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Abstract 
This paper examines how product market competition shapes managerial learning by 
enhancing the informativeness of a firm’s own stock price. Consistent with managerial 
learning, we find that corporate investment is more sensitive to stock prices when they 
better reflect product market competition. The product market-driven learning effect is 
particularly strong for R&D investment. It is also more pronounced in subsamples where 
focal firms are less financially constrained, are industry leaders, operate in R&D-
intensive markets, and interact with rivals in information-rich or highly competitive 
environments. Additional analyses of innovation outcomes, including patents and 
changes in the firm’s product offerings, and a quasi-natural experiment confirm further 
the robustness of the R&D results. Collectively, these findings reveal how product market 
competition-driven improvements in stock price informativeness contributes to 
corporate decision-making. 
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1. Introduction 

The informational content of stock prices is a central issue not only in asset pricing but 

also in corporate finance. Stock prices have real effects and serve as a key source of 

information for managers.1 Identifying the drivers of the quality of this informational 

content is therefore a fundamental endeavor in finance. Depending on the sampling 

choice and data frequency, around twenty percent of daily stock price changes are 

explained by the classical market model augmented with a broad industry index (Roll, 

1988). While more sophisticated asset pricing models improve the explanatory power by 

a few percentage points, they still leave a large portion of daily stock price changes 

unexplained. This unexplained component, 1 − 𝑅𝑅2, which is also known as price 

nonsynchronicity, is widely used as a proxy for the quantity of firm-specific information 

embedded in stock prices (Durnev, Morck, Yeung, and Zarowin, 2003). Although it is well-

established that managers learn from this idiosyncratic component2, the determinants 

of this learning effect remain largely unexplored. 

This paper examines product market competition (PMC) as a potential driver of 

managerial learning from the firm’s own stock price, referred hereafter to as the PMC 

learning channel. Firms do not operate in isolation; they actively engage with rivals in the 

product market space, a process that influences both their own decisions and those of 

their rivals. Firms learn directly from the behaviors and actions of their industry rivals 

(see, e.g., Spence, 1981; Gilbert and Lieberman, 1987; Grenadier, 2002; Leary and 

Roberts, 2014; Décaire, Gilje, and Taillard, 2020; Bustamante and Frésard, 2021; Krieger, 

2021), as well as from the stock prices of their rivals (Foucault and Frésard, 2014; Yan, 

2024). However, an additional potentially important factor is the contribution of PMC to 

 
1 See Bond, Edmans, and Goldstein (2012) or Goldstein (2023) for a review of the theoretical and empirical 
literature on the real effects of financial markets. 
2 Prior literature provides ample empirical evidence about managerial learning from stock prices in 
various settings like investment, merger and acquisition, cash holding, and firm productivity (see, e.g., 
Luo, 2005; Chen, Goldstein, and Jiang, 2007; Kau, Linck, and Rubin, 2008; Aktas, de Bodt, and Roll, 2011;  
Edmans, Goldstein, and Jiang, 2012; Frésard, 2012; Foucault and Frésard, 2012; Edmans, Jayaraman, 
and Schneemeier, 2017; Bennett, Stulz, and Wang, 2020; Chen and Doukas, 2024). 
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the information content of the focal firm’s stock prices. We posit that, beyond direct 

learning from rivals’ actions and stock prices, changes in a firm’s own stock prices driven 

by PMC improve managerial leaning. Figure 1 provides a schematic overview that 

summarizes primary sources of managerial learning identified in the literature and the 

one explored in this paper.3  

[Please insert Figure 1 about here] 

We start by quantifying the contribution of rival firms’ strategic actions to the stock price 

changes of the focal firm, corresponding to the PMC-induced component of stock price 

informativeness. This requires addressing two empirical challenges: (i) identifying rival 

firms operating within the same product market space and (ii) constructing a measure of 

the PMC’s contribution to the information content of stock prices.  

Hoberg and Phillips (2010, 2016) provide us with the needed information to address the 

first challenge. To identify a firm’s closest rivals in any given year, we follow the authors’ 

approach and select the ten nearest neighbors (10NN) in the product market space. 

These 10NN firms should be mostly firms in direct competition with the focal firm.  

To overcome the second empirical challenge, we start with a simple observation: firm-

specific news about industry rivals affects the stock prices of firms in the same product 

market through competition (or cooperation). For example, on July 6, 2021, the Pentagon 

canceled Microsoft’s $10 billion JEDI cloud contract, resulting in Amazon stock rising by 

4.69%. This Microsoft-specific news benefited Amazon, as its Amazon Web Services 

platform competes with Microsoft Azure for the Pentagon contract. However, not all rival 

interactions are as obvious. When Apple announced its shift to in-house silicon in June 

2020, the stock price of its former supplier and future rival, Intel, saw little change, likely 

because the move was anticipated by analysts. In such cases, identifying stock price 

 
3 Our analysis centers on learning that arises specifically from the component of the focal firm’s stock 
price informativeness that is induced by PMC. This indirect learning channel is illustrated by the dashed 
arrow in Figure 1. 
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impacts requires pinpointing the exact days when rumors or leaks hit the market. While 

feasible for a small sample of industries and a limited time period, large-scale collection 

over extended periods of such data is out of reach. Nonetheless, if good news for some 

firms is bad news for others (or good news for both in cases of cooperation), firm-specific 

return correlations should reveal this dynamic. This allows us to construct a measure of 

stock price informativeness induced by PMC for the focal firm.  

More specifically, we isolate the PMC-driven component of stock returns by starting with 

a baseline model. This model regresses the daily excess returns of the focal firm on the 

excess returns of the market portfolio and a 3-digit SIC code value weighted industry 

portfolio. The use of the broad industry index allows us to control for shocks common to 

all firms in the industry (typically, shocks to product demand arising from technological 

innovation or changes in input prices), regardless of whether they are in direct 

competition. We then augment the baseline model with the daily idiosyncratic returns of 

the 10NN rivals, the firms in direct competition with the focal firm of interest.4 By taking 

the difference between the 𝑅𝑅2 of the full model with that of the baseline model, we 

measure the contribution of the PMC to the stock price informativeness of the focal firm, 

which we denote SPIPMC.5  

We assemble our sample by merging the Hoberg and Phillips database with the CRSP 

universe over the 1989–2021 period. Relying on firm-by-firm yearly regressions, we 

document that the average 𝑅𝑅2 obtained with the baseline model is 16.96%, which is of 

the same magnitude as the average 𝑅𝑅2 reported in Chen, Goldstein, and Jiang (2007). The 

inclusion of the 10NN rivals idiosyncratic returns increases the average 𝑅𝑅2 by 8.70 

 
4 See de Bodt, Eckbo, and Roll (2024) for the use of idiosyncratic within-industry return comovements to 
identify industry rival’s strategic reactions to competitive shock in the industry. 
5 Before calculating the difference between the two stock price informativeness variables, we apply a 
logistic transformation to both, as is common in prior literature to address the skewness and boundedness 
of 1 − 𝑅𝑅2 (Durnev, Morck, and Young, 2004). 
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percentage points, a highly statistically significant increase in 𝑅𝑅2. This result confirms 

that PMC is important in explaining the information content of stock returns.  

Armed with SPIPMC, we next test our prediction. Relying on various investment variables, 

we examine whether learning from the firm’s own stock price is amplified when the 

contribution of PMC to the firm’s stock price informativeness is higher. We follow prior 

literature and adopt a standard linear investment equation which relates the focal firm’s 

investment ratio to its own stock price, thereby estimating investment-to-Q sensitivities. 

We start with the capex-to-assets ratio as dependent variable and confirm the well-

established findings from prior literature that capex investment is highly sensitive to 

Tobin’s Q (Chen, Goldstein, and Jiang, 2007). Next, we augment the specification by 

including our variable of interest, SPIPMC, along with its interaction term with Tobin’s Q. 

The interaction term tests whether the sensitivity of the firm’s capex to its stock price 

increases when the contribution of the 10NN rival’s returns to the stock price 

informativeness is higher. This is the case, as the interaction term is associated with a 

statistically significant positive coefficient. The economic effect is sizeable, with a one 

standard deviation change in SPIPMC inducing a 6% increase in the sensitivity of the capex 

ratio to the firm’s Tobin’s Q relative to the baseline effect.  We repeat our analysis by also 

controlling for the stock price of industry peers using the industry average Tobin’s Q, as 

firms may also learn directly from the valuation of their peers (Foucault and Frésard, 

2014), and confirm that the PMC channel of managerial learning that we document 

extends therefore beyond merely observing rivals’ stock prices.  

Performing the same set of analyses with R&D and total investment ratios further 

emphasizes the importance of learning from the PMC-driven component of the firm’s 

stock price informativeness.6 Moreover, the economic magnitude of the documented 

PMC learning channel is notably stronger for R&D investments compared to capex. This 

aligns with the critical role of R&D in driving firm growth (Brown, Fazzari, and Petersen, 

 
6 We define total investment as the sum of capex, R&D and cash acquisition, less asset sales, scaled by 
lagged total assets. 
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2009) and the challenges of financing R&D using external sources of funding (Hall, 2002). 

