firms covered in both BoardEx and CCM from 1996 to

2018, which includes 92,876 firm-year observations and 8,104 firms. We exclude 24,187 firm-year

observations from financial firms (SIC 6000-6999) and regulated utilities (SIC4900-4999) and 165

firm-year observations with missing or 0 total assets. Our final sample consists of 68,524 firm-year

observations, 6,098 firms, and 39,283 unique outside directors. Note that outside directors can be

on multiple boards. Table 1 provides the sample characteristics.

2.1 Innovation data

We begin by linking three patent-related datasets taken from PatentView, Kogan et al. (2017),

and Marx and Fuegi (2020). The PatentView data provides the micro-records for all patents granted

by the USPTO from 1976 to 2020.9 We collect information on the patent number, application

year, grant year, citations, technology class, assignees, and inventors for each patent from the

2021 April version of the PatentView dataset. We map patents to publicly listed firms and obtain

patent market values from the Kogan et al. (2017) data. Patents cite not only other patents,

but also scientific publications, government reports, technology reports, and other product reports,

which are all defined as non-patent literature (NPL). An important subset of NPL is scientific

publications cited by patents, which are labelled Scientific Non-Patent Literature (SNPL). SNPL is

very informative about the scientific foundation on which a patent is based. Marx and Fuegi (2020)

map a patent’s NPL citations to scientific publications and provides information related to the

SNPL, such as authors’ names, DOI, and the scientific journal name. This data allows us to map

each patent’s SNPL to the associated scientific publications that serve as the scientific foundation

of the patent.

9As is the convention in this literature, we focus on Utility patents.
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2.2 Scientific knowledge data

We collect the scientific profiles of outside directors from the Scopus database (Rose and Kitchin,

2019). We use Scopus as our primary source of scientific information for two key reasons. Firstly,

the Scopus database has comprehensive coverage of publications (Singh et al., 2021), encompassing

high-quality articles from peer-reviewed academic journals. The comprehensive coverage of high-

quality articles allows us to identify successful scientists, their range of expertise, and their networks

of co-authors. Secondly, Scopus provides an author-level data structure, enabling us to construct

an individual scientific profile for each director.

We convert director names into a Scopus-compatible query format and search the Scopus

database. For each director, we gather all associated Scopus identifiers, names, and historical

as well as current affiliations returned by the query. A major challenge is that many outside di-

rectors share the same or similar names as authors in Scopus. To address this data challenge,

we establish links between outside directors and scientific authors by cross-referencing their names

with their employment histories. We consider an outside director to be a scientific author if there

is an overlap in their affiliations history. More details on the matching process can be found in

Appendix A.

The scientific knowledge data consists of the authors’ personal biographic information, scientific

impact, active research subject areas, and publication identifiers. For each linked profile, we retrieve

all Scopus publication identifiers and gather detailed publication information, such as title, year,

citation count (as of 2021), co-authors, journal name, and DOI. The final dataset comprises 274,790

publications authored by 3,586 BdSci. Journal articles constitute the largest proportion of Scopus

publications (74.19%), followed by conference papers (9.02%) and reviews (6.64%). The top three

research fields represented in our sample are biochemistry (9.65%), molecular biology (8.58%), and

oncology (7.02%).

2.3 Network analysis and professional community construction

We construct a BdSci’s professional network to investigate the relation between firm value and

a BdSci’s network. Our measure of a BdSci’s professional network combines the BdScis at the

firm, with her co-inventors and co-authors, and other inventors at the same firm. There are around

one million nodes (people) in this combined professional network. Nodes (people) are connected

through inventions and publications, while the strength of the connections is determined by the

number of patents, publications, or both that exist between each pair of nodes. The network is

measured as of December 2021.

To construct the inventor-scientist network, we map the patent profiles of BdScis and their co-

authors. More specifically, for those authors who are also inventors, we combine their publication

and patent profiles together. For example, individual A has publication and patent profiles due to

his/her patenting and publication activity. Suppose we do not aggregate the patent and publication
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profiles. In that case, our network will treat author A and inventor A as two different individuals

and create two network nodes for the same individual, resulting in double-counting. To prevent

double-counting, we implement a two-step procedure to identify the patent profiles associated with

each scientific author who is also an inventor. Details of this procedure are further described in

Appendix B

Our network has two special characteristics: first, the network is large, containing over 1 million

nodes; second, the network has numerous inner communities, suggesting a group of nodes are closely

connected within the group, but these nodes are isolated from other nodes within the network. For

example, authors within a specific research field frequently collaborate with others in the same

research area, thus forming inner communities based on their common research interests. The

study of inner community structure is important as the inner community allows us to identify the

groups of individuals collaborating closely with each other and who know each other very well as

inner community members. We use the inner communities to identify the group of authors who

work closely with a BdSci and assume that the BdSci knows these authors well. For example, the

researchers in a BdSci’s inner communities could include their co-authors, co-inventors, mentors

or PhD students. We use the Louvain community detection algorithm of Blondel et al. (2008)

to extract the inner community structure of the network. The Louvain algorithm allows us to

detect the inner community of individuals based on their innovation and publication activities. For

example, Inventor C works with two scientists, A and B. Inventor C has 20 papers with Scientist

A, but one paper with Scientist B. Inventor C has a closer relationship with Scientist A than with

Scientist B. The Louvain algorithm will cluster Inventor C and Scientist A in the same community.

A detailed explanation of the Louvain algorithm is in Appendix A. We chose the Louvain algorithm

given its speed in detecting communities in large networks, making it the most suitable choice for

our large network analysis.

2.4 Variables construction

For our sample, we extract the following firm characteristics: size, capital expenditures (CAPEX),

research and development (R&D) expenses, firm age, annual stock returns, and Tobin’s q. Size is

the logarithm of the firm’s total assets. Firm age is the natural logarithm of a firm’s age measured

as the difference between the current year and the first year the firm appears in the CCM database.

CAPEX and R&D are scaled by total assets. All variable definitions are provided in Table A1.

2.4.1 BdSci and BdSci’s influence

BdScis are defined as (1) outside directors with scientific publications, or (2) outside directors

who are inventors holding doctoral degrees. Including the second group is important because

they may represent scientists who focus on applied research and have many patents, but often no

publications. For outside directors where no employment or education is reported in BoardEx, we
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check if these directors have doctor or professor titles such as “Doctor”, “Professor,” and “Professor

Doctor” in their full names. Our sample has 4,047 BdScis, where 5% of these BdScis have no

publications.

We present BdSci characteristics in Panel A of Table 2. On average, BdScis have authored

71 scientific publications, received an average of 5142 citations, and had an average H-index of

19 over their careers as of year 2021. The H-index, measuring scientific influence, is defined as

the maximum value of h such that the author has published at least h papers, each cited at least

h times. The BdSci with the most publications is Homer Neal, a particle physicist and notable

figure in U.S. scientific policy as a member of the National Science Board of the National Science

Foundation. Eric Lander is the BdSci with the most citations, and he was a leader of the human

genome project and a former Science Advisor to the President of the United States. American

geneticist Michael S Brown is the BdSci with the highest H-index who won the Nobel Prize in

Physiology/Medicine in 1985.

Examining our BdSci pool further, we find that it includes some of the top scientists in the world,

such as 22 Nobel laureates in physiology or medicine, physics, economic sciences, and chemistry.

The field with the most Nobel laureates in our sample is physiology/medicine. Also, 142 BdScis

won at least one prestigious research award in science or technology. For example, BdSci Robert

Langer won the Wolf Prize. Robert Kahn and Vint Cerf won the Turing Award. 85 BdScis are also

US National Academy of Science members. Of our BdSci sample, 27% are full professors (excluding

non-academic professors like professors of practice) at a university. 5% of the BdScis hold or have

held an academic position (assistant professor to full professor) at Ivy League Universities.

We classify the primary subject area of BdScis based on the 2-digit Scopus subject area where

a BdSci publishes her most papers (based on rank ordering). Figure A.1 illustrates the primary

subject areas of 3,502 BdScis with available publication and subject area information. At the

macro level, subject area classifications encompass life and health science, physical science, and

general social science. A majority of BdScis specialize in life and health science, comprising 52%

of our sample. Following this, physical science and social science account for 30% and 18% of

the sample, respectively. Within the life and health science areas, the top three micro subject

areas are medicine, biochemistry, and pharmacology, accounting for 32%, 15%, and 2% of BdScis,

respectively. In the Physical science area, engineering, computer science and physics are the top

three micro subject areas, comprising 15%, 5% and 2% of the BdSci sample, respectively. For the

general social science category, the leading micro subject areas of the BdSci sample are business

(10%), social science (4%), and economics (2%), respectively. We use the terms BdSci i,t and BdSci

sharei,t to refer to BdScis at firm i for a given year t. BdSci i,t is an indicator variable equal to 1 if

firm i has at least one BdSci on the board at year t, and 0 otherwise. BdSci sharei,t is the ratio of

the number of BdScis scaled by the total number of directors in firm i in year t.

Furthermore, we gauge a BdSci’s influence on a firm’s patents by assessing the Scientific Non-

Patent Literature (SNPL) citations of the firm’s patents. The SNPL citations listed in a patent
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represent the prior knowledge in academic journals on which the patent is built. For each patent, we

gather its SNPL citations from patent documents and link SNPL citations to BdScis’ publications

using the DOI of each publication. We identify firm patents that reference BdSci’s publications

while the BdSci is on a firm’s board, labeling these patents as BdSci-influenced patents (BdSciIP).

BdSciIP presents a group of firm patents that are directly influenced by the scientific work of the

BdSci. We then employ BdSciIP to quantify the BdSci’s innovation influence at the firm over

their appointment period, which is the cumulative number of BdSciIPs divided by the cumulative

number of patents awarded to the firm over the same time period. The cumulative number of

BdSciIPs allows us the measure how a BdSci’s influence on the firm’s patents varies as of the year

that the BdSci joined the board. The influence of a BdSci d at firm i in year t, and the year of the

director’s initial appointment in year t-n, is calculated by the following summation formula:

BdSci influencei,d,t =
Cum #BdSciIPi,d,[t−n,t]

Cum #Patentsi,[t−n,t]

(1)

We use the cumulative number of BdSciIP and patents up to the focal year as a BdSci’s influence

measure. This influence measure remains constant in all the years when the firm is not filing

new patents, and the measure builds on a director’s prior knowledge and expertise. The influence

measure suggests that BdSci’s scientific works influence more of a firm’s innovation activity when the

firm has proportionally more patents that cite BdSci’s publications. For example, Michael Brown,

is a BdSci who joined Regeneron Pharmaceuticals in 1991. Regeneron Pharmaceuticals’ patents

gradually cite more of Michael Brown’s scientific publications over subsequent years. Michael

Brown’s influence rises with the growth in the share of Regeneron Pharmaceuticals’ patents that

cite Michael Brown’s scientific works scaled by the firm’s total number of patents over the same

period.

2.5 Deep learning method using SciBERT

Apart from the influence of BdScis, their level of expertise also plays a critical role in a firm’s

innovation activity. We measure the expertise of BdScis by considering the number of recent

publications they have authored and the number of citations that their publications have received.

It’s important to note that even among BdScis specializing in the same subject areas, their levels of

expertise can vary significantly. The number of publications and the number of citations received

by a BdSci’s work serve as two measures of a director’s knowledge and expertise. BdScis who

publish more papers or whose papers receive more citations are generally considered to possess a

higher degree of expertise. It is also important to acknowledge that successful researchers may have

expertise across a range of subject areas, and it is unrealistic to assume that a BdSci is equally

specialized in all the areas they have published in. Therefore, our approach focuses on measuring

expertise at the subject area level. Furthermore, the expertise of a BdSci in a specific scientific

subject area should only affect those firms’ patents that can utilize knowledge from this area. To
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accurately map the firm’s patents to the BdSci’s subject areas, we use the Large Language Model

(LLM) of deep learning.

2.5.1 LLM: BERT

Mapping patents to scientific subject areas requires a deep understanding of knowledge in

various scientific areas. LLMs are trained using a large amount of text from diversified sources.

Google AI has an LLM, which is called the Bidirectional Encoder Representations from Transform-

ers(BERT) model. The BERT model is a pre-trained model on Toronto BookCorpus and Wikipedia

for two tasks, which are Masked Language Modeling (MLM) and Next Sentence Prediction (NSP).

In the MLM task, the model randomly masks a percentage of words in a sentence and then predicts

the masked words using the unmasked words in the sentence. The MLM task helps the model to

understand the bidirectional context of a sentence, which is key to grasping the meaning of words

in contexts. For the NSP tasks, the model randomly selects a pair of sentences and then it must

predict whether the second sentence is a subsequent sentence of the first sentence. NSP trains

the model to understand the relationship between sentences, which is key to understanding the

information content of the paragraph.

2.5.2 Training the model and performance

Our labeled dataset includes 340,000 abstracts of BdSci’s publications and patents. We first

define the target subject areas for patents. We selected 8 primary subject areas of the labeled

sample: Biochemistry, Chemistry, Computer Science, Engineering, Materials Science, Medicine,

Pharmacology, and Physics. These 8 subject areas comprise 90% of the abstracts in the labeled

sample. Following the best deep learning conventions, we split our labeled dataset into 80% for

training, 10% for validation, and 10% for testing. The validation dataset is used during training

to monitor the training process, while the test dataset, which is never used during training, serves

to evaluate the model’s performance. After we trained the model using the training dataset, we

evaluated our model using the test dataset. To evaluate our model, we use three conventional scores

in the machine learning literature, which are precision, recall and f1 score. Our model achieves

weighted average values of precision, recall, and F1-scores of 0.79, 0.75, and 0.77, respectively.

Detailed performance metrics for each subject are provided in Table A3.

Understanding scientific knowledge across multiple subject areas is inherently complex and

challenging, posing significant difficulties even for expert human analysts due to the vast and

diverse nature of scientific information. For more complex tasks, lower performance of the model

is expected. For example, Guzman and Li (2023) uses machine learning to predict the early-

stage success of startups and achieves a similar performance to our model. We further validated

our model by investigating the extent to which mutually cited patents originate from the same

scientific subject areas. Our findings show that 82% of the mutually cited patents belong to the

same scientific subject areas.
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To measure the expertise of BdScis, we analyze their publications at the subject areas level

and align their expertise with patent’ scientific subject areas assigned by our deep learning model.

It is also important to recognize that BdScis’ expertise can change over time, especially if they

start publishing in new areas or stop publishing in some of their older research areas. To account

for this, we concentrate on BdScis’ publications over the past three years, which provides a more

current and relevant assessment of their expertise. We construct our BdSci expertise measure for

director d at the firm i and the subject area s level with a three-year rolling window, which is

the average number of publications or publication citations for BdSci d of firm i in subject area

s. We employ a log transformation due to the variable’s skewed distribution. The formulas for the

expertise variables are defined as follows:

Expertise(pub)i,s,t = Log(1+Avg(No.pubi,d,s,[t−3,t])) (2)

Expertise(cites)i,s,t = Log(1+Avg(No.Citesi,d,s,[t−3,t])) (3)

2.6 Bridging Between R&D and Innovation Quality

This section describes two groups of outcome variables: one outcome category captures bridging

activities between research and development, and the other outcome category captures the quality

of a firm’s innovations. The outcome variables that capture bridging activities between research

and development include Science-based Patents (Sci. Pat.), Fundamental Patents (Funda. Pat.),

and Government Patents (Gov. Pat.).

Inspired by Arora et al. (2024b), Sci. Pat. refers to patents that cite at least one SNPL, and

the number of citing SNPL is above the 75th percentile of patents in the same technology class and

year. In contrast, Arora et al. (2024b) defines Sci. Pat. as patents in the top three quartiles. Our

stringent definition ensures that these patents provide stronger evidence of a narrower gap between

scientific research and patent innovation. In robustness analysis, we find that our results hold when

using Sci. Pat. (90), defined as patents that cite more SNPL than the 90th percentile of patents

in the same technology class and year.

A limitation of Sci. Pat. is that some of these patents may not be fundamentally important,

as they may cite a large number of SNPL that generate little value for the firm. To address this

limitation, we introduce Funda. Pat., defined as patents based on scientific research that serve as

foundational innovations for subsequent patents. For a patent to be classified as a Funda. Pat., it

must cite at least one scientific publication and receive more citations than the 75th percentile of

patents in the same technology class and year. These two conditions not only insure that Funda.

Pat. are developed from scientific research, but also that they are important patents that generate

a large number of citations. In Table A4, we evaluate the quality of Funda. Pat. in terms of market

value, generality, and originality. We compare Funda. Pat. to other patents within the same firm,

technology class, and grant year. We find that they have a 3% higher market value, 13.3% greater
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generality, and 1.5% higher originality than other similar patents in the same firms, technology

class, and year.

The government often plays an important role in funding scientific research and promoting

the commercialization of research, as documented in (e.g., Arrow, 1962; Nelson, 1959b; Howell,

2024; Fleming et al., 2019), making Gov. Pat. a good measure of the bridging of research and

development activities. We obtain data on Gov. Pat. from Gross and Sampat (2025). Gov. Pat.

are patents whose titles are held by individual firms, but they were funded at least partially by the

U.S. Federal government. Firms can retain titles to patents developed with government support,

provided that the government retains a royalty-free license to use these innovations, as stipulated

by the Bayh-Dole Act.

To construct innovation output measures at the firm and year levels, we map patents to a firm

based on the patent’s application year and link. To capture bridging activities between R&D of

firm i in year t+1, we calculate the share of firm i’s total number of patents in year t+1 that are

represented by Gov. Pat., Funda. Pat., and Sci. Pat.. We use a share of these three types of

patents rather than raw numbers because the share better reflects the shifts in a firm’s innovation

strategy. In robustness analysis, we find that the results from using raw numbers are similar.

To capture the quality of a firm’s innovation output, we use Number of Patents (#Pat.), Ad-

justed Cites(Adj.cites), Patent’s Market Value(Values) in Kogan et al. (2017), and Number of Break-

through Patents(#B.through Pat.). More specifically, #Pat.i,t+1 is the total number of patents filed

and eventually granted in firm i at year t+ 1. We use Adj.cites to address the truncation issue in

the citations dataset, we use the number of raw cites over the average cites of patents in the same

technology class and grant year Hall et al. (2001). Adj.cites i,t+1 is firm i’s average Adj.cites per

patent in year t+ 1.10 Valuet+1 is the logarithm of the average market value of firm i’s patents in

year t + 1. #B.through Pats i,t+1 represent the number of patents ranked in the 90th percentile of

patent citations at firm i in year t+ 1.

2.7 Descriptive statistics

Table A2 presents the characteristics of our sample firms. On average, our sample firms exhibit

a 21% leverage ratio, log(sales) of 5.56, return on assets of 4%, annual stock market return of 13%,

a 2.21 Tobin’s q, a 2% free cash flow relative to total assets, R&D expenditures of 10% of total

assets, CAPEX of 5% of total assets, and PPE of 25% of total assets.

Table 1 presents a comparison between firms with and without BdScis on their boards based on

firm fundamentals, valuation, and growth characteristics. The sample is divided based on whether

firms have at least one BdSci during the sample period. Throughout the sample period, there are

34,128 firm-year observations without BdScis and 34,396 firm-year observations with at least one

BdSci. The average number of BdScis per firm-year observation is 0.63. Firms with BdScis, on

10All patent citations are counted as of December 2021.
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average, are larger in total assets and their average Tobin’s q is higher. They also exhibit lower

leverage, less cash holdings, invest more in R&D, and have higher valuations, highlighting their

economic significance.

Contrary to common perceptions, we find that 69% of BdScis are industry scientists. Panel

B of Table 2 highlights the differences between industry and academic BdScis in terms of their

publication profiles and inventor status. Industry BdScis are more likely to be inventors, but tend

to publish fewer papers and receive fewer citations. Panel C of Table 2 compares the characteristics

of BdScis with those of non-BdScis. We find that BdScis are more likely to be inventors, but less

likely to hold professional degrees such as JDs or MBAs, or to have experience in finance and

executive roles. This suggests that BdScis possess different skill sets and offer distinct types of

expertise compared to non-BdScis. Specifically, most BdScis specialize in basic sciences such as

medicine, biochemistry and engineering. These basic science areas exhibit more innovation in

terms of patents granted. Conversely, non-BdScis typically have generalized management skills for

corporate operations such as finance, management and law.

In our sample, 2,199 outside directors are inventors (i.e., invent at least one patent), including

1,097 scientific inventor directors and 1,102 non-scientific inventor directors. Panel C of Table 2

presents the patent portfolios of inventor directors, separately for BdScis and non-BdScis. On av-

erage, firms with scientific inventor directors outperform firms without scientific inventor directors

in both the quality and quantity of their patent portfolios. More specifically, firms with scien-

tific inventor directors have more patents with more adjusted citations, larger scope, and larger

generality and originality than firms without scientific inventor directors, and these differences are

statistically significant.

3 Empirical results

3.1 BdScis and Bridging Activities Between R&D

We begin our analysis by examining the role of BdSci in bridging R&D and enhancing innovation

quality. BdScis represent a distinct subset of outside directors. Unlike traditional outside directors,

who often bring operational experience, political connections, or strategic business expertise, BdScis

are characterized primarily by their scientific expertise. This unique background is particularly

valuable because basic scientific research is a key source of innovative ideas and plays a crucial role

in driving innovation (Arora et al., 2021). The majority of BdScis are prestigious scientists who

work at the forefront of scientific research, which allows them to identify promising state-of-the-art

scientific discoveries that are ripe for future innovation. The scientific expertise of BdScis positions

them to act as a bridge between science research and patent innovation. Moreover, the integrity of

BdScis, which stems in part from the value scientists place on their professional reputations, is a

key factor that insures that they provide honest and insightful advice on a firm’s research progress.

18



We expect BdScis to play an important role in bridging R&D activities and enhancing innovation

performance as a result of their scientific expertise and superior advisory capabilities.

Many examples come to mind. First, John Baxter, serving as a BdSci on the board of Bionovo,

while also being a member of the U.S. National Academy of Sciences, exemplifies the benefits of

such directors. The CEO of Bionovo has highlighted John Baxter’s role in helping the firm to

advance clinical trial programs using his experience in transforming his scientific discoveries into

successful therapies (PRNewswire, 2008). A second example is Robert Langer, who is a BdSci of

multiple firms and one of three living people who have received the U.S. National Medal of Science

and the National Medal of Technology and Innovation. Robert Langer highlights the pivotal role

of a scientist’s expertise in managing a firm’s research progress, identifying breakthroughs in basic

science, and connecting the firm with capable scientists (Langer, 2016).

First, we examine whether BdScis play an important role in bridging R&D by using the following

regression:

Yi,t+1 = α0 + αj + αt + β1BdScii,t + λX ′
i,t + ei,t (4)

where for firm i in year t, Yi,t+1 includes the share of Gov. Pat., Sci. Pat., and Funda. Pat.,

relative to the firm’s total number of patents, as detailed in Section 2.6. BdScii,t is an indicator

variable that equals one if firms have at least one BdSci in the year t and zero otherwise. The

main coefficient of interest (β1). X represents the vector of firm control variables: total assets,

R&D, CAPEX, firm age, annual returns, financial leverage, share of independent directors and an

indicator for a scientific CEO;11 αj and αt are SIC 4-digit industry fixed effects and year fixed

effects, respectively.

Coefficients shown in Columns (1-3) of Table 10 are positive and statistically significant at 1%,

showing that firms with BdSci have a larger share of Gov.Pat., Sci.Pat., and Funda.Pat. than

other firms in the same industry. More specifically, firms with a BdSci produce 0.3% more Gov.

Pat., 3.2% more Sci. Pat., and 1.3% more Funda. Pat. than other similar firms within the same

industry, suggesting that these firms place greater emphasis on scientific research in their innovation

activities.

Second, we investigate the role of BdSci in enhancing innovation output using Equation 4, where

innovation qualities are measured using firm i’s #Pat., Adj.cites, Value and B.through Pat. in the

next year.

Columns (4-7) of Table 3 report Poisson regressions for count dependent variables and OLS

regressions for non-count dependent variables. The results indicate that firms with BdScis demon-

strate superior innovation performance in terms of the quantity and quality of their patents com-

pared to other firms within the same industry without BdScis. Column 4 focuses on the relationship

between BdScis and #Pat., and we observe a positive coefficient of 0.292, which is statistically sig-

nificant at the 10% level. This suggests that firms with BdScis have 1.34 (e0.292) times more patents

11The results are robust to controlling for the scientific expertise of other executives, such as the Chief
Technology Officer(CTO), Chief Scientific Officer(CSO) and Chief Medical Officer(CMO).
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than other firms in the same industry without BdScis. Moving to Adj.cites in column 5, we find the

coefficients are statistically significant at the 5% level. The coefficient of BdSci is 0.051 in column 5.

This estimate indicates that firms with BdScis on the board produce 0.051 higher average adjusted

cites per patent compared to similar firms in the same industry without BdScis. Column 7 shows

that firms with BdScis produce more breakthrough patents, with β1 equal to 0.313, which is statis-

tically significant at the 5% level. This coefficient estimate suggests that firms with BdSci produce

1.37 (e0.313) times more breakthrough patents. In untabulated tests, we find that our results are

robust to using alternative industry fixed effects, such as FIC industry codesHoberg and Phillips

(2016) and 3-digit SIC codes, as well as when we measure the outcome variables over different time

horizons, such as the next 3 or 5 years.

4 Endogenous director appointments

The appointment of BdScis by innovative companies reflects an endogenous board selection

process. This endogeneity implies that BdScis may not causally enhance firm innovation; rather,

they may be appointed because innovative firms already have prior ties with these scientists. For

example, innovative firms are more likely than others to collaborate with university researchers

through R&D contracts and may consequently have stronger connections to BdScis in universities

or research institutions. Moreover, BdSci candidates may themselves prefer to join more innovative

firms, reinforcing the non-random matching between BdScis and firm innovation.

In this section, we address the above endogeneity concern using two complementary strategies.

First, we exploit exogenous shocks from technological breakthroughs, such as the Human Genome

Project. Second, we use the local supply of BdScis as an instrumental variable to capture director

preferences for serving on local boards.

4.1 Human genome project

We examine whether a positive technological shock results in an increase in a firm’s demand

for BdScis. In this experiment, we begin by assuming that a positive technology shock will increase

the value to a firm of having BdScis as board members, who are either generally conversant with

the technology being shocked or have expertise in this technology. This shock should increase the

economic benefit of the BdSci and a firm’s demand for these BdScis. This can be because these

BdScis can help guide the firm’s new investments in the shock-affected technology or help recruit

relevant experts due to their professional connections with these scientists. It can also be because

these BdScis can provide valuable guidance to a firm’s technology investments, advising both the

board and senior executives about which internal projects or acquisition targets are most promising

with regard to the shocked technology.

For our experiment, we focus on an industry-specific technology shock associated with the

Human Genome Project (HGP), which is an international scientific research project launched in
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1990 with the aim of identifying, mapping, and sequencing all the genes of the human genome. The

project freely published all its data related to the human genome, which was eagerly seized upon

by pharmaceutical firms seeking to develop innovative drugs or devices with the help of this human

genome map. Highlighting its economic value to the shocked industry, some firms were known to

pay significant amounts of money to obtain privately patented human genome data prior to the

HGP data’s public release date so as to gain a competitive advantage in the human genome drug

market (Williams, 2013).

Thus, we utilize the HGP as an exogenous shock to the demand for BdScis due to their increased

expected value to firms in the genetics-related industries. We investigate whether firms in industries

that benefit from HGP appoint more BdScis and subsequently produce more patents following the

publication of the HGP findings. We define our genetics-related industries as firms in industries

that can convert human genome data into commercialized devices or products. Specifically, we

classify genetics-related industries to include the drugs and pharmaceutical products (13) and lab

equipment (37) industries identified from the Fama-French 48 industry classification. We include

the lab equipment industry because they produce DNA and protein detection equipment and DNA-

sequencing machines. Our analysis is based on the event year 2001, when the full draft of the gene

sequence map and the initial analysis of the HGP became publicly available. We hypothesize that

the economic benefits of having a BdSci increase after the public release of the HGP findings,

leading to a rising demand for BdScis by firms in genetics-related industries. It is important to

note that, in our analysis of HGP, we do not claim a causal effect of BdScis on firms’ innovation

output. Instead, our focus is on the causal effect of a major exogenous technology breakthrough on

the economic benefit of having a BdSci on the board and the subsequent firm demand for BdSci.