These characteristics likely explain R&D's increased sensitivity to stock prices, 

particularly when those prices reflect substantial product market-driven information. 

Interestingly, direct learning from peer valuations does not appear to play a significantly 

positive effect for both R&D and total investment. 

Numerous robustness checks confirm our result. Specifically, our finding remains robust 

when: (i) we use the relative increase in the 𝑅𝑅2 between the baseline and full models as 

an alternative proxy for SPIPMC; (ii) we replace the one-factor model with the Fama-French 

five-factor model (Fama and French, 2015); (iii) we adjust return regressions using 

asymmetric betas to account for differential responses to good and bad news affecting 

rivals (Ang, Chen, and Xing 2006); and (iv) we control for managerial private information 

using earnings surprises and analyst coverage, following Chen, Goldstein, and Jiang 

(2007). Finally, a placebo test, which consists in allocating randomly 10 firms as nearest 

rivals to the focal firm, confirms that our learning result is not due to chance. 

To gain a better sense of the magnitude of the PMC-induced learning effects that we 

capture, we compare the contributions of the residual firm-specific information in stock 

prices to our PMC-driven stock price informativeness. The results suggest that both 

components are important sources of information for managerial learning. While the 

coefficient estimate of Tobin’s Q in the capex regression is more sensitive to the residual 

component, for both R&D and total investment, the economic impact of the PMC-driven 

component is as important as that of the residual component.  

We next study cross-sectional determinants that influence the contribution of the PMC 

channel to managerial learning. To this end, we consider five contexts that may amplify 

or attenuate managerial learning: financial constraints, informational environment 

quality, competition intensity, R&D intensity, and industry leadership. We find that PMC-

induced learning effects are strongest for R&D investments among firms that are less 
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financially constrained, competing in high-quality informational environments, in 

leadership positions, and operating in R&D-intensive and competitive product markets.  

Our finding that firms with higher PMC-driven SPI exhibit greater sensitivity to Tobin’s Q 

can be driven by factors that impact both price discovery and investment, such as 

technological shocks, as suggested in Bennett, Stulz, and Wang (2020). To strengthen the 

causal interpretation of our results, we follow the authors and use a quasi-natural 

experiment to address potential endogeneity concerns. We specifically examine the 

addition of the focal firm’s 10NN rivals to the S&P 500 index as an exogenous shock to 

SPIPMC.7 In the investment regressions, we find that such additions significantly reduce 

the sensitivity of the focal firm’s R&D expenses to its Tobin’s Q. This result supports the 

existence of a causal relationship between R&D expenses and SPIPMC. However, the 

effects on capex and total investment are not statistically significant. 

Taken collectively, our results indicate that among the investment decisions, R&D 

investment appears to be the most sensitive to PMC-induced signals in stock prices. To 

further assess the robustness of our R&D results, we turn to variables capturing 

innovation outcomes over the next three years, since it may take time for R&D to translate 

into tangible innovation (Griliches, 1990). We replicate our baseline analysis with three 

different innovation outcomes: (i) granted patents, (ii) future citations of the granted 

patents, and (iii) changes in product offerings using the self-fluidity variable of Hoberg, 

Phillips, and Prabhala (2014). Results of these additional analyses are in-line with the 

R&D results, showing that PMC-driven stock price informativeness amplifies the 

sensitivity of the considered innovation outcomes to the firm’s Tobin’s Q. 

Our research contributes to literature examining feedback effects of financial markets, in 

general, and to literature on managerial learning from stock prices, in particular. As 

emphasized in Goldstein (2023), the discovery of information is one of the central roles 

 
7 Our test capitalizes on the index effect on comovements. The disappearing index effect reported in 
Greenwood and Salmon (2024), if anything, plays against us. 
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of financial markets (see also, e.g., Dow and Gorton, 1997; Subrahmanyam and Titman, 

1999; Peress, 2014). Numerous articles provide empirical evidence emphasizing that 

managers learn from their own stock prices in the context of investment decisions. Chen, 

Goldstein, and Jiang (2007) show that firm-specific information in stock prices affects 

positively the sensitivity of corporate investments (such as capex and R&D) to stock 

prices. Frésard and Foucault (2012) document that cross-listing in a relatively more 

efficient market affects positively the sensitivity of corporate investment to stock prices. 

Edmans, Jayaraman, and Schneemeier (2017) develop a theoretical model predicting 

that managers do not only learn from the total information embedded in stock prices, but 

that the source of that information also matters. Relying on an international setting and 

the adoption of insider trading laws, the authors document that the sensitivity of capex 

to stock prices is amplified when stock prices incorporate information unknown to 

managers. We also consider the information source and document that the component 

driven by PMC is important for managerial learning in the context of investment. Our 

paper therefore sheds important light on the nature of the information driving the learning 

effects and emphasizes the role of PMC. 

Our research also relates to studies examining learning from peers’ stock prices and 

valuations. Foucault and Frésard (2014) develop a theoretical model to lay out their 

empirical predictions and provide evidence that the stock prices of industry peers matter 

for capex investments. Yan (2024) focuses on private firms and documents that their 

investments are sensitive to the stock prices of industry peer listed firms. While firms can 

derive insights from observing their rivals’ stock prices, this alone may not provide a 

complete picture. It is equally important to understand how rivals' actions influence the 

information content of the focal firm’s stock price. To capture these PMC effects, we rely 

on idiosyncratic within-industry return comovements in stock return regressions. 

Accounting for PMC improves stock price informativeness, which, in turn, enhances 

managerial learning. Our specifications control for the Tobin’s Q of industry peers, and 
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therefore, the learning effect that we document extends beyond merely observing rivals’ 

stock prices. 

2. Data and empirical strategy 

This section begins by detailing the identification of product market rivals and describing 

our sample. Next, we outline the method used to isolate the PMC-driven component of 

stock price informativeness (SPIPMC). We then present the results of stock return 

regressions, necessary to estimate SPIPMC. Finally, we introduce the regression 

specification used to test whether the PMC channel serves an important source of 

information for managerial learning from the firm’s own stock price. 

2.1. Rival identification and sample construction 

A key step to isolate the PMC-driven component of SPI is identifying direct competitors, 

a challenging task as emphasized in Eckbo (1983). Broad industry classifications like SIC 

codes, which focus more on technology rather than competition and are known to be 

sticky, are not well suited for our emphasis on product market interactions between rival 

firms.8 We therefore use the Text-Based Network Industry Classification (TNIC) dataset 

introduced in Hoberg and Phillips (2010, 2016).9 This dataset leverages Item 1 product 

descriptions from annual SEC 10-K filings to generate yearly similarity scores between 

U.S. firm pairs based on their product offerings. These scores serve as a widely accepted 

proxy for product market competition.  

To assemble our sample, we start from the TNIC dataset that spans the 1989 to 2021 

period at the time of this writing. We keep the ten nearest neighbors (10NN) ranked by 

similarity scores as in Hoberg and Phillips (2010). Next, we apply the following filters to 

our sample: we retain only firms present in the Center for Research in Security Prices 

(CRSP) database,  keep ordinary U.S. shares (CRSP share class codes10 and 11), exclude 

 
8 See Bhojraj, Lee, and Oler (2003) for a discussion on the limitations associated with SIC code 
classification to explain stock return comovements or to form group of firms with similar characteristics. 
9 Available at http://hobergphillips.tuck.dartmouth.edu/tnic_poweruser.htm.  
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penny stocks, and remove observations with missing data for shares outstanding (CRSP 

field 'shrout') or missing closing prices ('prc' CRSP field). We also exclude firm-year 

observations with fewer than 90 daily returns in a given year, as well as firms in financial 

(SIC codes 6000-6999) and utility industries (SIC codes 4000-4999). These filters reduce 

our initial sample of 171,536 firm-year observations to 94,695. 

Table 1 presents the sample characteristics by year. Column 1 lists the number of unique 

firms, column 2 reports the aggregate market value of equity at year-end in US$ billions, 

column 3 provides the average similarity score for all firm pairs, and column 4 shows the 

average similarity score of firm pairs in the 10NN clusters.  