We first investigate whether firms in genetics-related industries are more likely to hire BdScis in

general or BdScis with genetics expertise, which we hereafter denoted as genetics BdScis, following

the public release of the HGP results, which we attribute to the rise in the expected economic

benefits associated with having a BdSci. The first stage regression equation is specified as follows:

BdSci/genetics BdSci sharei,t = αi + αt + βgenetics industryi ∗ Post2001t + λX ′
i,t ++ei,t (5)

where BdSci/genetics BdSci sharei,t is the ratio of the number of BdScis or genetics BdScis scaled

by the total number of directors at firm i in year t; X is a vector of the firm control variables

defined in Equation 4; αi and αt are firm and year fixed effects. All standard errors are clustered

at the 4-digit industry level.

Panel A of table 4 shows that firms in the genetics-related industries hired more BdScis and

genetics BdScis to their boards after 2001. Column 1 presents OLS regression of BdSci share against

the interaction between genetics industries and post 2001. The coefficient in column 1 is 0.027 and

statistically significant at the 1% level, suggesting that firms in the genetics-related industry have

2.7% more BdScis than firms in other non-genetics industries after the HGP shock. Additionally,

figure 3 presents the time trend in the board’s share of BdScis before and after 2001 and indicates
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no pre-trend in the two years prior to the HGP treatment year. Column 3 evaluates the effect

of HGP on the share of genetics BdScis on the board. The coefficient in column 2 is 0.019 and

statistically significant at the 1% level, suggesting that firms in the genetics-related industry have

1.9% more genetics BdScis than other firms after the HGP shock, as predicted.

Covariate imbalances between firms in genetics-related and non-genetics industries may bias

comparisons and inferences. To mitigate this concern, we implement a propensity score matching

approach to construct a control group of firms with comparable characteristics. The matching

covariates include firm size, ROA, annual return, and number of patents, measured up to the event

year 2001. Notably, including patent activity helps address the concern that firms with stronger

innovation capacity may be more likely to appoint BdScis. Table A5 confirms that, after matching,

the differences in covariates between the treatment and control groups are statistically insignificant.

Columns 3 and 4 in Panel A of Table 4 present the analysis based on the matched sample. We find

that our results remain robust. Specifically, the dependent variables in columns 1 and 2 are the

shares of BdScis and genetics BdScis on the board. The estimated coefficients are 0.031 and 0.019,

respectively, both statistically significant at the 1% level, indicating that firms in genetics-related

industries appoint more BdScis and genetics BdScis than comparable firms in other industries

following the 2001 technology HGP shock.

There are two limitations of the analysis of the HGP’s effect on the BdSci share of directors.

First, we assume that the economic benefits of BdSci appointments increase following the HGP.

However, this assumption may be fragile if firms appoint BdScis primarily to signal the promise of

their genetics-related products, rather than to leverage their expertise. Second, although we imple-

ment propensity score matching, cross-industry comparisons may still be biased due to unobserved

industry heterogeneity. To overcome these limitations, we refine our analysis by focusing exclusively

on genetics-related industries and then comparing changes in innovation output between genetics

firms that appointed new Genetics BdScis within two years after the 2001 shock and firms that did

not in Panel B of Table 4. Our regressions take the following form:

Innovation outputi,t+1 = αi + αt + β1Gen. BdScii ∗ Post2001t + λX ′
i,t ++ei,t (6)

where Gen. BdScii, t is an indicator variable equal to 1 if firm i appoints a Genetics BdSci

within two years after the event, and 0 otherwise; the dependent variable, Innovation outputi, t+ 1,

represents the innovation output of firm i in year t+ 1; X is a vector of firm-level control variables

as defined in Equation 4; αi and αt denote firm and year fixed effects, respectively. All standard

errors are clustered at the 4-digit industry level.

Panel B of table 4 shows that firms that appointed genetic BdScis produce more patents and

breakthrough patents than other firms in the same genetics industries after 2001. The dependent

variable in column 1 is the number of patents in the next year. Column 1 reports Poisson regression

estimates of the number of patents on the interaction between Gen. BdSci and post. The coefficient

in column 1 is 0.419 and statistically significant at 5%, suggesting that firms appointing genetic
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BdScis produce 1.52 (e0.419) times more patents than similar firms in the genetic industries after

2001. The dependent variable of column 2 is the number of breakthrough patents at the 90% level for

the next year. The coefficient in column 2 is 0.570, which is statistically significant at the 1% level,

indicating that firms with new genetic BdScis have 1.77(e0.570) times more breakthrough patents

than other firms in the genetic industries after 2001. Column 3 investigates the effect of the HGP

shock on the number of breakthrough patents at 99% in the next year. These breakthrough patents

at the 99% level are economically more significant, as they receive more citations than the 99th

percentile of the citation distribution within the same technology class and grant year. Interestingly,

column 3 shows that firms in the genetics industry have 2.9(e1.068) times more breakthrough patents

at 99% level than similar firms in the genetic industries after 2001. Columns 4 and 5 show no

statistically significant relationship when the dependent variables are patent market value and

adjusted citations.

Overall, we find that firms in industries that benefit most from genetics knowledge are more

likely to appoint BdScis in the post-2001 period than comparable firms in other industries. By

comparing firms that appoint new Genetics BdScis to similar firms within the genetics industry

that did not, we find that the former group experienced greater increases in both patent quantity

and quality after 2001. This suggests that BdScis with relevant genetics expertise contribute

positively to firm innovation. Thus, our evidence is consistent with a positive technology shock

increasing the value of BdScis, which in turn leads to more frequent appointments in the affected

industries. This evidence of the increased presence of BdSci post-HGP is inconsistent with a reverse

causality explanation, as the HGP exogenously increased the economic value of BdSci. This result

confirms that firms are benefiting from the scientific expertise of BdSci that is enhanced by the

HGP breakthrough.

4.2 Local BdSci supply

The analysis of the HGP shock provides only suggestive evidence on the effect of BdScis on firms’

innovation output and is limited to a single industry, raising concerns about external validity. This

section addresses these limitations by examining the relationship between the presence of BdScis

on corporate boards and innovation outcomes, using the local supply of BdSci candidates as an

instrumental variable (IV). The IV approach helps address these limitations by estimating the Local

Average Treatment Effect (LATE), which captures the causal effect of BdSci presence—induced by

variation in the local supply instrument—on innovation output across innovative industries.

Following Knyazeva et al. (2013), the Local BdSci supply is the logarithm of one plus the number

of BdScis in firms headquartered within 60 miles of the focal firm’s headquarters, excluding firms in

the same four-digit SIC (SIC4) industry. As Knyazeva et al. (2013) suggest, we exclude firms in the

same four-digit SIC industry because executives of close competitors are unlikely to be appointed

to the focal firm’s board due to competition concerns and anti-trust legal liability. In addition,

we exclude firms located in Alaska and Hawaii, comprising only a handful of observations. The
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Compustat dataset continuously updates firms’ headquarters information, but fails to account for

historical changes in headquarters locations. To overcome this limitation, we use the dataset from

Jennings et al. (2017), which provides historical headquarters data and captures changes in firms’

headquarters locations.

To calculate the local BdSci supply, We first measure the distance between the focal firm and

other firms by using the Great Circle Distance. The inputs of Earth’s Great Circle Distance (EGCD)

are the longitudes and latitudes of the two headquarters locations. The output of EGCD is the

distance between the two locations in miles. The firm’s headquarters zip codes are from Compustat.

We use the U.S. Census Gazetteer to find the longitudes and latitudes of each firm’s location that

correspond to the location centroid of its zip code. Additionally, BdSci may be located in areas

with a rich supply of scientists who could help advance the firm’s innovation activities. Thus, it is

important to control for the local supply of scientists near the firms. We proxy the local supply of

scientists using the logarithm of one plus the number of tenured assistant/associate/full professors

(including professors who are on the tenure track) in universities located within 60 miles of the

focal firm’s headquarters.

It is essential to assess the validity of the IV’s relevance condition and the exclusion restriction.

With respect to the relevance condition, a qualified BdSci has substantial demands on his/her

time because he or she is commonly an executive at another firm or otherwise can have a full-

time public or private sector job. Locally available BdScis are generally in short supply and thus

represent a scarce human resource for a firm. Firms often rely on BdScis to advise them on their

major innovative projects. In such cases, the firm could demand substantial time and energy from

a BdSci to provide the firm with valuable feedback on their innovation investments, potentially on

a frequent basis. Given these expected demands, local directorships are more likely to be attractive

to BdSci candidates since they minimize the time needed to attend board meetings.

Empirically, column 1 of Table 5 presents the first stage regression as the following statistical

model:

BdScii,t = α0 + β1Local BdSci supplyi,t + λX ′
i,t + αj + αt + ei,t, (7)

where BdSci i,t is an indicator variable equal to 1 if the firm i has at least one BdSci in year t and

0 otherwise.

The coefficient of the local BdSci candidate supply in Column 1 of Table 5 is statistically

significant at the 1% level, suggesting that likelihood of having a BdSci on the board increases by

0.016 for each 1% increase in the local BdSci supply. The F statistic is 140.36, which is greater than

10, supporting the relevance of the IV. Since the headquarters location is generally selected early

in a firm’s life, we treat it as exogenously determined for our analysis. The location of the firm

headquarters is also unlikely to affect innovation outputs directly, especially after controlling for

the supply of local scientists. Thus, we argue that the Local BdSci supply only affects innovation

output through the share of BdScis on a board. We conclude that the IV meets the relevance and

exclusion conditions.
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In the second stage, we regress future innovation metrics on the predicted share of BdScis based

on the fitted value of the local BdSci candidate supply regressions, denoted with a hat, which is

specified as:

Innovation outputi,t+1 = α0 + β1
^BdScii,t + λX ′

i,t + αj + αt + ei,t, (8)

where Innovation output i,t+1 is the logarithm of the innovation output of firm i over years 1 through

3; X is a vector of the firm control variables defined below Equation 4; while αj and αt are three-digit

SIC industry and year fixed effects.

Table 5 shows that the fitted values of the BdSci share are positively related to the number

of new patents and the average market value of the new patents. The IV estimates should be

interpreted as Local Average Treatment Effects (LATE). Firms with a greater local BdSci supply

tend to appoint more BdScis, and these treated firms with more BdScis produce more patents and a

larger average market value per patent within the same industry. More specifically, the dependent

variable in column 3 is the logarithm of average market values of patents in the next year. The

coefficient in column 3 is 0.866 and statistically significant at 10% level. Column 3 shows that for

a 1% increase in the number of local BdSci candidates nearby the focal firm, the treated focal firm

experiences a 1.4% (0.016×0.866) increase in the average market values of patents in the next year

within the same industry. Examining the number of patents, the coefficient of column 4 is positive

and statistically significant at 5%, suggesting that for a 1% increase in the local BdSci supply, the

treated firms produce 3.131% (0.016×1.957) more patents than other similar firms in the same

industry. Given that the endogenous variable BdSci is a binary variable, which may lead to biased

estimates in a 2SLS model, we also use BdSci share as an alternative measure for the presence of

BdScis. We present the results using BdSci share as the instrumented variable in Columns 5 to 8

of Table 5, and find similar results.

Overall, we find that the focal firms hire more BdScis to their boards of directors when there is

a greater supply of local BdSci candidates. Importantly, these BdSci-appointing firms experience

better innovation performance based on multiple innovation metrics than other firms in the same

industry.

5 Channels: BdSci knowledge and professional net-

works

In this section, we explore the channels through which BdScis enhance firm value, focusing

on two key characteristics: their scientific knowledge and professional networks. Firstly, we gauge

the influence of BdScis on firm patents and examine the relation between their influence on firm

patents and the efficiency of firm innovation in Section 5.1. In Section 5.2, we more rigorously assess

the relation between firm innovation and BdSci expertise, measured by their recent publications.

Finally, we investigate BdScis’ role in its firm’s recruitment and retention of inventors by leveraging
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their professional networks in Section 5.3.

5.1 BdSci influence on a firm’s patents

This section investigates the relation between a BdSci’s influence on firm patents and the

quality and quantity of the firm’s innovation output. As presented in Section 2.4.1, a BdSci’s

influence is measured by the firm’s cumulative number of patents that cite the BdSci’s work over

the cumulative number of patents awarded to the firm. The increasing influence of BdScis on a

firm’s patent applications emphasizes the important advisory role of BdScis in the firm’s innovation

process, given that the scientific work of the BdSci is directly influencing a firm’s patent inventors.

Also, the greater influence of a BdSci suggests that a BdSci’s expertise is more relevant to the

technology underlying the firm’s patents.

Our data is at the firm, BdSci and year level, and it allows us to include firm×director fixed

effects. The firm×director fixed effect exploits the fact that a BdSci’s influence can vary over

time, so that within firm-director pairs can arguably change their effects on a firm’s innovation

outcomes such as after an exogenous shock. More specifically, including firm×director fixed effects

eliminates several types of confounding events on a firm’s innovation output, such as an innovative

firm endogenously appointing a more influential BdSci. The inclusion of firm×director fixed effects

allows us to capture the time series variation in a BdSci’s influence within a specific firm-BdSci

pair. The firm×director fixed effects facilitate an examination of the correlation between shifts

in a BdSci’s influence and the corresponding changes in innovation output. In contrast, firm and

director fixed effects only capture the time-invariant associations of a director and a firm on a

firm’s innovation activity, such as director quality or firm culture. Our regression equations take

the following form:

Innovation outputi,d,t+1 = α0 + βBdSci’s influencei,d,t + αi,d + αt + X ′
i,tλ+ ei,t, (9)

where Innovation output i,d,t+1 is the innovation output of firm i given BdSci d is on the board in

the next year; X is a vector of firm control variables defined below Equation 4; while αi,d and αt

are firm×director and year fixed effects. All standard errors are clustered at the 4-digit industry

level. Table 6 reports Poisson regression estimates for count-based dependent variables (Cohn et al.,

2022) and OLS regression estimates for the non-count dependent variables.

Panel A of table 6 shows firms produce higher-quality innovation output when the BdScis have

a greater influence on a firm’s patent innovation activity. The dependent variables in column 2 are

the average adjusted cites in the next year. The coefficient in column 2 is 0.869, and is statistically

significant at the 5% level, suggesting that firms receive 0.869 more average adjusted citations when

BdSci influence increases by one unit. For the average value of patents, the coefficients in column

3 is 0.77, which are significantly different from zero at the 1% level, indicating that firms have 77%

larger average market value for their patents when BdSci influence increases by one unit.
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5.2 BdSci expertise and a firm’s innovation activity

In Section 5.1, we assess a BdSci’s influence on a firm’s patents by examining a firm’s patents

that directly reference the scientific works of a BdSci. However, there are two limitations to this

measure of a BdSci’s influence. First, relying only on direct citations to a BdSci’s publications is an

overly conservative approach to determining the connection between a firm’s patents with a BdSci’s

expertise and influence. A firm’s innovation activities can also be influenced by a BdSci’s expertise

when a firm’s patent is based on the body of knowledge in the same areas where BdScis actively

do research. Secondly, this BdSci influence measure provides limited insights into the influence of

their recent scientific research. For instance, BdScis might begin working on new areas of research

that are beneficial to a firm’s innovation activity, but these publications in these novel research

domains, which are not directly cited by a firm’s recent patents due to the lag between scientific

research publications and patent applications (Ahmadpoor and Jones, 2017).

We use the deep learning method described in Section 2.5, to address the limitations of the prior

measure of a BdSci’s influence. We construct a patent dataset that is denoted by firm, scientific

subject area, and year, where we identify a patent’s main scientific subject areas based on the deep

learning method. We also match the subject areas of a firm’s patents with the subject areas of

a BdSci’s publications over the prior 3 years. The analysis allows us to evaluate the impact of a

BdSci’s expertise on a firm’s patents that benefit from this knowledge base, even if these patents

do not directly cite a BdSci’s publications. Also, we investigate the effect of a firm’s innovation

activities on a BdSci’s recent research activities. Our regressions have the following form:

Innovation outputi,s,t+1 = α0 + αi + αt + αs + β1Expertisei,s,[t−3,t] + λX ′
i,s,t + ei,s,t (10)

We use two BdSci expertise measures as described in Section 2.5. First, Expertise(pub)i,s,[t−3,t]

is the logarithm of one plus the average number of publications in the subject area that BdScis

authored in the past three years. Second, Expertise(cites)i,s,[t−3,t] is the logarithm of one plus the

average number of publication citations in the subject area that the BdScis authored in the past

three years. We further match the BdSci’s expertise to the firm’s innovation output by subject

areas. Innovation outputi,s,t+1 is the innovation output in subject area s for firm i in the next year;

X represents the vector of firm control variables used earlier below Equation 4; while αi,αs and αt

represent firm, subject area and year fixed effects, respectively. The standard errors are clustered at

the 4-digit industry level. Table 7 reports Poisson regression estimates for count-based dependent

variables (Cohn et al., 2022) and OLS regression estimates for the non-count dependent variables.

Columns 1 and 2 of table 7 show that a firm produces more patents in subject areas where a

BdSci has more publications or receives more citations. More specifically, the coefficient of column

1 is 0.449 and statistically significant, suggesting that a firm is associated with 1.567(e0.449) times

more patents in the subject areas where a firm’s BdScis publish more. The coefficient of column

2 is 0.164 and statistically significant at the 1% level, suggesting that a firm is associated with

27



1.178(e0.0.164) times more patents in subject areas where BdScis receive more citations. Regarding

a firm’s average adjusted cites per patent reported in columns 3 and 4, the coefficients of expertise,

whether measured by publications or citations, are positive and statistically significant at the 1%

level. Columns 3 and 4 suggest that a firm respectively receives 1.165(e0.153) and 1.058(e0.056)

times more average adjusted cites per patent in the subject areas where a BdSci publishes more

papers and receives more citations. Columns 5 and 6 suggest that a BdSci’s expertise is positively

correlated with the average market value of a patent. The β1 estimates of Expertise(pub)i,s,[t−3,t]

and Expertise(cites)i,s,[t−3,t] are 0.047 and 0.014 and are statistically significant at the 1% level.

Columns 7 and 8 suggest that firms are associated with 1.63 (e0.488) and 1.198 (e0.181) times more

breakthrough patents in the subject areas when the BdScis publish 1% more publications and

receive 1% more citations respectively. Lastly, we observe that firms produce more fundamental

patents in subject areas where BdScis have a greater level of expertise. The β1 estimates in columns

9 and 10 are 0.566 and 0.195, and they are statistically significant, suggesting that the firm produces

1.761 (e0.566) and 1.215 (e0.195) more fundamental patents in the subject areas where BdScis publish

more papers and receive more citations respectively. In summary, BdSci expertise is significantly

positively related to the frequency of patents, the quality of the average patent and the average

valuation of these patents.

5.3 BdSci professional networks

While we find that BdScis serve as a bridge between scientific research and patent innovation

and enhance the quality of firm innovation, another valuable resource they offer is their extensive

scientific networks. Given that many BdScis are affiliated with universities and laboratories, which

are places with large supplies of scientists and inventors, this means that BdScis are generally

well-connected and knowledgeable about many highly qualified and productive inventors in the

field. Furthermore, BdScis, particularly those who also serve as professors, are not only close to

the supply of scientists and inventors, but they also play a key role in the training and guidance

of junior scientists and inventors as part of their university duties. Consequently, it is reasonable

to expect that BdScis can leverage their professional networks to help the firms where they are

board members recruit promising inventors who could potentially lead some of the firm’s research

projects.

To test the proposition that BdScis help firms recruit talented inventors, we first form inner

communities of BdScis’ extensive professional networks. These inner communities encompass firms’

BdScis, inventors affiliated with their firms, and BdScis’ co-authors and co-inventors. The intuition

behind constructing inner communities is that they comprise scientists and inventors who collab-

orate closely with individual BdScis through publication and patent collaborations. A scientist

(inventor) becomes a member of a BdSci’s community only when this scientist (inventor) has a

closer working relationship with the BdSci, which is demonstrated by having a significant number

of co-authorships and successful patent collaborations compared to other scientists (inventors) in a

28



BdSci’s network. A BdSci’s inner communities represent this BdSci’s more important professional

relationships.

Calculating inner communities annually allow us to classify groups of scientists (inventors)

who closely collaborate with BdScis on a dynamic basis. We assume BdScis are familiar with

scientists (inventors) in their corresponding communities. Within the communities associated with

each BdSci, we additionally categorize inventors into two groups: those affiliated with the BdSci’s

firm (BdSci-affiliated inventors) and those with other affiliations (Non BdSci-affiliated inventors).

The BdSci-affiliated inventors are defined as those inventors who are in a BdSci’s community and

who also work for the firm where the BdSci sits on the board. Non BdSci-affiliated inventors are

inventors who are in the communities of a BdSci, but do not work at the BdSci’s firm.

We hypothesize that BdScis actively select the most productive inventors from their inner

communities, introduce them to the firm, and support their recruitment. Subsequently, these BdSci-

affiliated inventors joined the firm and became some of the most productive firm inventors. We

assume that BdSci-affiliated inventors are particularly likely to be introduced by BdScis, considering

that BdScis are previously familiar with these inventors and that these inventors share close working

relationships with these BdScis.

We first investigate whether BdScis can identify more productive inventors in their community.

To test this hypothesis, we compare the innovation performance of BdSci-affiliated inventors to that

of other inventors within a BdSci’s inner community. We assume that BdSci-affiliated inventors

are introduced to the firm by the BdSci. If the BdSci-affiliated inventors have higher productivity

compared to other inventors within the BdSci’s inner community, we infer that the BdSci possesses

the ability to identify more productive inventors from within their community. It is important to

note that inventors in BdScis’ communities include individuals not only employed by these same

firms, but also those employed at universities, government, and private firms. For this analysis, we

estimate the following regression model, where we ignore the firm characteristics:

yf,q,t = α0 + αq,t + βBdSci-affiliated inventorsf,t + λX ′
i,t ++ei,t (11)

where yf,q,t is the performance metric of inventor f in community q and year t. The quality of

an inventor’s patent portfolio is measured using four metrics: the average and maximum number

of adjusted citations, the share of breakthrough patents, and the total number of breakthrough

patents. To represent an inventor’s relative performance, we construct percentile ranks for each

performance metric within their respective communities, as reported in Columns (1–4) of Table 8.

The outcome variables in Columns (5–8) of Table 8 are indicator variables equal to 1 if an inventor’s

performance metrics are in the top 10th percentile, and 0 otherwise. The “BdSci-affiliated inven-

tors” is an indicator variable equal to one if the inventor is a BdSci-affiliated inventor and is zero

otherwise. X is a vector of control variables that include a female indicator and inventor experience.

All regressions include community×year fixed effects, αq,t. We include community×year fixed ef-

fects because network communities are dynamic structures that can change substantially over time.
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We can compare an inventor’s productivity within a community and year using community×year

fixed effects. Standard errors are clustered at the individual inventor level.

Table 8 indicates that BdSci-affiliated inventors hired by the firm rank higher and are more likely

to be among the top 10% of inventors within the BdSci’s community across various metrics, includ-

ing adjusted citations and the number of breakthrough patents. All coefficients in Columns (1–4)

are positive and statistically significant at the 1% level, indicating that BdSci-affiliated inventors

rank 0.044, 0.045, 0.029, and 0.033 percentiles higher than other inventors in the BdSci’s commu-

nities in terms of average adjusted citations, maximum adjusted citations, share of breakthrough

patents, and total number of breakthrough patents in their portfolios, respectively. Moreover,

the coefficients in Columns 7 and 8 are positive and statistically significant, indicating that BdSci-

affiliated inventors are more likely to be ranked in the top 10% of the BdSci’s communities regarding

the share and total number of breakthrough patents. In sum, Table 8 shows that BdSci-affiliated

inventors are more productive than other inventors in the BdScis’ communities. This suggests that

BdScis can effectively identify more productive inventors within their communities and help recruit

them to the firms where they are board members. Our results are also robust when we use raw

innovation quality measures instead of relative ranks.

We next assess whether BdSci-affiliated inventors can continuously be productive after joining

a BdSci’s firm. The analysis involves a comparison of the performances between BdSci-affiliated

inventors and other inventors in the firm where the BdSci holds a board position, but who are not

in the BdSci’s community. We run an inventor, firm, and year-level regression of patent quality

against a BdSci-affiliated inventors indicator with firm, year, and cohort fixed effects and standard

errors clustered at the inventor level. We define a cohort as a group of individuals entering the firm

in the same year. Firm fixed effects allow for a comparison of inventors within the same firm, while

cohort fixed effects facilitate comparisons among inventors who joined the firm in the same year.

yi,f,c,t = α0 + αi + αt + αc + β1BdSci-affiliated inventorsi,f,c,t + λX ′
i,f,c,t + ei,f,c,t (12)

where yi,f,c,t is the performance metric of inventor f in firm i, cohort c and year t. The inventor

performance metrics are the same as those defined in Equation 11. Columns (1–4) of Table 9

report the relative percentile ranks of an inventor among all inventors within the same firm and

year. Columns (5–8) of Table 9 present indicator variables equal to 1 if an inventor’s performance

metrics fall within the top 10% of all inventors in the same firm and year, and 0 otherwise. The

key explanatory variable ”BdSci-affiliated inventors” is, an indicator variable that equals 1 if the

inventor is a BdSci-affiliated in firm i. X is a vector of firm characteristics defined in Equation 4

and the following inventor characteristics: a female indicator and experience. It is important to

note inventors in a BdSci firm may not necessarily work closely with BdSci or be part of the BdSci’s

community. However, these inventors could still benefit from being in the community of BdScis at

other firms. To isolate the effect of the scientific community, we include “Inventor in other com”,

an indicator variable equal to one if the inventor is in the community of BdScis at other firms and
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is zero otherwise. All regression includes firm, year, and cohort fixed effects.

Table 9 shows that BdSci-affiliated inventors, defined as inventors who actively collaborate with

their BdScis or are closely connected to individuals in the BdSci’s network, exhibit significantly

stronger performance than other inventors within the same firm. More specifically, all coefficients

in Table 9 are positive and statistically significant at the 1% level, indicating that BdSci-affiliated

inventors not only rank higher than other inventors, but are also more likely to be among the

top 10% performers within their firms, compared to inventors who are not part of the BdSci’s

communities. For example, BdSci-affiliated inventors are 2.3%, 5.2%, 1.6%, and 3.3% more likely

to be top 10% performers than other inventors within the firm when patent quality is measured by

the average and maximum number of adjusted citations, the share of breakthrough patents, and

the total number of breakthrough patents in their patent portfolios, respectively.

In summary, both tables 8 and 9 indicate that BdSci-affiliated inventors exhibit higher produc-

tivity compared to other inventors within the BdSci community, and these BdSci-affiliated inventors

maintain their high productivity levels after joining the firm. This suggests that BdScis can identify

high-quality inventors from their scientific communities, potentially helping to recruit such inven-

tors to the firms where they serve on the boards. Notably, we cannot claim our evidence documents

the causal effects of its BdScis in terms of the firms’ talent-hiring process since we cannot observe a

firm’s choice set of talented inventor candidates or an inventor’s choice set of potential employers.

6 Long-Term Firm Valuation and Shareholder Assess-

ments of the Benefits of BdScis

Investment in scientific research often involves long time horizons and a lack of periodic mile-

stones to assess research progress, making it difficult for non-expert investors to evaluate a firm’s

innovation success. The inherent uncertainty of scientific research may tempt managers to prioritize

short-term gains and o underinvest in long-term scientific projects (Garlappi et al., 2017). We view

BdScis to be well-positioned to effectively assess a firm’s ongoing scientific research and thus, help

address these investor concerns. Our study investigates how the presence of BdScis on the board

affects stock performance, exploring their potential to influence manager decisions and the overall

valuation of the firm. We hypothesize that BdScis can positively contribute to a firm’s valuation,

given the long-term nature and valuation benefits of their support to a firm’s innovation activity

measure by patents.