[Please insert Table 1 about here] 

The peak number of unique firms in our sample occurred in 1997 with 4,405 firms. From 

that point onward, there is a steady year-by-year decline, reaching a low of 2,203 firms by 

2020, followed by a notable reversal in 2021 with 2,679 firms. The sharp decline in the 

number of U.S. listed firms over the last three decades has been well documented in the 

literature, raising concerns about a U.S. listing gap (Doidge, Karolyi, and Stulz, 2017). In 

terms of aggregate equity value, a first peak is reached in 1999, coinciding with the 

dot.com bubble, the second in 2007 before the financial crisis, and the third in 2021, the 

final year of our sample period. Notably, despite a drastic reduction in the number of 

unique firms from 1997 to 2021, the aggregate market value more than quintupled, driven 

largely by the rise of tech giants such as Google, Amazon, Facebook, Apple, and 

Microsoft. In terms of similarity scores, the average similarity across all firm pairs is 0.015 

in our sample, while the one of the 10NN cluster is mechanically considerably higher at 

0.173. These statistics are in line with Hoberg and Phillips (2010). 

2.2. Regression specification to isolate PMC-driven SPI 

We measure stock price informativeness (SPI) using asset pricing regressions, building 

on Roll’s (1988) seminal work. The baseline model regresses the focal firm’s excess stock 

return on the excess returns of the market and industry portfolios: 
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𝑟𝑟𝑖𝑖,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑀𝑀�𝑟𝑟𝑀𝑀,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡� + 𝛽𝛽𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼�𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡� + 𝜀𝜀𝑖𝑖,𝑡𝑡,    (1) 

where i denotes the focal firm, 𝑟𝑟𝑖𝑖,𝑡𝑡 is the firm’s stock return on day t, and 𝑟𝑟𝐹𝐹,𝑡𝑡, 𝑟𝑟𝑀𝑀,𝑡𝑡, and 

𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡 represent the risk-free rate, the CRSP value-weighted market portfolio return, and 

the value-weighted SIC3 industry portfolio return, respectively. This regression 

specification decomposes the firm’s stock returns into systematic components, driven 

by co-movements with market and industry returns, and an unexplained component, 

which captures firm-specific information. In particular, the inclusion of the industry 

portfolio return controls for common industry-wide shocks, such as technological 

changes or supply chain disruptions, that impact all firms in the industry. A larger 

unexplained component reflects weaker co-movement between the firm’s return and 

those of the market and industry, resulting in a lower 𝑅𝑅2 and indicating a greater amount 

of firm-specific information embedded in the stock price (Durnev et al., 2003). Therefore, 

1 − 𝑅𝑅2 serves as a measure of SPI. Following Durnev, Morck, and Young (2004), we apply 

the logistic transformation to 1 − 𝑅𝑅2 to derive the total SPI (SPITOT) for each firm: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑙𝑙𝑙𝑙𝑙𝑙 �
1 − 𝑅𝑅𝑖𝑖2

𝑅𝑅𝑖𝑖2
� .                                                                  (2) 

The logistic transformation tackles the skewness and bounded nature of 1 − 𝑅𝑅2. 

We next augment the baseline model in Equation (1) by including the idiosyncratic stock 

returns of the 10NN rivals in the product market space:  

𝑟𝑟𝑖𝑖,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑀𝑀�𝑟𝑟𝑀𝑀,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡� + 𝛽𝛽𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼�𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡 − 𝑟𝑟𝐹𝐹,𝑡𝑡� + � 𝛽𝛽𝑖𝑖
𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖,𝑗𝑗,𝑡𝑡

10

𝑗𝑗=1
+ 𝜀𝜀𝑖𝑖,𝑡𝑡,          (3) 

where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖,𝑗𝑗,𝑡𝑡 is the idiosyncratic return of firm i’s rival j on day t, derived from a one-

factor model.10 The inclusion of the 10NN rivals’ stock returns in Equation (3) enables us 

to isolate the effects of firm-specific competitive interactions while controlling for 

broader common market and industry shocks on stock return variations, as emphasized 

 
10 Note that using raw rival returns instead of idiosyncratic rival returns yields similar results as a 
consequence of the regression anatomy formula (Angrist and Pischke, 2009). 
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by de Bodt, Eckbo, and Roll (2024). We denote 𝑅𝑅∗2 the 𝑅𝑅2 of this augmented model, and 

rely on the logistic transformation of 1 − 𝑅𝑅∗2 to quantify the residual SPI (SPIRES), which 

corresponds to SPI after accounting for product market interactions with the 10NN rivals: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑙𝑙𝑙𝑙𝑙𝑙 �
1 − 𝑅𝑅𝑖𝑖∗2

𝑅𝑅𝑖𝑖∗2
� .                                                                         (4) 

To identify the PMC-driven component of stock price informativeness (SPIPMC), we take 

the difference between Equations (2) and (4):  

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 −𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅.                                                                         (5) 

2.3. Estimation of SPI variables 

We estimate the SPI variables by running stock return regressions for each firm-year using 

daily observations. We obtain stock price and return information from CRSP and factor 

data from Kenneth French’s data library.11 Variable definitions are provided in Appendix 

A. Table 2 presents the results obtained running these firm-year regressions. Panel A 

provides descriptive statistics for the daily returns and factor variables used in the firm-

year stock return regressions. Panel B summarizes the 𝑅𝑅2 and adjusted 𝑅𝑅2 estimates 

obtained from the 94,695 firm-year stock return regressions, highlighting the explanatory 

power of the estimated models.   

[Please insert Table 2 about here] 

We begin by summarizing the results obtained with the one-factor (1F) model, which 

regresses the firm’s excess stock returns on the excess returns of the market portfolio. 

The average 𝑅𝑅2 is 13.15% (see Panel B, column 1). In panel B, column 2, we summarize 

the results obtained estimating Equation (1), which corresponds to the 1F model 

expanded with the excess returns of the 3-digit SIC industry portfolio (1F+IND model) The 

average 𝑅𝑅2 increases by 3.82 percentage points.  

 
11 See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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In Panel B, column 3, we further augment the model by including the daily idiosyncratic 

returns of the 10NN rivals (1F+IND+10NN model), as specified in Equation (3). Results 

show that the average 𝑅𝑅2 increases by 8.70 percentage points, compared to the 

estimates from the 1F+IND model (Panel B, column 2). This increase in 𝑅𝑅2 is statistically 

significant at the 1% level. The size of the contribution of 10NN rivals’ idiosyncratic 

returns to the average 𝑅𝑅2 is remarkable, as it amounts to (roughly) two thirds of the 

explanatory power of the one factor model and two times the contribution of 3-digit SIC3 

index. 

Figure 2 shows the yearly average 𝑅𝑅2 from these firm-level time series regressions, and 

the last column of Table 1 reports the change in 𝑅𝑅2 between the 1F+IND+10NN and 

1F+IND models. The explanatory power of these models varies significantly over time, 

with the three models exhibiting similar trends, largely shaped by the 1F model. The 𝑅𝑅2 of 

the 1F model ranges from a low of 2.85% in 1993 to a high of 46.36% in 2011. Since 2011, 

it has gradually reverted to the pre-financial crisis level, consistent with the findings of 

Parsley and Poper (2020). We note also that the contributions of both the industry 

portfolio return and the 10NN rivals’ stock returns to 𝑅𝑅2 decrease substantially when the 

𝑅𝑅2 of the 1F model reaches its peak. 

[Please insert Figure 2 about here] 

We use these regression results to calculate the SPI variables as specified in Equations 

(2), (4) and (5). Panel A of Table 3 reports the summary statistics for the three SPI 

variables. The average value of SPITOT is 2.385 in our sample, consistent with previous 

literature (see, e.g., Chen, Goldstein, and Jiang, 2007; Bennett, Stulz, and Wang, 2020). 

The average values of SPIPMC and SPIRES are 1.124 and 1.261, respectively. The 

decomposition of the total stock price informativeness indicates that the PMC-driven 

and residual components carry almost equal amount of information, with average shares 

of 47% and 53%, respectively. This suggests that about half of the total firm-specific 
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information in stock returns is generated through competitive product market 

interactions. 

[Please insert Table 3 about here] 

2.4. Framework for testing the PMC channel of managerial learning 

To test whether PMC is an important source of information for managerial learning from 

stock prices, we follow existing literature and adopt a standard linear investment 

equation which relates the focal firm’s investment ratio to its own stock price, thereby 

estimating investment-to-Q sensitivities. Our analysis centers on the following 

regression specification: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝛽𝛽1𝑄𝑄𝑖𝑖,𝑡𝑡−1 + 𝑋𝑋𝑖𝑖,𝑡𝑡−1Γ + 𝜀𝜀𝑖𝑖,𝑡𝑡,                                              (6) 

where the dependent variable, 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡, is the investment ratio of firm i at the end of year t. 

We consider three different investment measures for the dependent variable: capital 

expenditures (capex); research and development expenses (R&D); and total investment, 

measured as the sum of capex plus R&D plus cash acquisition minus asset sales, 

following Richardson (2006). All three investment measures are scaled by lagged total 

assets.12 𝑄𝑄𝑖𝑖,𝑡𝑡−1 is the Tobin’s Q of firm i at the end of year t – 1, serving as a proxy for the 

firm’s stock price at year-end.  𝑋𝑋 is the vector of control variables, with Γ representing the 

coefficient vector associated to these controls.  