We follow the convention of using Tobin’s q as a forward looking measure of firm value (e.g.,

Arora et al., 2021; Gompers et al., 2003; Morck et al., 1988, among many others). Long-term firm

value is calculated from its Tobin’s q averaged over the next n years. We investigate the relation

between BdScis and firm value using the following panel regression:

Avg Tobin’s qi,[t+1,t+n] = α0 + αj + αt + β1BdScii,t + X ′
i,tλ+ ei,t, (13)
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where Avg Tobin’s qi,[t+1,t+n] is the natural logarithm of the average Tobin’s q of firm i from year

1 to year n. BdScii,t is an indicator variable equal to one if the firm has at least one BdSci on the

board for the full year t and is otherwise 0. X is a vector of firm control variables used in Equation

4 and an indicator for a scientific CEO. Regressions include SIC 4-digit industry and year-fixed

effects, αj and αt. All standard errors are clustered at the 4-digit industry level.

Panel A of table 10 shows that firms with BdScis have superior long-term firm valuations

compared to firms without BdScis within the same 4-digit industry. More specifically, the β1 in

column 1 is 0.030 and is significantly greater than zero, suggesting that over the next 2 years, BdSci

firms have a 3.0% larger firm valuation relative to non-BdSci firms in the same industry. Column 2

presents the relation between a BdSci and the firm valuation over the next three years and shows

that firms with BdScis are on average associated with a 2.8% larger firm valuation compared to

non-BdSci firms within the same industry. In column 3, the results reveal a 2.6% larger firm

valuation associated with firms having BdScis over the subsequent four years relative to non-BdSci

firms within the same industry. Moving to column 4, which uses Tobin’s q averaged over the next

5 years, the coefficient is positive, but not statistically significant.

Panel B of Table 10 presents announcement returns around director deaths. Director death

events are more informative than director appointment events because these deaths are outside the

control of the firm and generally are unexpected and occur randomly over time. Another advantage

of studying director deaths over director appointments is that the market reaction to death events

reflects the loss of the expected benefits associated with this specific director. Directors normally

sit on a firm’s board for years and then leave the board suddenly due to deaths. Investors are likely

to have a much more accurate evaluation of the benefits of these directors, given the sizable track

record they have. Thus, market reactions to director deaths should be more informative about a

director’s value to a firm.

We collect outside director death events from the Audit Analytics database. Following by

(Masulis et al., 2022), we use the earliest news releases of outside director deaths as our event date.

We find 23 BdSci death events and 170 non-BdSci death events. The average three-day CAR[0,2]

after a BdSci death is -2.42%. The average 3-day CAR[0,2] after a non-BdSci director death is

0.38%. The difference in these departure announcement returns between scientific and non-BdScis

is -2.80% and statistically significant at the 5% level. We also employ propensity score matching

to create a non-BdSci firm control group with similar firm and director characteristics to the BdSci

sample. The matching firm and director characteristics we use in year t − 1 include size, ROA,

and indicator variables for executive and finance experience, and an independent director. The

differences in CAR[0,2]s between BdSci and Non-BdSci firms is -3.74% and statistically significant

at the 10% level.
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7 Conclusion

This paper provides novel evidence on the advisory role of directors, exploring how outside

directors can enhance a firm’s value through their specialized expertise. Scientists on corporate

boards (BdSci), who are outside directors with scientific knowledge, add value to a firm by advising

a firm on its R&D programs and commercialization of its outstanding intellectual property. The

negative market reactions to BdSci deaths underscore the valuation benefits of BdScis from a

shareholder’s viewpoint. We further evaluate the long-term firm valuation impact of BdScis using

Tobin’s Q as a forward looking measure of shareholder value. It reveals a positive association

between firms with BdScis and long-term valuations compared to similar firms without BdScis

within the same industry.

Moreover, we find that firms with BdScis are more productive in terms of innovation than non-

BdSci firms in the same industry. We address the concern about the endogenous nature of director

appointments using several approaches. First, we use the local supply of BdSci candidates as an

IV to predict BdScis and separately use the Human Genome Project as an exogenous shock that

raises the economic benefits of BdScis. Using 2SLS regressions, we find that firms have more BdScis

on the board when there is a larger local supply of BdSci candidates, and these firms have better

innovation outcomes than other firms in the same industry. In addition, firms in the genetics-

related industry hire more BdScis to their boards after the 2001 HGP shock compared to similar

firms in other industries. Moreover, firms in the genetics-related industries appoint more BdScis

with genetic expertise.

BdScis directly contribute to a firm’s innovation activities by using their scientific knowledge

to help firms commercialize basic science. More specifically, firms with BdScis experience an im-

provement in patent innovations, and this improvement is greater as the scientific works of BdScis

influence an increasing portion of a firm’s patents. Furthermore, firms produce a greater number

of patents, and these patents are of higher quality in the subject areas where a BdSci has recently

published more papers or received more citations, which we use to proxy for a BdSci’s current

research focus.

Finally, we exploit the network community detection method in network analysis to map out

the professional network associated with each BdSci. Our network analysis only counts the layer-1

connections containing one million nodes that include the co-authors and co-inventors of BdScis

and the other inventors at the BdScis’ firms. We also define the inner community of a BdSci as

the group of inventors who work closely with a BdSci. We conjecture that BdScis endogenously

introduce productive inventors from their research community to the firms where they serve on the

board and help these firms recruit and retain this scientific talent.
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Figure 1

This figure presents the percentage of research expenditure in total corporate R&D from 1955 to 2021, based

on data from the NSF website.
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Figure 2

This figure presents the percentage of firms’ patents based on scientific research as a share of their total

patents from 1980 to 2016. Patents based on scientific research are defined as those that cite scientific

publications.
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Figure 3

The figure plots differences (and 95% confidence intervals of the differences) between treatment and control

firms regarding their changes in BdSci share relative to the Human Genome Project event year. Treatment

firms include those in the industry capable of converting human genome data into commercialized devices or

products, which are drugs and pharmaceutical products (13) and lab equipment (37) in the Fama-French 48

industry classification. Control firms are firms in other industries. Our analysis is based on the event year

2001 when the full draft of the sequence and initial analysis of the HGP became publicly available.
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Table 1
Firm characteristics

This table presents the firm characteristics between firms with and without a BdSci. The sample is the CCM
and BoardEx merged dataset from 1996 to 2018. Group A includes firm-year observations for firms with
at least one BdSci during the sample period, comprised of 34,396 firm-year observations. Group B includes
observations during the sample period with zero BdScis, comprised of 34,128 firm-year observations. R&D,
CAPEX, cash, free cash flow, and PPE are scaled by a firm’s total assets at the beginning of the year. The
data is winsorized at 1% and 99%. ∗, ∗∗. ∗∗∗ denote statistical significance at the 10%, 5%, and 1% level,
respectively.

With BdSci (A) Without BdSci (B)

Mean St. Dev. Mean St. Dev. Diff. (A-B) T-stat. P-val.

Firm Fundamental

Log (Size) 6.19 2.15 5.69 1.88 0.50 31.92*** 0.00
Leverage 0.20 0.21 0.23 0.23 -0.03 -15.68*** 0.00
RD 0.11 0.17 0.09 0.15 0.02 13.8*** 0.00
CAPEX 0.05 0.06 0.06 0.07 -0.01 -14.57*** 0.00
Cash 0.24 0.25 0.2 0.24 0.04 20.95*** 0.00
ROA 0.03 0.27 0.05 0.24 -0.02 -8.6*** 0.00
Free Cash Flow 0.01 0.23 0.03 0.2 -0.02 -9.76*** 0.00
PPE 0.23 0.21 0.27 0.25 -0.04 -22.04*** 0.00
Log(Sale) 5.83 2.52 5.4 2.17 0.43 23.41*** 0.00
Nasdaq 0.49 0.50 0.48 0.50 0.01 1.69* 0.09
Sci. CEO 0.13 0.33 0.07 0.26 0.06 25.21*** 0.00
Age 19.09 15.12 15.05 13.19 4.04 37.26*** 0.00

Valuation

MV/BV 3.49 5.39 3.06 5.18 0.43 10.66*** 0.00
Tobin’s q 2.34 1.89 2.08 1.68 0.26 18.99*** 0.00
Annual Return 0.14 0.63 0.12 0.63 0.02 2.67*** 0.01

Firm Growth

∆Asset 0.14 0.46 0.14 0.45 0.00 0.19 0.85
∆Sale 0.12 0.38 0.11 0.38 0.01 1.12 0.26
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Table 2
BdSci characteristics

This table presents the BdSci characteristics. Panel A shows the BdScis’ characteristics regarding author
profile. The author profile contains #Publications, h-index and citations until 2021. The #Publications is
the number of publications authored by a BdSci. The H-index is a BdSci’s largest number h such that h
publications have at least h citations. The Citations is the number of citations received by publications of a
BdSci. Panel B compares industrial BdScis with academic BdScis in terms of their publication profiles and
inventor statuses. Inventor, is an indicator variable that equals 1 if a BdSci is a patent inventor and 0. Panel
C compares the education and previous experience of BdScis and non-BdScis.Finance(Executive) Exp., is an
indicator variable that equals to 1 if a director has finance(executive) experience and is 0 otherwise. MBA(JD)
is an indicator variable that equals to 1 if a director holds a MBA(JD) degree. Panel C contains 2,199 inventor
directors. Inventor directors are outside directors who are patent inventors. 1,097 inventor directors are
BdScis, and 1,102 are non-BdScis. We compare the patent portfolio of Scientific inventor directors to non-
scientific inventor directors in terms of #Patents, Adj. cites, Scope, Generality and Originality. #Patents
is the number of patents for inventor directors’ patent portfolios. Adj.cites is the average adjusted citations
per patent for inventor directors’ patent portfolios. The citations are adjusted by the technology class and
grant year-fixed effects to minimize the truncation issue of patent data, followed by Hall et al. (2001). Scope
is the average scope per patent for inventor directors’ patent portfolios. Generality is the average generality
per patent for inventor directors’ patent portfolios. Originality is the average originality per patent for
inventor directors’ patent portfolios. ∗, ∗∗. ∗∗∗ denote statistical significance at the 10%, 5%, and 1% level,
respectively.

Panel A: BdSci Author Profile

Author Profile

#Publications H-index Citations

Obs 4047.00 4047.00 4047.00
Mean 70.82 18.77 5142.05
St. Dev. 150.67 29.81 16532.89
Min 0.00 0.00 0.00
25% 2.00 1.00 6.00
50% 12.00 6.00 214.00
75% 64.00 25.00 2933.00
Max 2447.00 356.00 388360.00

Panel B: Industry VS Academic Scientists

Industry Scientists Academic Scientists

Mean St. Dev. Mean St. Dev. T-stat. P-val.

#Publications 30.93 70.53 161.12 226.06 -27.62*** 0.00
H-index 10.62 17.83 37.23 41.11 -28.73*** 0.00
Citations 1904.44 6461.82 12471.05 26842.51 -19.61*** 0.00
Inventor 0.30 0.46 0.20 0.40 6.33*** 0.00
N 2807 1240
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Table 2
BdSci characteristics

Panel C: BdSci VS Non-BdSci

BdScis Non-BdScis

Mean St.Dev. Mean St.Dev. t-stat P-val.

Director level comparison

MBA 0.16 0.36 0.31 0.46 -20.05*** 0.00
JD 0.03 0.18 0.08 0.27 -10.77*** 0.00
Finance Exp. 0.27 0.44 0.41 0.49 -17.35*** 0.00
Executive Exp. 0.85 0.36 0.92 0.28 -14.66*** 0.00
Inventor 0.27 0.44 0.03 0.17 66.24*** 0.00

Panel D: Inventor directors

BdScis Non-BdScis

Mean St.Dev. Mean St.Dev. t-stat P-val.

Director level comparison

#Patents 23.52 46.95 9.68 16.29 9.24*** 0.00
Adj. Cites 1.85 3.81 1.75 3.97 2.12** 0.03
Scope 2.33 1.65 1.93 1.28 21.78*** 0.00
Generality 0.60 0.25 0.57 0.26 8.87*** 0.00
Originality 0.90 0.15 0.88 0.16 10.46*** 0.00
N 1097 1102
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Table 3
BdScis and Activities of Bridge Between R&D

This table reports regression models examining the role of BdSci in bridging R&D and enhancing firm
innovation. BdSci is an indicator variable that equals one if firms have at least one BdSci in the year t and
zero otherwise. The dependent variables in Columns(1-3) measure the activities in bridging R&D, which
are the share of Gov.Pat., Sci.Pat., and Funda.Pat. over the total number of patents at firm i at year t+1.
Gov.Pat.(Column 1) are patents whose titles are held by individual firms, but they were funded at least
partially by the U.S. Federal government. Sci.Pat.(Column 2) are patents that cite at least one SNPL, and
the number of citing SNPLs is above the 75th percentile of patents in the same technology class and year.
Funda.Pat.(Column 3) are patents that cite at least one scientific publication and receive more citations than
the 75th percentile of patents in the same technology class and year. The dependent variables in Columns
(4-7) are patent qualities, which are #Pat.i,t+1, Adj.citesi,t+1, Valuei,t+1, and #B.through Patentsi,t+1.
#Pat.i,t+1 (Column 4) are defined as firm i’s total number of patents filed (and eventually granted) for
the next year. Adj.citesi,t+1 (Column 5) are defined as firm i’s average adjusted citation per patent filed
(and eventually granted) for the next year. The citations are adjusted by the technology class and grant
year fixed effects to minimize the truncation issue of patent data, followed by Hall et al. (2001). Valuei,t+1

(Column 6) is defined as the logarithm of firm i’s average market value(Kogan et al., 2017) per patent filed
(and eventually granted) for the next year. #B.through Patentsi,t+1 (Column 7) are defined as firm i’s
total number of breakthrough patents filed (and eventually granted) for the next year. The breakthrough
patents are influential patents that received more citations than the 90th percentile values of the patents in
the same technology class and grant year. Control variables are firm size, CAPEX, R&D, firm age, annual
return, leverage, board independence and a scientific CEO indicator. This table presents Poisson regression
coefficients for count innovation output and the OLS regression of Avg.Valuet+1 and Adj.citest+1. Variable
definitions are in Table A.1. All regressions include SIC 4-digit industry and year-fixed effects. Standard
errors are clustered at the industry level and are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote statistical
significance at the 10%, 5%, and 1% level, respectively.