Following prior research, our regression model controls for two important firm 

characteristics known to correlate with investment decisions: firm size, represented by 

the logarithm of total assets; and cash flow, measured as income before extraordinary 

items plus depreciation divided by total assets. The model also includes firm (𝛼𝛼𝑖𝑖) and year 

(𝛿𝛿𝑡𝑡) fixed effects. Year fixed effects absorb aggregate trends in investment, while firm fixed 

effects limit concerns about omitted variable biases due to time-invariant unobservable 

 
12 Scaling the investment variables by lagged fixed assets (property plant and equipment) instead of total 
assets does not alter our findings (unreported). 
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factors at the firm level. We report t-statistics based on clustered standard errors at the 

firm level. 𝜀𝜀𝑖𝑖,𝑡𝑡 is the error term.  

The regression coefficient 𝛽𝛽1 measures the sensitivity of firm investment to its own stock 

price. A positive 𝛽𝛽1 is a necessary condition to support the learning hypothesis (i.e., 

managers learning from their firm’s stock prices). However, as emphasized by Foucault 

and Frésard (2014), this condition is not sufficient, as the firm’s Tobin’s Q may correlate 

with managers’ private information about the firm’s investment opportunities. Therefore, 

it is important to assess whether the coefficient 𝛽𝛽1 is sensitive to the degree of stock price 

informativeness (i.e., amount of firm-specific information in stock prices). Our focus is 

on firm-specific information related to PMC. 

To test whether managerial learning is enhanced when stock prices incorporate more 

firm-specific information generated by PMC, we augment the previous model with our 

information variable of interest, SPIPMC, and its interaction with the firm’s Tobin’s Q. The 

augmented specification is as follows: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝛽𝛽1𝑄𝑄𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽2𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡−1𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽3�𝑄𝑄𝑖𝑖,𝑡𝑡−1 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡−1𝑃𝑃𝑃𝑃 � + 𝑋𝑋𝑖𝑖,𝑡𝑡−1Γ + 𝜀𝜀𝑖𝑖,𝑡𝑡.                (7) 

The regression coefficient 𝛽𝛽3 helps us evaluate whether managerial learning improves 

when stock prices better reflect PMC. A statistically significant positive coefficient 

suggests that firm investment becomes more sensitive to stock prices when they 

incorporate more information from rivals.  

In additional analyses, we control for direct learning by extending Equation (7) with the 

average Tobin’s Q of industry peers. We use either the average for all firms in the TNIC 

industry or that of the 10NN rivals. In these models, following Foucault and Frésard 

(2014), we also include the average values of firm size and cash flow within the 

corresponding peer group as additional controls.  
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2.5. Summary statistics 

To estimate the investment regressions introduced in Equations (6) and (7), we rely on 

stock price data from CRSP and investment and accounting data from Compustat. In 

addition to the filters used to gather the sample for the stock return regressions in Section 

2.3, we follow Foucault and Frésard (2014) and implement additional filters for the 

investment regressions. Specifically, we exclude firms with negative sales or missing data 

on total assets, capital expenditures, or fixed assets. These filters further reduce our 

sample from 94,695 firm-year observations to 92,088.13  

Table 3 presents descriptive statistics for the main variables used in the learning tests, 

with variable definitions provided in Appendix A. To mitigate the influence of outliers, all 

financial ratios are winsorized at the top and bottom 1% of the distribution. The average 

Tobin’s Q is 2.219 in our sample. The average values of both capex and R&D ratios are 

6.5%. In addition to capex and R&D, when accounting for cash acquisitions, and asset 

sales, firm investment averages 17% of its lagged total assets. These statistics align with 

prior literature adopting similar variable definitions (see, e.g., Richardson, 2006; Chen, 

Goldstein, and Jiang, 2007; Foucault and Frésard, 2014; Edmans, Jayaraman, and 

Schneemeier, 2017).  

We also provide summary statistics for the peer group. Compared to the average focal 

firm, the average peer firm in both the TNIC industry and 10NN cluster is larger in terms 

of total assets but has a comparable Tobin’s Q. In terms of operating cash flow, the 

average values are comparable for the focal firm and TNIC peers but lower for 10NN 

peers. Notably, the median values across the three groups are similar, indicating that the 

10NN cluster is more sensitive to the presence of outliers. 

  

 
13 Note that data availability for some variables, along with the use of lagged observations in both the 
control variables and the denominator of the investment ratios, further reduces the sample size in the 
multivariate regressions. 
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3. Empirical evidence 

3.1. Baseline investment results 

Table 4 presents our baseline investment results. We first estimate the investment-to-Q 

sensitivities in our sample using Equation (6), with three different investment measures 

as the dependent variables: capex in Panel A, R&D in Panel B, and total investment in 

Panel C. Column 1 reports the result. For brevity, we do not report the coefficient 

estimates for the control variables (firm size and cash flow) and fixed effects, though they 

are included in the model. 

[Please insert Table 4 about here] 

Starting with capex, consistent with previous studies (e.g., Chen, Goldstein, and Jiang, 

2007; Foucault and Frésard, 2014), firm investment is positively and significantly related 

to Tobin’s Q. The coefficient estimate of 𝑄𝑄𝑖𝑖,𝑡𝑡−1 in the capex regression is 0.0078 with a t-

statistic of 21.76. A one standard deviation increase in the average firm’s Tobin’s Q is 

associated with an increase of 1.57 percentage point in its capex ratio. This economic 

effect is substantial, as the corresponding change in the capex ratio represents 24.14% 

of its average value of 6.5% (see Table 3). In column 1 of Panels B and C, we observe a 

similar positive effect of Tobin’s Q on R&D and total investment ratios. The economic 

magnitude is comparable for total investment, but the effect on R&D is larger than that 

on capex.  A one standard deviation increase in the average firm’s Tobin’s Q is associated 

with an increase of 2.05 percentage points in its R&D ratio and 4.59 percentage points in 

its total investment ratio. These economic effects represent 31.57% of the average value 

of R&D and 26.98% of the average value of total investment ratio. 

Next, we estimate Equation (7), which augments the initial investment model by including 

our independent variable of interest, SPIPMC, and its interaction term with Tobin’s Q. For 

brevity, the coefficient of SPIPMC term is not reported. The interaction term coefficient 

reported in column 2 allows us to test the sensitivity of the firm’s investment decision to 

its own stock price when PMC contribute more to stock price informativeness. 
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Concerning capex, the estimation results confirm that PMC-driven stock price 

informativeness enhances managerial learning, with a statistically significant positive 

coefficient for the interaction term at the 5% level (see Panel A). Economically, the effect 

is also noteworthy: a one standard deviation increase in SPIPMC leads to a 6% increase in 

the sensitivity of the capex ratio to Tobin’s Q relative to the sensitivity observed in the 

baseline model. In column 2 of Panels B and C, we repeat the analysis with R&D and total 

investment as the dependent variables, respectively. The interaction term is positive and 

statistically significant at the 1% level in both panels.   

Comparing the PMC-driven information effects on the three investment variables in 

terms of economic magnitude, we observe the following ranking: the highest effect is on 

R&D, followed by total investment and capex, in the order.  A one standard deviation 

increase in SPIPMC leads to a 26.24% (11.72%) increase in the sensitivity of R&D (total 

investment) to Tobin’s Q. This ordering of the economic effect is not surprising, given the 

critical role of R&D as an input for innovation and growth (e.g., Brown, Fazzari, and 

Petersen, 2009). Unlike capex, which serves both to acquire new assets and maintain or 

replace existing ones, R&D is focused on future growth. Additionally, R&D is typically 

harder to finance through external sources of funding, and many firms face financing 

constraints for their investments in innovation (Hall, 2002). These unique characteristics 

of R&D likely explain its greater sensitivity to information flowing from stock prices, 

especially when those prices incorporate significant PMC information.  

Firms also learn directly from the stock prices of their industry rivals (Foucault and 

Frésard, 2014; Yan, 2024). To control for this additional learning channel, we augment our 

specification by including the average Tobin’s Q of industry peers, excluding the focal 

firm. We use two alternative definitions of industry peers, all firms in the corresponding 

TNIC industry (column 3), and 10NN closest rival firms respectively (column 4).  

In Panel A, where the dependent variable is the capex ratio, the coefficient estimate of 

the industry peers’ Tobin’s Q is significantly positive in both columns 3 (TNIC peers) and 
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4 (10NN peers). This confirms the presence of a direct learning channel from rival stock 

prices to capex investment decisions, consistent with the findings of Foucault and 

Frésard (2014). However, in Panels B and C, where R&D and total investment ratios are 

the dependent variables, coefficient estimates of industry peers’ Tobin’s Q are either 

negative or statistically insignificant. This suggests that direct learning from rival stock 

prices plays a less prominent role in these contexts. In the three panels, the coefficient 

of the interaction between the focal firm Tobin’s Q and SPIPMC is positive and statistically 

highly significant, confirming the importance of the PMC information channel. 

Overall, our results suggest that the learning effect extends beyond simply tracking rivals’ 

stock prices, highlighting the importance of understanding how PMC-driven interactions 

impact the focal firm’s stock price informativeness and enhance learning form its own 

stock price signals.  