Bridging R and D Patent Output

Gov. Pat. Sci. Pat. Funda. Pat. #Pat. Adj.cites Value #B.through Pat.

t+1
(1) (2) (3) (4) (5) (6) (7)

BdSci 0.003*** 0.032*** 0.013*** 0.292* 0.051** -0.012 0.313**
(0.001) (0.006) (0.003) (0.176) (0.023) (0.033) (0.160)

Size 0.000 0.028*** 0.013*** 0.958*** 0.100*** 0.633*** 0.861***
(0.000) (0.003) (0.002) (0.041) (0.011) (0.019) (0.043)

CAPEX 0.011 0.068 0.045* 3.393*** 0.378** 1.332*** 4.404***
(0.010) (0.047) (0.023) (1.270) (0.187) (0.301) (1.027)

RD 0.007*** 0.162*** 0.080*** 1.296*** 0.428*** 0.698*** 1.175***
(0.002) (0.047) (0.017) (0.138) (0.106) (0.134) (0.129)

Age -0.000 -0.008** -0.006*** 0.232 -0.044** -0.148*** 0.113
(0.000) (0.003) (0.002) (0.176) (0.019) (0.030) (0.133)

Annual Return 0.000 -0.001 0.006*** 0.100*** 0.047*** 0.240*** 0.152***
(0.000) (0.003) (0.002) (0.024) (0.014) (0.015) (0.028)

Leverage -0.004* -0.052*** -0.035*** -0.153 -0.302*** -0.165 -0.649
(0.002) (0.017) (0.008) (0.449) (0.055) (0.151) (0.439)

Board Independence 0.003 0.040** 0.025** 1.829*** 0.144** 0.041 1.460***
(0.002) (0.016) (0.012) (0.401) (0.060) (0.098) (0.358)

Scientific CEO 0.004 0.081*** 0.035*** 0.283** 0.188*** 0.056 0.317**
(0.003) (0.015) (0.010) (0.126) (0.064) (0.055) (0.133)

Constant -0.000 -0.091*** -0.028* -6.404*** -0.165** -2.583*** -6.789***
(0.002) (0.026) (0.016) (1.196) (0.071) (0.169) (0.873)

Observations 59,782 59,782 59,782 57,223 59,782 19,602 52,613
Industry FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry Industry
Adj. R-squared 0.0323 0.0943 0.156 0.109 0.6741
Pseudo R-squared 0.829 0.721
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Table 4
Human Genome Project

This table presents Difference-in-Difference (DiD) models using the Human Genome Project (HGP). The
HGP is an international research project that identified, mapped, and sequenced all the genes of the human
genome from 1990 to 2003. In 2001, the HGP published a draft sequence and an initial analysis of the human
genome in the journal Nature. The availability of human genome data enhanced the economic benefits that
BdScis bring to firms, as BdScis could leverage their expertise to help firms advance the development of
genetic products. Panel A tests how the economic benefits of BdScis changed relative to the control groups.
The economic benefits of BdScis are measured by BdSci sharet (columns 1 and 3) and Gen. BdSci sharet
(columns 2 and 4), defined as the share of BdScis or BdScis with genetic expertise over the total number of
directors in the firm. Treatment is an indicator variable that equals one if the firm is in a genetics-related
industry, defined as including drugs and pharmaceutical products (13) and lab equipment (37) based on
the Fama-French 48 industry classification, and zero otherwise. Post is an indicator variable that equals
one if the year is greater than the event year and zero otherwise. The event year is 2001, when the draft
sequence and initial analysis of the HGP became publicly available. Columns 3 and 4 repeat the analysis
using the treatment and propensity score matched control group. The matching variables are size, ROA,
annual return, and #Patents up to the event year 2001. Panel B compares the changes in innovation quality
for firms that appointed a new Genetic BdSci within two years following the event relative to other firms in
the genetics-related industries. Gen. BdSci in Panel B is an indicator variable equals to 1 if a firm appoint
a new Gen.BdSci within 2 years after the event and 0 otherwise. The innovation qualities in Panel B are
#Patst+1, #B.through Patents(90/99)t+1, Valuest+1, Adj.Citest+1. This table presents Poisson regression
coefficients for count innovation output and the OLS regression of Avg.Valuet+1 and Adj.citest+1. Control
variables are firm size, CAPEX, R&D, firm age, annual stock return, leverage, board independence and a
scientific CEO indicator. Variable definitions are in Table A.1. Table A5 shows that the differences in the
covariates of treatment and control groups are statistically insignificant after matching. All regressions have
firm and year-fixed effects. Standard errors are clustered at the SIC 4-digit industry level. Robust standard
errors are reported in parentheses.∗, ∗∗, and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% level,
respectively.

Panel A BdSci Share

BdSci Share Gen.BdSci Share BdSci Share Gen.BdSci Share

Full sample Matched sample

(1) (2) (3) (4)

Treatment × Post 0.027*** 0.019*** 0.031*** 0.019***
(0.010) (0.005) (0.010) (0.005)

Size 0.005*** 0.000 0.005*** 0.001
(0.001) (0.001) (0.002) (0.001)

CAPEX 0.002 0.001 0.002 0.000
(0.009) (0.003) (0.020) (0.007)

RD 0.012*** 0.011*** 0.008** 0.014***
(0.003) (0.004) (0.004) (0.005)

Age 0.003 -0.001 0.001 -0.004
(0.003) (0.001) (0.005) (0.004)

Annual Return -0.001 0.000 -0.000 0.000
(0.000) (0.000) (0.001) (0.000)

Leverage -0.007** -0.001 -0.005 -0.001
(0.003) (0.002) (0.005) (0.002)

Board Independence 0.098*** 0.018*** 0.118*** 0.028**
(0.011) (0.006) (0.015) (0.011)

Scientific CEO 0.003 0.001 -0.001 -0.002
(0.004) (0.002) (0.006) (0.003)

Constant -0.030*** 0.000 -0.025 0.007
(0.011) (0.005) (0.019) (0.011)

Observations 62,718 62,718 22,943 22,943
Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Cluster Industry Industry Industry Industry
Adj. R-squared 0.771 0.803 0.745 0.781
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Table 4
Human Genome Project

Panel B Firms hired new Gen.BdSci VS other treatment firms

#Pat. #B.through Pa.(90) #B.through Pa.(99) Values Adj.Cites

t+1
(1) (2) (3) (4) (5)

Gen. BdSci × Post 0.419** 0.570*** 1.068*** -0.361 0.354
(0.184) (0.077) (0.210) (0.330) (0.257)

Size 0.323*** 0.303*** -0.011 0.155** -0.045
(0.079) (0.101) (0.140) (0.059) (0.041)

CAPEX 2.740*** 1.619 0.238 0.037 -0.519
(0.600) (1.026) (2.180) (0.488) (0.384)

RD 0.383** 0.432** 0.960*** 0.204* 0.068*
(0.178) (0.182) (0.291) (0.096) (0.033)

Age -0.349*** -0.382 -0.762* -0.137** -0.027
(0.122) (0.250) (0.392) (0.058) (0.082)

Annual Return 0.061*** 0.108*** 0.159*** 0.073*** 0.060**
(0.014) (0.028) (0.042) (0.020) (0.025)

Leverage -0.183 -0.052 0.509*** 0.160 -0.337*
(0.264) (0.178) (0.170) (0.113) (0.161)

Board Independence 0.728** 0.791** 1.707*** -0.240 -0.176
(0.321) (0.349) (0.446) (0.395) (0.301)

Scientific CEO -0.079 -0.021 -0.322 -0.061 0.025
(0.070) (0.091) (0.394) (0.040) (0.072)

Constant 1.607*** 0.271 3.278** 0.738** 1.255**
(0.617) (0.607) (1.631) (0.245) (0.451)

Observations 5,823 4,128 1,569 3,906 6,977
Firm FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry
Adj. R-squared 0.847 0.410
Pseudo R-squared 0.843 0.722 0.794
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Table 5
IV: Local BdSci supply

This table presents the 2SLS regression models using the Local BdSci supply as the instrumental variable
(IV). The IV is the Local BdSci supply, measured as the logarithm of one plus the number of BdScis in firms
located within 60 miles of the focal firm’s headquarters, excluding firms in the same SIC4 industry code. The
instrumented variables are BdSci (Columns 1–4), a binary indicator equal to 1 if the firm has a BdSci and 0
otherwise, and BdSci share (Columns 6–9), the proportion of BdScis relative to the total number of board
directors. Columns 1 and 5 shows the first-stage regression of BdSci and BdSci share on the local BdSci
supply. Other columns present the second stage regression of innovation output on ^BdSci and ^BdSci share.
Adj.citest+1 (columns 2 and 6) are defined as the firm i’s average adjusted citation per patent received on the
firm’s patents filed (and eventually granted) for the next year. The citations are adjusted by the technology
class and grant year fixed effects, followed by Hall et al. (2001). Valuet+1 (columns 3 and 7) are defined as
the natural logarithm of firm i’s average market value (Kogan et al., 2017) per patent of patents filed (and
eventually granted) for the next year. #Patentst+1 (columns 4 and 8) is defined as the natural logarithm of
the firm i’s the total number of patents filed (and eventually granted) for the next year. Control variables
are firm size, CAPEX, R&D, firm age, annual return, leverage, board independence, board size, a scientific
CEO indicator and local scientists supply. Variable definitions are in Table A.1. All regressions include
year and SIC 4-digit industry fixed effects. Standard errors clustered at the industry level are reported in
parentheses. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% level, respectively.

1st 2nd 1st 2nd

BdSci Adj.cites Values #Pat. BdSci Share Adj.cites Values #Pat

t+1 t+1
(1) (2) (3) (4) (5) (6) (7) (8)

Local BdSci Supply 0.016*** 0.004**
(0.006) (0.002)

^BdSci 1.445 0.866* 1.957**
(1.158) (0.471) (0.882)

^BdSciShare 5.141 2.804* 6.332**
(4.394) (1.475) (3.156)

Size 0.044*** 0.035 0.630*** 0.477*** 0.006*** 0.069*** 0.643*** 0.507***
(0.005) (0.046) (0.027) (0.060) (0.001) (0.021) (0.022) (0.055)

CAPEX 0.046 0.437* 1.486*** 1.169** -0.012 0.545** 1.551*** 1.316**
(0.074) (0.259) (0.380) (0.581) (0.024) (0.269) (0.379) (0.564)

RD 0.171*** 0.186 0.644*** 0.895** 0.053*** 0.162 0.610*** 0.818*
(0.046) (0.177) (0.124) (0.400) (0.011) (0.200) (0.134) (0.431)

Age 0.033*** -0.089 -0.155*** -0.041 0.000 -0.043 -0.129** 0.017
(0.011) (0.060) (0.047) (0.036) (0.004) (0.032) (0.051) (0.059)

Annual Return -0.009*** 0.061*** 0.243*** 0.087*** -0.002*** 0.058*** 0.240*** 0.080***
(0.002) (0.019) (0.016) (0.018) (0.001) (0.018) (0.015) (0.020)

Leverage -0.119*** -0.143 -0.034 -0.290 -0.030*** -0.158 -0.016 -0.249
(0.025) (0.131) (0.184) (0.205) (0.005) (0.116) (0.201) (0.261)

Board Independence 0.017*** -0.020 0.030 -0.122*** 0.002 -0.006 0.030 -0.122***
(0.007) (0.022) (0.023) (0.039) (0.003) (0.017) (0.024) (0.039)

Board Size 0.440*** -0.447 -0.328 -0.592 0.124*** -0.454 -0.318 -0.570
(0.050) (0.510) (0.257) (0.398) (0.027) (0.525) (0.272) (0.473)

Scientific CEO 0.123*** 0.045 -0.003 0.158* 0.039*** 0.022 -0.016 0.128
(0.020) (0.185) (0.074) (0.081) (0.005) (0.207) (0.083) (0.101)

Local Scientists supply -0.005*** 0.009 -0.001 -0.005 -0.001 0.005 -0.002 -0.008
(0.002) (0.006) (0.006) (0.008) (0.000) (0.004) (0.006) (0.007)

Observations 57,803 54,758 17,800 17,809 57,803 54,758 17,800 17,809
Industry FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry Industry Industry
Cragg-Donald Wald F 140.36 171.11
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Table 6
BdSci’s influence on the firm’s patents

This table reports regression models examining the relation between BdScis’ influence and innovation output.

BdSci influencei,d,t is BdSci d’s influence on firm i’s patents, in year t, which is
Cum #BdSciIPi,d,[t−n,t]

Cum #Patentsi,[t−n,t]
. The

BdSci-influenced patent (BdSciIP) is the firm’s patent that cites at least one BdSci’s publications while the
BdSci is on the board. The numerator of BdSci influencei,d,t is the cumulative number of the BdSciIP
from the year BdScis join the board of firm i until year t. #Pat.t+1 (column 1) are defined as firm i’s total
number of patents filed (and eventually granted) in year t+1. Adj.Citest+1 (column 3) is defined as the firm
i’s average adjusted citation per patent filed (and eventually granted) for the next year. The citations are
adjusted by the technology class and grant year fixed effects, followed by Hall et al. (2001). Avg.Valuet+1

(column 5) are defined as firm i’s average market value (Kogan et al., 2017) of patents filed for the next
year. B.through patents t+1 (column 7) is defined as firm i’s total number of breakthrough patents filed (and
eventually granted) for the next year. The breakthrough patents are influential patents that received more
citations than the 90th percentile values of the patents in the same technology class and grant year. The
regression sample is at the firm, BdSci and year level. Control variables are firm size, CAPEX, R&D, firm
age, annual return, leverage, board independence and a scientific CEO indicator. This table presents Poisson
regression coefficients for count innovation output and the OLS regression of Avg.Valuet+1 and Adj.citest+1.
Variable definitions are in Table A.1. All regressions include firm×director and year-fixed effects. Standard
errors clustered at the SIC 4-digit industry are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote statistical
significance at the 10%, 5%, and 1% level, respectively.

#Pat. Adj.cites Values #B.through Pat. #Funda. Pat.

t+1
(1) (2) (3) (4) (5)

BdSci influence 0.028 0.869* 0.770*** 1.736 0.946
(0.876) (0.497) (0.175) (1.278) (1.602)

Size 0.335*** -0.019 0.064 0.243*** 0.305***
(0.080) (0.018) (0.040) (0.082) (0.065)

CAPEX 1.039 0.066 0.783*** 1.719* 1.290*
(0.888) (0.145) (0.234) (1.032) (0.753)

RD 0.710** 0.031 0.131 0.483** 0.499***
(0.321) (0.027) (0.084) (0.218) (0.144)

Age -0.067 -0.112*** -0.091 -0.148 -0.240
(0.205) (0.040) (0.069) (0.183) (0.151)

Annual Return 0.018 0.023** 0.070*** 0.021 0.024
(0.020) (0.009) (0.012) (0.023) (0.022)

Leverage -0.327* -0.166*** 0.071 -0.185 -0.438**
(0.176) (0.058) (0.145) (0.180) (0.188)

Board Independence 0.063 0.051 -0.437*** 0.122 -0.052
(0.301) (0.063) (0.143) (0.292) (0.345)

Scientific CEO -0.041 0.010 0.056 -0.108 -0.173*
(0.055) (0.048) (0.043) (0.117) (0.091)

Constant 3.167*** 0.944*** 1.559*** 2.066*** 2.406***
(0.702) (0.175) (0.247) (0.671) (0.483)

Observations 49,502 83,417 32,611 35,750 35,055
Firm*Director FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry
Adj. R-squared 0.4865 0.897
Pseudo R-squared 0.957 0.885 0.908
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Table 7
BdScis’ expertise and firm relevant innovation

This table reports regression models examining the relation between BdScis’ expertise and relevant inno-
vation output by using firm i, subject area s and year t level dataset. The key explanatory variables are
Expertise(Pub)i,s,[t−3,t] and Expertise(Cites)i,s,[t−3,t]. Expertise(Pub)i,s,[t−3,t] is the logarithm of one plus
the average number of publications per BdSci of firm i in the subject area s over the past three years. Exper-
tise(Cites)i,s,[t−3,t] is the logarithm of one plus the average number of cites received by BdSci’s publications
per BdSci of firm i in the subject area s over the past three years. #Patentsi,s,[t+1,t+3] (columns 1 and
2) are defined as firm i’s the total number of patents filed (and eventually granted) for the next 3 years in
the subject area s. Adj.citesi,s,t+1 (columns 3 and 4) are defined as firm i’s average adjusted citation per
patent filed (and eventually granted) for the next year in the subject area s. The citations are adjusted by
the technology class and grant year fixed effects to minimize the truncation issue of patent data, followed
by Hall et al. (2001). Valuei,s,t+1 (columns 5 and 6) are defined as firm i’s average market value(Kogan
et al., 2017) per patents of patents filed (and eventually granted) for the next year in the subject area s.
#B.through Patentsi,s,t+1 (columns 7 and 8) are defined as firm i’s total number of breakthrough patents
filed (and eventually granted) for the next year in the subject area s. The breakthrough patents at the
90th percentile are influential patents that received more citations than the 90th percentile values of the
patents in the same technology class and grant year. #Funda. Patentsi,s,t+1 (columns 9 and 10) are firm
i’s the number of fundamental patents filed (and eventually granted) for the next year in the subject area
s. Fundamental patents that cite at least one scientific publication and received more citations than the
75th percentile values of the patents in the same technology class and grant year. Control variables are firm
size, CAPEX, R&D, firm age, annual return, leverage, board independence and a scientific CEO indicator.
This table presents Poisson regression coefficients for count innovation output and the OLS regression of
Avg.Valuet+1 and Adj.citest+1. Variable definitions are in Table A.1. All regressions include firm, subject
area and year-fixed effects. Standard errors are clustered at the SIC 4-digit industry level. Robust standard
errors are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% level,
respectively.

#Pat. Adj.cites Values #B.through Pat. #Funda. Pat.

t+1
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Expertise(Pub) 0.449*** 0.153*** 0.047*** 0.488*** 0.566***
(0.106) (0.025) (0.017) (0.111) (0.084)

Expertise(Cites) 0.164*** 0.056*** 0.014*** 0.181*** 0.195***
(0.032) (0.009) (0.005) (0.028) (0.026)

Size 0.463*** 0.462*** 0.026 0.025 0.085*** 0.085*** 0.370*** 0.371*** 0.352*** 0.354***
(0.083) (0.084) (0.018) (0.018) (0.028) (0.028) (0.091) (0.093) (0.078) (0.079)

CAPEX 1.071 1.006 0.192 0.193 1.059*** 1.060*** 1.756* 1.726* 1.495** 1.427*
(0.805) (0.796) (0.186) (0.186) (0.289) (0.289) (1.003) (1.016) (0.751) (0.757)

RD 0.843*** 0.829*** 0.030 0.031 0.091 0.091 0.794*** 0.790*** 0.508*** 0.503***
(0.250) (0.254) (0.047) (0.047) (0.081) (0.081) (0.233) (0.241) (0.137) (0.139)

Age -0.178 -0.171 -0.106*** -0.106*** -0.037 -0.037 -0.189 -0.182 -0.295* -0.290
(0.173) (0.174) (0.037) (0.037) (0.051) (0.051) (0.165) (0.167) (0.177) (0.180)

Annual Return 0.026 0.023 0.029*** 0.029*** 0.107*** 0.107*** 0.051*** 0.047** 0.038 0.037
(0.022) (0.022) (0.009) (0.009) (0.009) (0.009) (0.018) (0.019) (0.023) (0.023)

Leverage -0.751*** -0.745*** -0.157*** -0.157*** 0.030 0.029 -0.667*** -0.652*** -0.710*** -0.700***
(0.189) (0.189) (0.059) (0.059) (0.083) (0.083) (0.247) (0.241) (0.187) (0.187)

Board Independence 0.020 -0.015 -0.030 -0.034 -0.300** -0.302** -0.153 -0.206 -0.348 -0.396
(0.267) (0.264) (0.078) (0.078) (0.129) (0.129) (0.264) (0.258) (0.310) (0.311)

Scientific CEO -0.004 -0.008 0.015 0.014 0.030 0.030 -0.079 -0.084 -0.115 -0.123
(0.066) (0.067) (0.037) (0.037) (0.050) (0.050) (0.093) (0.092) (0.093) (0.090)

Constant 0.766 0.773 0.659*** 0.660*** 1.202*** 1.203*** -0.297 -0.304 0.584 0.582
(0.947) (0.958) (0.142) (0.142) (0.253) (0.253) (0.873) (0.891) (1.081) (1.086)

Observations 132,019 132,019 158,607 158,607 57,023 57,023 110,494 110,494 104,024 104,024
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Subject area FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry Industry Industry Industry Industry
Adj. R-squared 0.213 0.213 0.848 0.848
Pseudo R-squared 0.778 0.779 0.668 0.669 0.673 0.673
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Table 10
BdScis and firm valuation

This table reports regression models examining the relation between BdScis and firm valuation. We measure
firm valuation using the average of Tobin’s q for the next n years. More specifically, the dependent variable
is Avg. Tobin’s qt+1,t+n, the natural logarithm of the average of Tobin’s q from year t+1 up to year t+n.
The key explanatory variable is BdSci, which is an indicator variable that equals to one if the firm has
at least one BdSci in the year t and is otherwise 0. Control variables are: firm size, CAPEX, R&D, firm
age, annual return, leverage, board independence and a scientific CEO indicator. Variable definitions are in
Table A.1. All regressions include SIC 4-digit industry and year-fixed effects. Standard errors are clustered
at the SIC 4-digit industry level. Robust standard errors are reported in parentheses. Panel B presents
announcement returns for BdScis’ departures due to death. We collect the BdSci death announcements from
Audit Analytics and use the date of the first news of a director’s death as our event date. There are 23 BdSci
deaths and 170 Non-BdSci deaths. The matched sample in panel B is constructed using firm and director
characteristics in year t-1, including firm size, ROA, and indicator variables for executive, finance experience,
and independent director. Due to missing matching variables, there are 20 BdSci death events available in
the matched sample. ∗, ∗∗, ∗∗∗ denote statistical significance at the 10%, 5%, and 1% level, respectively.

Panel A: Long-Term Valuation

Avg. Tobin’s q

t+1,t+2 t+1,t+3 t+1,t+4 t+1,t+5
(1) (2) (3) (4)

BdSci 0.030** 0.028* 0.026* 0.024
(0.015) (0.015) (0.016) (0.016)

Size 0.009 0.008 0.007 0.006
(0.006) (0.006) (0.006) (0.006)

CAPEX 0.774*** 0.711*** 0.648*** 0.590***
(0.139) (0.141) (0.139) (0.137)

RD 0.651*** 0.691*** 0.658*** 0.633***
(0.117) (0.120) (0.120) (0.126)

Age -0.048*** -0.048*** -0.048*** -0.049***
(0.010) (0.010) (0.010) (0.010)

Annual Return 0.135*** 0.114*** 0.099*** 0.084***
(0.006) (0.006) (0.005) (0.005)

Leverage -0.127*** -0.137*** -0.143*** -0.147***
(0.044) (0.045) (0.045) (0.044)

Board Independence 0.016 0.026 0.034 0.041
(0.035) (0.035) (0.036) (0.037)

Sci. CEO 0.083*** 0.085*** 0.090*** 0.094***
(0.020) (0.020) (0.021) (0.021)

Constant 0.532*** 0.543*** 0.556*** 0.569***
(0.040) (0.042) (0.042) (0.043)

Observations 56,456 51,139 46,192 41,586
Industry FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Cluster Industry Industry Industry Industry
Adj. R-squared 0.307 0.320 0.331 0.339

53



Panel B: BdSci Departure announcements CARs due to deaths

Full Sample Matched Sample

BdSci Non-BdSci Diff(BdSci-NBdSci) BdSci Non-BdSci Diff(BdSci-NBdSci)

CAR(0,1) Mean -1.07% 0.29% -1.36% -1.04% 1.39% -2.43%*
CAR(0,2) Mean -2.42% 0.38% -2.80%** -2.70% 1.04% -3.74%*
N 23 170 20 20
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Table A1
Variables Definitions

Variable name Definitions Tables

Independent variables

BdSci Indicator variable equals 1 if the firm has at least one BdSci; zero otherwise. Tables 3 and 10
Local BdSci supply Local BdSci supply is the logarithm of one plus the number of BdSci in firms headquartered within

60 miles of the focal firm’s headquarters, excluding firms in the same four-digit SIC (SIC4) industry.
Table 5

BdSci’s influence The cumulative number of BdSciIP over the cumulative number of patents. BdSciIP is the patent
that cites the BdSci’s publications.

Table 6

BdSci-affiliated inventors Indicator variable that equals one if inventors are in a BdSci’s community and also work for the firm
where the BdSci sit on the board, and zero otherwise

Table 8, 9

Treatment Indicator variable that equals one if firms are in the genetics-related industries. The genetics-related
industries include the drugs and pharmaceutical products (13) and lab equipment (37) industries
identified from the Fama-French 48 industry classification, and zero otherwise.

Table 4

Post Indicator variable that equals one if the year is greater than 2001, and zero otherwise. Table 4
Expertise(Pub) the logarithm of one plus the average number of BdSci’s publications in the subject area over the

past three years.
Table 7

Expertise(Cites) the logarithm of one plus the average number of cites received by BdSci’s publications in the subject
area over the past three years.

Table 7

Local Scientists supply the logarithm of one plus the number of tenured assistant/associate/full professors (including pro-
fessors who are on the tenure track) around the firm’s headquarters within 60 miles.

Table 5

Dependent variables

Avg Tobin’s qt+1,t+n The natural logarithm of average Tobin’s q over the next n years Table 10
#Patentst+1 Firm i’s the total number of patents filed (and eventually granted) for the next year. Table 3, 4, 7, and 6
Adj. citet+1 Firm i’s the average adjusted cites of patents filed (and eventually granted) for the next year. The

adjusted cites are the number of cites over the average cites of patents in the same technology field
and granted year.

Table 3, 4, 7, and 6

Valuet+1 Firm i’s the natural logarithm of the average market value of patents filed (and eventually granted)
for the next years.

Table 3, 4, 7, and 6

#B.through patentst+1 Firm i’s the number of breakthrough patents filed (and eventually granted) for the next year. The
breakthrough patents at the 90 percentile are patents that received more citations than the citations
at 90 percentile within the same technology class and year.

Table 3, 4, 7, and 6

#Funda Patentst+1 Firm i’s the number of fundamental patents filed (and eventually granted) for the next year in the
subject area s. Fundamental patents that cite at least one scientific publication and received more
citations than the 75% percentile values of the patents in the same technology class and grant year.

Table 3, 4, 7, and 6

#B.through patents(99)t+1 Firm i’s the number of breakthrough patents(99) filed (and eventually granted) for the next year. The
breakthrough patents(99) are patents that received more citations than the citations at 99 percentile
within the same technology class and year.