3.2. Additional checks and results 

Table 5 presents various tests to assess the robustness of our baseline results, replicating 

the specification in column 3 of Table 4. Column 1 of Table 5 shows that our main finding 

remains robust with an alternative proxy for the PMC-driven component of stock price 

informativeness. This proxy corresponds to the relative increase in R² when the 10NN 

rivals’ idiosyncratic stock returns are included as independent variables in the stock 

return regressions.14 This test confirms that our conclusions hold across two different 

measures of stock price informativeness.  

[Please insert Table 5 about here] 

In column 2, we replace the one-factor model with the Fama-French five-factor model 

(Fama and French, 2015), capturing additional risk factors. The five considered factors 

are market, size, value, profitability, and investment. The increase in the average 𝑅𝑅2 after 

the inclusion of the 10NN rivals’ idiosyncratic returns is both statistically significant and 

 
14 More explicitly, we use 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑅𝑅𝑖𝑖

∗2−𝑅𝑅𝑖𝑖
2

𝑅𝑅𝑖𝑖
2 � as an alternative proxy for SPIPMC, see Section 2.2 for the notation.  
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of similar magnitude in comparison to our baseline stock return model (i.e., one-factor 

model augmented with the SIC3 industry portfolio return). The learning effect persists, 

demonstrating that our findings are not sensitive to the choice of alternative asset pricing 

models. 

In column 3, we incorporate asymmetric betas in the baseline stock return model, 

following the methodology outlined in Ang, Chen, and Xing (2006). This adjustment 

accounts for firms’ differential responses to good and bad news about their rivals. 

Specifically, we interact each of the 10NN rivals’ idiosyncratic returns with dummy 

variables that distinguish between positive and negative idiosyncratic returns. This 

allows us to estimate two distinct beta coefficients for each rival. Our results continue to 

support the presence of PMC-driven learning. 

In column 4, we control for managerial private information using earnings surprises as a 

proxy, ensuring that managers rely on stock prices to access information beyond their 

private knowledge. Following, Chen, Goldstein, and Wang (2007), earnings surprises 

(denoted as ERC, or Earnings Response Coefficient) are measured as the average of 

absolute 3-day abnormal stock returns (in %) over the prior year’s four quarterly earnings 

announcements. Abnormal returns are market-adjusted using the value-weighted CRSP 

index. The intuition behind the use of earnings surprises is that managers have access to 

earnings information before its public release; thus, the surprise in the announcement 

serves as a proxy for the extent of managerial private information. As column 4 shows, in 

all three panels, ERC has a statistically insignificant negative effect on the sensitivity of 

investment to Tobin’s Q. Most importantly, in all three panels, the coefficient estimate of 

our interaction term of interest, Q × SPIPMC, is almost insensitive to controlling for 

managerial private information. This result indicates that SPIPMC reflects some 

information that is not known to managers. 

In column 5, we use analyst coverage as an additional proxy for managerial private 

information. Chen, Goldstein, and Wang (2007) argue that a large fraction of the 
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information analysts process is derived from their interactions with managers. If this 

indeed the case, information produced by analysts may impact stock prices but without 

necessarily affecting managerial decisions, such as corporate investment. This 

reasoning predicts a negative relationship between analyst coverage and investment-to-

Q sensitivity. We measure analyst coverage, denoted as #Analyst in column 5 of Table 5, 

as the logarithm of one plus the number of analysts issuing forecasts or 

recommendations in the previous year. As predicted, and consistent with the findings in 

Chen, Goldstein, and Wang (2007), analyst coverage attenuates the sensitivity of 

investment to Tobin’s Q, with the effects being statistically significant for both R&D and 

total investment. With the inclusion of analyst coverage, our interaction term of interest, 

Q × SPIPMC, remains significantly positive for both R&D and total investment. Only the 

capex result does not survive to the inclusion of analyst coverage in our specification.  

Lastly, column 6 presents the result of a placebo test, where we randomly assign 10 firms 

as nearest rivals to the focal firm and re-estimate the information variable, SPIPMC, using 

the idiosyncratic returns of these pseudo rivals. The statistically insignificant interaction 

term coefficient confirms that the learning effect is specifically driven by actual product 

market competitive interactions, rather than by chance.  

As an additional investigation and to get a better sense of the magnitude of the PMC 

channel, we compare the contribution of residual firm-specific information in stock 

returns (after controlling for co-movements with the returns of the 10NN rivals) to 

managerial learning with the one of PMC-driven stock price informativeness. This should 

give some indication about the relative economic importance of the latter one. Table 6 

presents the results. The dependent variable in columns 1-2, 3-4, and 5-6 is the capex 

ratio, R&D ratio, and total investment ratio, respectively. In columns 1, 3 and 5, we employ 

the investment model with total stock price informativeness (SPITOT) as the information 

variable. In columns 2, 4, and 6, we decompose the effect of SPITOT into the effects of its 

two components, SPIRES and SPIPM following the method outlined in Section 2.2, while 

also controlling for the Tobin’s Q of industry peers.  
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[Please insert Table 6 about here] 

Consistent with prior literature (e.g., Chen, Goldstein, and Jiang, 2007), the finding in 

column 1 shows that a higher stock price informativeness enhances the sensitivity of the 

capex ratio to Tobin’s Q. The economic impact is substantial, with a one standard 

deviation increase in SPITOT is associated with 11.29% increase in capex-to-Q sensitivity. 

This effect is even more pronounced for R&D and total investment, with respective 

increases of 39.87% and 17.04% in columns 3 and 5. 

Column 2, that focuses on capex investment, shows that although both the residual and 

PMC-driven components of stock price informativeness interact positively with Tobin’s 

Q, only the residual component shows a statistically significant effect. In contrast, 

columns 4 and 6, which respectively focus on R&D and total investment, reveal a 

different picture: both the PMC-driven and residual components serve as significant 

sources of information for managerial learning. In both cases, the economic impact of 

the PMC-driven component is as substantial as that of the residual component (see point 

estimates of coefficients of interaction terms).  

These results collectively emphasize the substantial impact of stock price 

informativeness improvements driven by PMC on managerial learning, particularly in 

areas with potentially high growth opportunities such as R&D investment. 

4. Cross-sectional determinants of managerial learning  

We consider five contexts that may amplify or diminish managerial learning from stock 

prices to better understand cross-sectional determinants of stock price-induced 

managerial learning. These are financial constraints, information environment quality, 

competition intensity, R&D intensity, and industry leadership. Table 7 reports the results 

of the cross-sectional comparisons by replicating the specification in column 3 of Table 

4. The dependent variable in columns 1-2, 3-4, and 5-6 is the capex ratio, R&D ratio, and 

total investment ratio, respectively. For brevity we only report the coefficient estimate of 
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the interaction term of interest, Q × SPIPMC. For each panel-specification, the last row 

reports z-statistics for a test of the difference in the coefficients of Q × SPIPMC between 

the corresponding two sub-samples. 

[Please insert Table 7 about here] 

Financial constraints. First, we examine the firm’s financial constraint status. Financially 

constrained firms have incentives to allocate their scarce resources to most profitable 

opportunities and may therefore be more willing to listen to their investors (Bennett, 

Stulz, and Wang, 2020). However, these firms may also have limited flexibility in adjusting 

their investment behaviors based on stock price information (Chen, Goldstein, and Jiang, 

2007). To determine which of these potential effects dominates in our sample, Panel A 

compares firms with low versus high financial constraints, using three measures of 

financial constraints: the KZ index (Kaplan and Zingales (1997), the WW index (Whited 

and Wu, 2006), and the SA index (Hadlock and Pierce, 2010). Firms are classified as 

having low (high) financial constraints if they rank in the bottom (top) tercile of the sample 

for a given year. Across the three financial constraint measures, the cross-sectional 

effects of SPIPMC on the R&D investment-to-Q sensitivity is stronger for the low financial 

constraints subsample (columns 3 and 4). Financial constraints appear not to mitigate 

the effect of SPIPMC on investment-to-Q sensitivity for capex (columns 1 and 2) and total 

investment (columns 5 and 6) decisions. These results echo findings in Chen, Goldstein, 

and Jiang (2007), suggesting that firms are more responsive to stock prices when they are 

more financially flexible, but this effect seems to be specific to R&D investments. 

Information environment quality. Next, we examine how cross-sectional heterogeneity 

related to the quality of the information environment in the 10NN cluster influences the 

effect of SPIPMC on the investment-to-Q sensitivity. We hypothesize that learning from 

stock prices will be amplified when the focal firm’s stock price reflects information from 

rival firms’ stock prices that are relatively more efficient. The high- and low-quality 

informational environment subsamples are constructed based on three variables that 
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capture key aspects of the information environment: (i) cluster size, the total market 

value of equity of the 10NN rivals, as large firms tend to be more visible, produce more 

information, and have more liquid stocks; (ii) Analyst coverage, the total number of 

analysts following the 10NN rivals, because analyst activity promotes information 

dissemination and price discovery (Brennan, Jegadeesh, and Swaminathan, 1993; 

Huang, Lehavy, Zang, and Zheng, 2018); and (iii) Stock liquidity, the inverse of the average 

stock illiquidity of the 10NN rivals, as more liquid stocks are expected to better reflect 

private information, with liquidity known to facilitate arbitrage (Roll, Schwartz, and 

Subrahmanyam, 2007).15 

For each of these three variables, we assign tercile-based scores annually, with values of 

1, 2, and 3 for observations in the first, second, and third terciles, respectively. These 

scores are then summed across the three variables to create an information environment 

index, ranging from 3 to 9. Each year, focal firms are classified into high- or low-quality 

information environments based on whether the index falls into the top or bottom tercile 

of the distribution, respectively. The index is structured such that a higher score indicates 

a higher-quality information environment.  