Table 3, 4, 7, and 6

Avg(Max) Adj. cites The average (maximum) number of adjusted cities per patent for patents in inventors’ portfolios. Tables 8 and9
B.through patents share The number of breakthrough patents(90) over total number of patents in inventors’ portfolios. Tables 8 and 9
#B.through patents The number of breakthrough patents(90) in inventors’ portfolios. Tables 8 and 9
BdSci share The ratio of the number of BdSci to the total number of directors Table 4
Gen. BdSci share The ratio of the number of BdSci with genetics expertise over the number of total directors on the

board.
Table 4
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Table A1
Variables Definitions

Firm characteristics

Size The natural logarithm of total asset(AT). Source: Compustata Table 1, 3, 4, 5, 7, 6, 8, 10
CAPEX Capital expenditure over total assets(CAPX/AT). Source: Compustata Table 1, 3, 4, 5, 7, 6, 8, 10
RD Research and Development expenditure over total assets(XRD/AT) Source: Compustata Table 1, 3, 4, 5, 7, 6, 8, 10
Age The natural logarithm of a firm’s age measured as the difference between the current year and the

first year the firm appears in CCM. Source: Compustata
Table 1, 3, 4, 5, 7, 6, 8, 10

Annual Return The annual stock return of firm ((prcc ft + dvpsx ft / ajext) / ((prcc ft−1/ajex ft−1)). Source: Com-
pustata

Table 1, 3, 4, 5, 7, 6, 8, 10

Leverage Total leverage over total assets((Dltt+DLC)/AT). Source: Compustata Table 1, 3, 4, 5, 7, 6, 8, 10
Board Independence The total number of independent directors over the total number of directors on the board Table 1, 3, 4, 5, 7, 6, 8, 10
Scientific CEO Indicator variable that equals one if firms have scientific CEO, and zero otherwise. Table 1, 3, 4, 5, 7, 6, 8, 10

Director characteristics

Finance Exp Indicator variable equals one if the director has financial experience (CFO or treasurer title or worked
in banking, finance, and investment firms) prior to the appointment year and zero otherwise

Table 2 and 10

Executive Exp Indicator variable equals one if the director has executive experience (CEO, CFO, CIO, COO, pres-
ident, VP, executive VP, senior VP, partner, managing director, and treasurer) prior to the appoint-
ment year and zero otherwise

Table 2 and 10

Publication portfolio of BdSci

#Publications The total number of publications in BdSci’ publication portfolio Table 2
#Citations The total number of publication citations received by BdScis’ publication Table 2
H-index The H-index of the BdSci. The h-index is the largest number of h such that h articles have at least

h citations each.
Table 2
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A Matching between BdSci and their Scientific Profile

The matching process involves a two-step procedure. First, we match the outside directors with
authors based on their full names. Then, we compare the employment history of outside directors
to the affiliation history of all possible matched authors identified in the first step. The two-step
procedure defines the correct link between authors and outside directors, considering both name
similarities and overlapping employment histories.

We query the authors’ profiles for each outside director using their surname, middle name, and
first name. The Scopus query formats are the following:

• Directors without the middle name: “AUTHLAST (surname) and AUTHFIRST (first name)”

• Directors with the middle name: “AUTHLAST (surname) and AUTHFIRST (first name and
middle name initial)”

The second query format utilizes the middle name initial instead of the full middle name to maximize
potential matches. Scopus employs a “contain” algorithm in the query process, meaning that Scopus
returns all possible search results that contain the input of the query. For instance, a BdSci named
“Stephen William” in BoardEx might be listed as “Stephen W” in Scopus. Notably, Scopus does
not return “Stephen W” as a possible match for the query “Stephen William” because “Stephen
W” does not contain “Stephen William”. We collect all possible matched author profiles for each
director from Scopus. However, depending only on names to link authors with directors can be
inaccurate because many directors can have the same names as multiple Scopus authors, even if
they’re not familially related. As an illustrative example, a director named “Ning Li” matched with
over a thousand author profiles in Scopus.

As a result, we implement a second layer of identification to ensure accurate matching. We
exploit affiliation and employment information in Scopus and BoardEx to establish accurate links
between directors and authors. More specifically, a valid link is established when the employment
history of directors in BoardEx overlaps with the affiliation history of authors in Scopus. For
example, director Michael Stuart Brown has worked for UT Southwestern since 1976. Author
Michael Stuart Brown is affiliated with UT Southwestern as an author. In this case, the director
and author, Michael Stuart Brown, are presumed to be the same person due to the overlap between
their publication affiliation history and employment history.

Next, we verify the directors who link to more than one author’s profile. More specifically,
if Scopus has only one profile for each author, the matching relationship between the director
and author should be one-to-one. However, some directors link to multiple author profiles for
two reasons. First, Scopus may create multiple profiles for a single author, and these authors
usually have a primary profile and minor profiles in Scopus. The primary profile of the author
has a relatively complete publication and affiliation history compared to the minor profile. We
aggregate directors’ primary and minor profiles to complete the scientific profile. Second, there are
director mismatches with some authors’ minor profiles due to incomplete affiliation information in
the author’s minor profiles or data errors in Scopus. We manually remove the mismatched profiles
according to publication information when BdScis are linked to more than one author profile. First,
suppose the BdSci’s CV is available. In that case, we compare publications in Scopus profiles to
the author’s CV and retain the author’s profile with the same publications listed in the author’s
CV. Second, for BdScis who do not have CVs, we compare the subject areas in their minor profile
to the BdSci’s subject areas in their primary profile or information online.
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B Matching between authors and inventors

We use a two-step procedure to identify the patent profiles associated with each scientific author
who is also an inventor. In the first step, we identify all inventors with names similar to the Scopus
authors in our sample. In the person name-matching process, we map the last name between an
inventor and an author, allowing for just one permissible spelling error. Subsequently, within each
matched last name between inventors and authors, we refine the match according to their first
and middle names. For this purpose, we employ a fuzzy matching algorithm designed to recognize
variations in first and middle names. We consider variants of the focal names as similar names,
and the specific variant formats include the following:

• “First name” + “middle name” matches to “First name” + “middle name initial” e.g., “Frank
Graham” matches to “Frank G”

• “First name” + “two middle names” matches to “First name” + “middle name and middle
name initial” e.g., “Frank Graham Smith” matches to “Frank Graham S” and “Frank GS”

• “First name” matches to known“Nicknames” associated with this given name, e.g., “Robert”
matches to “Rob”

Our next step is to compare the patent assignee history to the publication affiliation history for
each pair of similar inventor and author names. The patent assignee refers to the organization
or individual holding the ownership rights to the patent and is normally the inventor’s employer.
We establish the links between authors and inventors when inventors have similar names and
overlapping employment histories with the authors. For example, if inventor A shares a similar
name with author A, and inventor A has a patent with company ABC, while author A published a
paper affiliated with company ABC, We establish a match between inventor A and author A due
to their similar names and shared employment history.

C Louvain Algorithm

The Louvain algorithm detects communities according to the relative density of connections
inside a community with respect to connections outside communities. The algorithm form a com-
munity by optimize the modularity function. The modularity measures the density of link inside
communities compared to links between communities. The modularity of community C is calculated
as the following:

Q =

∑
in

2m
− (

∑
tot

2m
)2 (14)

•
∑

in is the sum of edges between nodes within the community c;

•
∑

tot is the sum of all edge for nodes in the community c(including edges which link to other
communities);

• m is the sum of a ll of edge weights in the network;

Louvain algorithm assign each node to its own community. Then for each node i Louvain
algorithm calculate the change in modularity in two steps, which are:

• Step 1: Remove the node i from its own community D, and calculate ∆Q(D− > i)

• Step 2: Merge node i to neighbour community C, and calculate ∆Q(i− > C)
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According to the following formula, we need to calculate Qafter and Qbefore.

∆Q(D− > i) = QBefore removing i from D −QAfter merge i to C (15)

QBefore =

∑
in+ki,in

2m
− (

∑
tot+ki

2m
)2 (16)

QAfter =

∑
in

2m
− [0+ (

ki
2m

)2] (17)

• ki,in: is the sum of edges between node i and C

• ki: is the sum of all edges between node i

Given that ∆Q(i− > C) can be derived similarly, we can calculate:

∆Q(D− > i− > C) = ∆Q(D− > i) − ∆Q(i− > C) (18)

Louvain algorithm iterates the above process and forms a community when ∆Q(D− > I− >

C) does not increase. Generally speaking, this algorithm forms a community with a maximized
number of edges within the community and minimizes the number of edges connected to other
communities. The community contains nodes closely connected within communities but rarely
connected to outside communities.
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Figure A.1

The pie chart illustrates the primary subject areas of BdSci, defined as the 2-digit Scopus subject area where

BdScis publish most frequently. The chart is based on a sample of 3,502 BdScis with publication records

and subject area information available. The percentages of BdScis in specific subject areas are shown in

parentheses. Subject areas comprising less than 1% are grouped under “Other”, which are Arts and Hu-

manities (0.86%), Immunology and Microbiology (0.86%), Materials Science (0.83%), Chemical Engineering

(0.73%), Neuroscience (0.57%), Environmental Science (0.43%), Psychology (0.43%), Nursing (0.40%), Den-

tistry (0.29%), Decision Sciences (0.26%), Mathematics (0.26%), Veterinary(0.09%) and Health Professions

(0.06%)
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Figure A.2

The bar chart illustrates the reliance on fundamental science across different industries, and the pie charts

highlight the subject areas most relied upon by the patents in energy, healthcare, and business equipment

industries. The bar chart illustrates the percentage of patents heavily relying on fundamental sciences

across various Fama-French 12 industry classifications from 1996 to 2018. We define patents heavily relying

on fundamental sciences as patents referencing more scientific publications than the 75th percentile of the

patent distribution for the same technology class and grant year. Each bar represents a specific industry,

showing the share of patents heavily relying on fundamental sciences over the total patents in that industry

from 1996 to 2018. The red dashed line at 25.9% in the bar chart represents the average percentage of

patents that rely on fundamental sciences per industry. Three pie charts present the top ten 4-digit Scopus

subject areas most frequently referenced by patents in the industries of energy, healthcare, and business

equipment. The top 10 subject areas highlighted represent at least 40% of publications referenced in each

industry, and the fractions in each pie chart are reweighted to 100%, providing a focused perspective on the

predominant scientific subject areas that each industry relies on.
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Table A2
Summary statistics of firm characteristics

This table shows the firm characteristics of firm-year observations for CCM and BoardEx merged data from
1996 to 2018. R&D, CAPEX, ROA, cash, dividend, free cash flow, and PPE are scaled by total assets. The
total debt and book common equity value are adjusted according to Ivo Welch’s leverage guide. The data is
winsorized at 1% and 99%.

N Mean St. Dev. 25% 50% 75%

Size 68524 5.94 2.04 4.44 5.88 7.36
∆ Asset 68524 0.11 0.38 -0.04 0.03 0.16
Leverage 68524 0.21 0.22 0.01 0.16 0.34
M/B 68524 2.21 1.79 1.18 1.61 2.50
Tobin’s q 68524 2.21 1.79 1.18 1.61 2.50
R&D 43742 0.10 0.16 0.01 0.05 0.13
R&D missing 68524 0.36 0.48 0.00 0.00 1.00
Capex 68524 0.05 0.06 0.02 0.03 0.06
ROA 68524 0.04 0.26 0.02 0.10 0.16
Cash 68524 0.22 0.25 0.04 0.13 0.33
Dividend 68524 0.01 0.03 0.00 0.00 0.01
Log(Sales) 68524 5.56 2.48 4.10 5.78 7.26
∆ Sale 68524 0.14 0.45 -0.01 0.05 0.19
Free Cash Flow 68524 0.02 0.22 0.00 0.07 0.13
PPE 68524 0.25 0.23 0.07 0.16 0.36
Log(MV) 68524 6.05 2.07 4.55 6.03 7.43
Log(BV) 68524 4.99 2.15 3.64 5.09 6.42
Annual Return 68524 0.13 0.63 -0.22 0.00 0.32
HHI 68524 0.31 0.21 0.16 0.24 0.40
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Table A3
Performance metrics for different subject areas

This table presents the performance metrics at aggregated levels and separated by different
subject areas. The aggregated measure contains the macro average, weighted average, and
sample average. Macro average calculates the metric independently for each class and then
takes the average. Weighted average calculates the metric for each class and weights it by
the number of observations in that class. sample average computes the metric over the
individual binary decisions for each observation (each abstract in our case), rather than for
each class.

Precision Recall F1-Score Obs.

Engineering 0.76 0.74 0.75 11158
Medicine 0.89 0.84 0.87 10349
Computer Science 0.84 0.84 0.84 9527
Biochemistry 0.82 0.80 0.81 8726
Physics 0.71 0.66 0.68 5049
Materials Science 0.63 0.59 0.61 4308
Chemistry 0.73 0.63 0.68 3730
Pharmacology 0.69 0.57 0.62 2128

macro avg 0.76 0.71 0.73 54975
weighted avg 0.79 0.75 0.77 54975
samples avg 0.82 0.81 0.79 54975
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Table A4
The value of fundamental patents

The table compares the market value, generality and originality of fundamental patents to other patents in
the same firm, technology class and year. The independent variable is an indicator variable that equals 1
if the patent is fundamental patents and 0 otherwise. The dependent variable in column 1 is the market
value of the patent. The dependent variable in column 2 is the logarithm of generality. Column 3 has the
logarithm of originality as the dependent variable. The regression includes firm, technology class by grant
year, and year fixed effects. Standard errors are clustered at the SIC 4-digit industry level. ∗, ∗∗, and ∗ ∗ ∗
denote significance at the 10%, 5%, and 1% level, respectively.

Value Generality Originality

(1) (2) (3)

Fundamental Patents 0.030*** 0.133*** 0.015***
(0.008) (0.013) (0.001)

Size 0.040 -0.009** -0.001
(0.069) (0.003) (0.002)

CAPX 0.652 0.151*** 0.108***
(0.438) (0.045) (0.017)

RD -0.056 -0.029 -0.019*
(0.263) (0.022) (0.011)

Age 0.103 -0.028*** -0.021***
(0.094) (0.007) (0.003)

Annual Return 0.148*** 0.004*** 0.002***
(0.018) (0.001) (0.000)

Leverage 0.111 0.000 -0.010
(0.173) (0.016) (0.008)

Board Independence -0.383* -0.018 -0.028***
(0.205) (0.014) (0.005)

Scientific CEO 0.106 -0.014** -0.002
(0.092) (0.006) (0.002)

Scientific Patents -0.018*** -0.059*** 0.021***
(0.005) (0.004) (0.002)

Constant 1.432* -0.394*** -0.037**
(0.765) (0.033) (0.017)

Observations 1,045,603 637,973 974,991
Firm FE Yes Yes Yes
Technology class by grant year Yes Yes Yes
Year FE Yes Yes Yes
Cluster Industry Industry Industry
Adjust R-squared 0.760 0.807 0.257
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