Panel B compares firms within high- and low- quality information environments. Across 

all three investment measures, the coefficient point estimates of the interaction term, Q 

× SPIPMC, are positive and relatively larger for the subsample of focal firms interacting with 

rivals in a high-quality information environment. The difference in coefficient estimates 

of the interaction term between the high- and low-quality subsamples is statistically 

significant for both capex and R&D investments. Consistent with our conjecture, firms 

 
15 Table 3 reports summary statistics for these three variables. The average cluster size in our sample is 
$39 billion. The total number of analysts covering the 10NN rivals averages 80, translating to about 8 
analysts per rival firm, a statistic which is in line with prior literature (Chang, Dasgupta, and Hilary, 2006; 
Chen, Goldstein, and Jiang, 2007;  Yu, 2008). Stock illiquidity is calculated as in Amihud (2002). The average 
stock illiquidity of the 10NN cluster is 0.841, notably higher than the 0.337 reported by Amihud (2002) for 
NYSE-only firms. Our sample includes also NASDAQ stocks, and NASDAQ firms are known to display 
higher stock illiquidity ratios (Brennan, Huh, and Subrahmanyam, 2013). 
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show more investment responsiveness to their stock prices when those prices correlate 

with relatively more informative rival stock prices. 

Competition intensity. Adam Smith was among the first economists to emphasize that a 

lack of competition poses a significant threat to effective management (Smith, 1776). In 

non-competitive industries, managers without proper incentives may be tempted to 

enjoy the quiet life (Bertrand and Mullainathan, 2003), often evading difficult decisions 

and costly efforts. Competition is thus regarded as an important external governance 

mechanism that enforces managerial discipline, reduces inefficiencies and, in extreme 

cases, helps prevent bankruptcies (Alchian, 1950; Stigler, 1958; Grossman and Hart, 

1983). We therefore expect managers to be more responsive to market signals related to 

product market interactions in competitive industries, particularly when making growth-

oriented investment decisions such as R&D.  

Panel C explores heterogeneity effects arising from variations in the competitive 

landscape faced by the focal firm. We use two text-based proxies of competition 

obtained thanks to information collected in the business and product descriptions in 

firms’ 10-K filings item 1: (i) the average similarity score between the focal firm and its 

10NN rivals; and (ii) the product market fluidity of the focal firm. A higher average 

similarity score suggests that firms within the same product market offer closely related 

products, indicating stronger competitive interactions (Hoberg and Phillips 2010, 2016). 

In contrast, product market fluidity assesses the intensity of competitive dynamics, 

quantifying ex-ante competitive threats to the firm (Hoberg, Phillips, and Prabhala, 2014).  

The high and low subsamples are constructed based on the terciles of the respective 

competition proxy distributions. Consistent with economic theory, for both competition 

proxies, the effect of SPIPMC on investment-to-Q sensitivity is significantly larger in highly 

competitive environments for R&D investments. For capex investment, this difference in 

coefficient estimates is larger in the low competition environment when using product 

market fluidity as a proxy. One possible interpretation of this latter result is that firms 
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facing ex-ante competitive threats adopt more conservative financial policies, such as 

precautionary cash savings (Hoberg, Phillips, and Prabhala, 2014). Consequently, these 

firms may prioritize responsiveness to market signals for growth-oriented investments 

like R&D, while becoming less sensitive to such signals for capex investments.   

R&D-intensity and focal firm’s leadership status. The last factors that we examine as 

potential drivers of cross-sectional heterogeneity of the documented learning effect are 

the R&D-intensity of the product market in which the firm operate and its leadership 

status. We anticipate in particular that industry leaders are likely to closely monitor rival 

actions to maintain a competitive edge, given the heightened risk of disruption posed by 

competitor moves. Panels D and E report the results.  

In Panel D, we measure R&D-intensity using the average R&D ratio of the 10NN rivals and 

group firms into high and low R&D-intensive product market clusters based on terciles of 

that distribution. As expected, across the three investment measures, the effect of SPIPMC 

on investment-to-Q sensitivity is more pronounced in the high R&D-intensive product 

market subsample. However, the difference between the high and low R&D-intensive 

groups is statistically significant only for R&D investments.  

In Panel E, we compare industry leaders to industry followers. We identify industry 

leaders using two distinct proxies. For the first proxy, following de Bodt, Eckbo, and Roll 

(2024), we define leaders as focal firms with both sales and return on assets exceeding 

their industry median in a given year. The second proxy identify leaders as focal firms with 

market shares in their product market (i.e., the focal firm plus the 10NN rivals) that fall 

within the highest tercile of the distribution for that year. Consistent with our arguments, 

the PMC-driven learning effect is significantly more pronounced for industry leaders, but 

only for R&D investments. 
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5. Additional tests 

In this section, we perform two additional tests to further explore the robustness of our 

results. We begin by presenting the endogeneity test employed to strengthen the causal 

interpretation of our results, followed by a discussion of additional investigations that 

examine the relationship between PMC-driven signals and innovation outcomes. 

Endogeneity test. Our primary finding that firms with higher PMC-driven stock price 

informativeness show evidence of greater sensitivity to Tobin's Q indicates that PMC 

signals are fundamental drivers of investment decisions. However, this relationship may 

be contaminated by factors that impact both price discovery and investment. As pointed 

out by Bennett, Stulz, and Wang (2020), technological shocks represent a potential 

omitted factor that could enhance price informativeness and simultaneously influence 

firm decisions. To mitigate this concern, we adopt the authors’ approach and employ a 

quasi-natural experiment to address endogeneity issues in our analysis. Specifically, we 

examine the inclusion of the focal firm’s 10NN rivals in the S&P 500 index as an 

exogenous shock to stock price informativeness, particularly to its PMC-driven 

component. 

The inclusion of a rival firm in the S&P 500 index is beyond the control of the focal firm 

and is likely to have a significant impact on the co-movement of the rival firm’s stock 

returns with the broader market index. This effect, as documented in prior literature (Vijh, 

1994; Barberis, Shleifer, and Wurgler, 2005), can decrease the co-movement between the 

idiosyncratic stock returns of the rival firm and the focal firm. We first test this conjecture 

in Panel A of Table 8, using total stock price informativeness (SPITOT) as the dependent 

variable in column 1, and its two components: the product-market induced component 

(SPIPMC) in column 2 and the residual component (SPIRES) in column 3. The independent 

variable of interest is Addition, which equals one if at least one of the 10NN rivals of the 

focal firm is added to the S&P 500 index over the previous three years and zero otherwise.  

The coefficients of Addition in all models are negative, but statistically significant at 5% 
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level in columns 1 and 2. These results support the conjecture that the addition of rival 

firms to the S&P 500 reduces stock price informativeness, with this negative effect 

primarily driven by the impact on the PMC-induced component.   

[Please insert Table 8 about here] 

Greenwood and Sammon (2024) document that the price impact of index additions has 

declined over time, leading to a disappearing index effect. Our test however does not 

consider price impact but instead focuses on the comovement between the treated rival 

firm’s stock return and the index return. Following index inclusion, we observe an 

increase in the R-squared of the return regression, suggesting that the comovement 

between the treated rival firm’s return and the market index strengthens on average in our 

sample. 

After confirming that S&P 500 additions of rival firms serve as a negative exogeneous 

shock to SPIPMC, we turn to the investment regression analyses. We are not in position to 

replicate the Bennett, Stulz, and Wang (2020) difference-in-differences specification 

because we focus on the coefficient of an interaction variable but parallel the authors’ 

approach by interacting the Tobin’s Q variable with the Addition dummy variable, used in 

Panel A. Panel B of Table 8 replicates columns 2 and 3 of Table 4, respectively in columns 

1, 3, and 5, and columns 2, 4, and 6, with this newly defined interaction term. The 

dependent variable in columns 1-2, 3-4, and 5-6 is the capex ratio, R&D ratio, and total 

investment ratio, respectively. The coefficient of the interaction variable of interest, Qi × 

Addition, is significantly negative in columns 3 and 4, with R&D ratio as dependent 

variable. The effects on capex and total investment are not statistically significant, 

indicating that R&D investment is particularly responsive to PMC signals compared to 

other forms of investment. 

Innovation outcomes. To further test the robustness of our R&D results, we extend our 

analysis to variables capturing the outcomes of innovation in the years following the R&D 

expenditure. Since R&D investments may take time to translate into tangible innovations 
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(Griliches, 1990), Table 9 replicates our baseline analysis using three distinct innovation 

outcomes over the next three years as dependent variables. In columns 1-2, the 

dependent variable is patent count, which corresponds to the total number of patents 

granted to the focal firm over the next three years, scaled by the total number of patents 

granted to all firms within the same period. In columns 3-4, the dependent variable is 

patent citations, which corresponds to the total number of future citations received by 

the patents granted to the focal firm over the next three years, scaled by the total number 

of future citations received by patents across all firms during the same period. In columns 

5-6, the dependent variable is self-fluidity, a variable introduced in Hoberg, Phillips, and 

Prabhala (2014) to proxy changes in a firm’s product offerings over time. It is calculated 

as one minus the cosine similarity between the firm’s current and previous years’ 

business descriptions. We use as dependent variable the average of the focal firm’s self-

fluidity over the next three years and apply a logistic transformation to tackle the 

boundedness of the variable.  

[Please insert Table 9 about here] 

The coefficients of the interaction term of interest, Qi × SPIPMC, is consistently positive and 

statistically significant across all specifications, indicating that PMC-induced stock price 

informativeness amplifies the sensitivity of innovation outcomes to the focal firm’s 

Tobin’s Q. These findings further underscore the importance of PMC signals in driving 

growth-oriented investment decisions, such as R&D investment. 

6. Conclusion 

This paper examines product market interactions as potential drivers of stock returns and 

quantifies their impact on stock price informativeness driving managerial learning. By 

analyzing stock return regressions, we find that the 𝑅𝑅2 increases on average by 8.70 

percentage points after accounting for strategic interactions with the firm’s nearest 

product market rivals, an economically and statistically significant effect. We further 
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show that stock prices reflecting these dynamics facilitate more effective learning, as 

managers incorporate these signals into their investment decisions. The contribution of 

the PMC channel to managerial learning is especially robust and strong for R&D 

investments and is further amplified when focal firms are financially unconstrained, hold 

industry leadership positions, and interact with rivals from high-quality information 

environments. The learning effect is also more pronounced in R&D-intensive and 

competitive product market clusters. Further analysis on innovation outputs, such as 

patents and changes in product offerings, supports the importance of managerial 

learning from product market signals in the context of R&D investments. 

Our findings underscore the role of PMC-driven improvements in stock price 

informativeness in shaping corporate decision-making. Building on past research on 

feedback effects from financial markets, this study highlights how managerial learning 

benefits from stock prices that better reflect product market competitive interactions. 

Our contribution to the literature on managerial learning is twofold: First, we pinpoint 

product market competitive interactions as a crucial component of the information 

driving learning. Second, we show that this PMC-driven component plays a substantial 

role in investment decisions, especially in R&D, where timely strategic adjustments are 

essential for firm survival and growth. 
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Appendix A. Variable definitions 

Unless explicitly mentioned otherwise, Compustat is the data source for financial- and 
accounting-related variables, CRSP for stock market-related variables, K. French Data Library1 
for factor returns, and Hoberg and Phillips Data Library2 for product market variables. Analyst 
coverage data are from the Institutional Brokers’ Estimate System (IBES). Patent data are from 
the KPSS patent data library (Kogan, Papanikolaou, Seru, and Stoffman, 2017).3 
 
A.1. Returns and factors 

ri,t: firm i’s stock return on day t. 

rF,t: risk-free rate on day t. 

idio ri,t: firm 𝑖𝑖’s daily idiosyncratic return on day t, which corresponds to the residual of the one-
factor model. 

Mktrft: excess market return, which corresponds to the return of the value-weighted market 
portfolio on day t less the risk-free rate on the same day. 

rIND,t: excess return of the value-weighted 3-digit SIC industry portfolio on day t. 
 
A.2. Stock price informativeness (SPI) variables 

SPITOT: total stock price informativeness, calculated as the logistic transformation of 1 − 𝑅𝑅2, 
where R2 is obtained from the baseline model (1F+IND). 

SPIRES: residual stock price informativeness, calculated after augmenting the baseline model with 
the stock returns of the 10 nearest neighbors (10NN) rivals. It is defined as the logistic 
transformation of 1 − 𝑅𝑅∗2, where 𝑅𝑅∗2 represents the R2 of the full model (1F+IND+10NN). 

SPIPMC: component of stock price informativeness driven by product market interactions. It is 
calculated as the difference between SPITOT and SPIRES. 
 
A.3. Firm characteristics 

Capex: capital expenditures divided by lagged total assets. 

R&D: research and development expenses divided by lagged total assets. 

Total investment: the sum of capex plus R&D plus cash acquisition minus asset sales, divided by 
lagged total assets.  

Patent count: total number of patents granted to the focal firm over the next three years, scaled 
by the total number of patents granted to all firms within the same period.  

Patent citations: total number of future citations received by the patents granted to the focal firm 
over the next three years, scaled by the total number of future citations received by patents 
across all firms during the same period.  

Self-fluidity: a variable developed by Hoberg, Phillips, and Prabhala (2014) to proxy changes in a 
firm’s product offerings over time. It is calculated as one minus the cosine similarity between the 
firm’s current and previous years’ business descriptions.  

Qi: Tobin’s Q of the focal firm i, calculated as the sum of total assets plus market value of equity 
minus book value of equity divided by total assets.  

Firm size: log of total assets in US$ million.  

Cash flow: income before extraordinary items plus depreciation divided by total assets. 

 
1 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
2 https://hobergphillips.tuck.dartmouth.edu. 
3 https://github.com/KPSS2017. 
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ERC: average of the absolute 3-day abnormal stock returns (in %) over the prior year’s four 
quarterly earnings announcements, where abnormal returns are market-adjusted based on the 
value-weighted CRSP index.  

#Analyst: number of analysts issuing forecasts or recommendations for the firm in the previous 
year. 

Leader: a dummy variable that identifies firms with both sales and ROA above the median values 
for their SIC3 industry in a given year. 

Market share: the firm’s sales as a proportion of total sales within its 10NN cluster.  

Product market fluidity: a text-based firm-level measure of competitive threat, introduced in 
Hoberg, Phillips, and Prabhala (2014), which captures the extent of competitive dynamism based 
on product descriptions and rival moves reported in firms' 10-K filings. 

SA index: The Size-Age (SA) index constructed following Hadlock and Pierce (2010).  

KZ index: The Kaplan-Zingales (KZ) index constructed following Kaplan and Zingales (1997).   

WW index: The Whited-Wu (WW) index constructed following Whited and Wu (2006).   
 
A.4. Industry and 10NN cluster characteristics 

Q-i: the average Tobin’s Q of all firms, excluding the focal firm, in the corresponding TNIC industry. 

Q10NN: the average Tobin’s Q of the focal firm’s 10NN rivals. 

Average similarity score: the average similarity score of the focal firm with its 10NN rivals. 

Average R&D: the average R&D ratio of the focal firm’s 10NN rivals.  

Cluster size: total market value of equity of the focal firm’s 10NN rivals in $US billions. 

Analyst coverage: total number of analysts following the focal firm’s 10NN rivals. 

Stock illiquidity: the average Amihud illiquidity ratio of the focal firm’s 10NN rivals. The Amihud 
stock illiquidity ratio is calculated as the yearly average of the firm’s daily ratio of absolute return 
to dollar volume. The ratio is multiplied by 106 for proper display, as in Amihud (2002).  

Addition: a dummy variable equal to one if at least one of the 10 nearest rivals of the focal firm 
has been included in the S&P 500 index over the previous three years and zero otherwise. 
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Figure 1. Information channels for managerial learning 
 
This figure illustrates the primary sources of managerial learning considered in the literature and the one 
explored in this paper. Prior research identifies three main managerial learning channels for the focal firm: 
(1) the firm’s own stock price (e.g., Chen, Goldstein, and Jiang, 2007; Frésard and Foucault, 2012; Edmans, 
Jayaraman, and Schneemeier, 2017), (2) the observable strategic actions of industry rivals (e.g., Spence, 
1981; Gilbert and Lieberman, 1987; Grenadier, 2002; Leary and Roberts, 2014; Décaire, Gilje, and Taillard, 
2020; Bustamente and Frésard, 2021; Krieger, 2021), and (3) the stock prices of those rivals (Foucault and 
Frésard, 2014; Yan, 2024). This paper focuses on the pathway indicated by the dashed arrow in the figure. 
Specifically, it investigates how the component of the focal firm’s stock price informativeness that is driven 
by product market competition affects managerial learning.  
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Figure 2. Average R² by year  
 
This figure presents yearly average R² from firm-level time-series regressions. The sample covers the 1989–
2021 period and includes firms from the Hoberg and Phillips universe that meet the necessary data 
requirements (see Section 2.1). 1F refers to the one-factor model, in which the firm’s daily excess stock 
return is regressed on mktrf, which corresponds to the excess return of the CRSP value-weighted market 
portfolio. 1F+IND builds on this by adding the excess return of the value-weighted 3-digit SIC industry 
portfolio, as an additional independent variable. Finally, 1F+IND+10NN extends the model further by 
incorporating the idiosyncratic returns of the 10 most similar rivals in the product market space, as 
determined by their similarity scores (see Equation 3). 
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Table 1. Sample characteristics by year  
 
The table provides statistics of firms by year. The sample spans the 1989–2021 period and includes firms 
from the Hoberg and Phillips universe that meet the necessary data requirements (see Section 2.1). The 
first two columns present respectively the number of firms in the sample each year and the corresponding 
aggregated market value of equity at year-end, in US$ billions. Column 3 reports the average similarity 
score of all firm pairs. Column 4 reports the average similarity score of firm pairs in the 10NN clusters. 
Column 5 shows the average change in the R2 after including the idiosyncratic stock returns of the 10NN 
rivals in the baseline stock return regression model. 
 

Year 
Number of 

firms 
Aggregate  

market value 
Similarity score 

all firms 
Similarity score 

10NN cluster ΔR2 

(1) (2) (3) (4) (5) 
1989 2,729 1,876 0.013 0.158 5.81% 
1990 2,589 1,801 0.013 0.157 8.35% 
1991 2,651 2,448 0.013 0.165 9.19% 
1992 2,977 2,503 0.014 0.167 8.70% 
1993 3,345 2,836 0.013 0.166 8.76% 
1994 3,685 2,935 0.013 0.169 7.90% 
1995 3,905 3,972 0.014 0.169 9.44% 
1996 4,332 5,089 0.015 0.175 8.85% 
1997 4,405 6,414 0.015 0.175 8.70% 
1998 3,998 8,036 0.014 0.171 9.14% 
1999 3,837 10,421 0.015 0.168 10.03% 
2000 3,410 8,912 0.015 0.169 9.75% 
2001 3,128 8,552 0.015 0.171 8.43% 
2002 2,859 6,549 0.015 0.168 7.27% 
2003 2,844 8,542 0.015 0.167 8.27% 
2004 3,016 9,337 0.015 0.167 8.45% 
2005 2,931 9,762 0.015 0.167 8.85% 
2006 2,903 10,430 0.014 0.168 8.04% 
2007 2,791 11,122 0.015 0.170 8.56% 
2008 2,288 6,990 0.014 0.167 7.64% 
2009 2,188 8,851 0.014 0.164 7.59% 
2010 2,411 10,135 0.014 0.164 7.32% 
2011 2,333 10,207 0.014 0.167 5.90% 
2012 2,269 11,294 0.015 0.170 8.20% 
2013 2,303 14,750 0.015 0.174 8.63% 
2014 2,340 15,150 0.016 0.181 8.96% 
2015 2,347 14,870 0.017 0.184 8.96% 
2016 2,228 15,490 0.017 0.185 10.04% 
2017 2,272 18,667 0.017 0.187 9.44% 
2018 2,266 17,352 0.019 0.194 9.05% 
2019 2,233 22,136 0.019 0.200 9.20% 
2020 2,203 28,055 0.020 0.194 11.76% 
2021 2,679 35,636 0.021 0.196 11.19% 

Average 2,870 10,640 0.015 0.173 8.70% 
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Table 2. Product market competition and stock price informativeness  
 
This table reports descriptive statistics and regression results relating product market competition and the 
stock price informativeness of the focal firm i. Panel A reports summary statistics of the variable used to 
run the firm-year stock return regressions (see Section 2.3), while Panel B displays summary statistics of 
the R2 derived from those regressions. The sample covers the 1989–2021 period and includes firms from 
the Hoberg and Phillips universe that meet the necessary data requirements (see Section 2.1). Variable 
definitions are provided in Appendix A. In Panel B, 1F refers to the one-factor model, in which the firm’s 
daily excess stock return is regressed on mktrf, that corresponds to the excess return of the CRSP value-
weighted market portfolio. 1F+IND builds on this by adding the excess return of the value-weighted 3-digit 
SIC industry portfolio as an additional independent variable. Finally, 1F+IND+10NN extends the model 
further by incorporating the idiosyncratic returns of the 10 most similar rivals in the product market space, 
as determined by their similarity scores (see Section 2.2). SD stands for the standard deviation. SD Average 
corresponds to the standard error of the average. Difference in Averages is the difference of averages 
between successive columns, and t-stat is the corresponding Student’s t statistic.  
 
Panel A. Summary statistics of variables used in the stock return regressions  

 Average p25 p50 p75 SD 
ri 0.086% -1.366% 0.000% 1.354% 3.848% 
rF 0.012% 0.003% 0.012% 0.020% 0.009% 
idio ri 0.000% -1.313% -0.084% 1.148% 3.673% 
mktrf 0.038% -0.430% 0.070% 0.550% 1.093% 
rIND 0.097% -0.677% 0.088% 0.859% 1.758% 

 
Panel B. R2 of firm-level stock return regressions 

 
1F 

 model 
1F+IND  
model 

1F+IND+10NN 
model 

 (1) (2) (3) 
Firm-year observations 94,695 94,695 94,695 
R2    

Average 13.15% 16.96% 25.66% 
SD Average 0.05% 0.06% 0.06% 
Skewness 1.602 1.404 1.131 
Kurtosis 5.418 4.399 3.708 
Difference in Averages 
[t-stat]  

3.82% 
[48.60] 

8.70% 
[103.48] 
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Table 3. Summary statistics 
 
This table reports summary statistics of variables used in our analyses. Variable definitions are in Appendix 
A.  
 

 Average p25 P50 p75 SD 
A. Stock price informativeness  
SPITOT 2.385 1.032 2.222 3.588 1.834 
SPIRES 1.261 0.588 1.369 1.998 1.018 
SPIPMC 1.124 0.359 0.757 1.539 1.076 

B. Firm characteristics      
Capex  0.065 0.019 0.039 0.076 0.083 
R&D  0.065 0.000 0.006 0.077 0.135 
Total investment 0.170 0.047 0.104 0.210 0.213 
Patent count (in %) 0.022 0.000 0.000 0.003 0.176 
Patent citations (in %) 0.026 0.000 0.000 0.002 0.343 
Self-fluidity (in %) 20.364 9.273 15.793 26.270 16.306 
Qi 2.219 1.147 1.575 2.469 2.012 
Firm size 5.673 4.165 5.558 7.084 2.061 
Cash flow 0.018 0.011 0.074 0.122 0.239 
ERC (in %) 6.442 3.398 5.398 8.305 4.315 
#Analyst 7.303 1.000 5.000 10.000 8.268 
Leader 0.373 0.000 0.000 1.000 0.484 
Marke share 0.079 0.012 0.035 0.094 0.118 
Product market fluidity (in %) 6.737 4.124 6.083 8.637 3.597 
KZ index -8.754 -6.364 -1.267 0.781 31.231 
WW index -0.209 -0.331 -0.243 -0.155 0.416 
SA index -3.189 -3.703 -3.166 -2.674 0.772 

C. TNIC industry       
Q-i 2.274 1.459 1.930 2.791 1.180 
Firm size 6.849 5.809 6.978 8.006 1.634 
Cash flow 0.015 -0.010 0.058 0.094 0.132 

D. 10NN cluster      
Q10NN 2.247 1.471 1.892 2.646 1.220 
Firm size 6.822 5.662 6.811 7.955 1.572 
Cash flow -0.004 -0.036 0.052 0.090 0.159 
Average similarity score  0.170 0.122 0.157 0.202 0.072 
Average R&D  0.072 0.001 0.023 0.119 0.099 
Analyst coverage 80.366 46.000 72.000 106.000 45.736 
Cluster size ($US billions) 39.461 3.927 11.576 34.278 103.428 
Average stock illiquidity (106) 0.841 0.034 0.262 1.090 1.370 
Addition 0.139 0.000 0.000 0.000 0.346 
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Table 4. Investment-to-Q sensitivity – the effect of product-market competition induced SPI 
 
The table reports the estimation results of investment-to-Q regressions (see Equations (6) and (7)). The 
dependent variable in Panels A, B, and C is capex, R&D, and total investment, respectively, with all 
variables scaled by lagged total assets. Total investment is defined as the sum of capex, R&D, cash 
acquisitions, minus proceeds from asset sales. Column 1 regresses the corresponding investment ratio on 
Tobin’s Q, controlling for firm size and cash flow whose coefficients are not reported for brevity. In column 
2, we augment the specification with SPIPMC and its interaction term with Q. The coefficient of the single 
term is also unreported for brevity. In columns 3 and 4, we additionally control for the average Tobin’s Q of 
the focal firm’s peers. Specifically, Q-i is the average Tobin’s Q of all other firms in the same TNIC industry, 
while Q10NN denotes the average Tobin’s Q of the focal firm’s 10NN rivals. In column 3 (column 4), the model 
also includes the average values of firm size and cash flow for all firms in the TNIC industry (10NN cluster) 
as additional controls. Variable definitions are provided in Appendix A. All models include firm and year 
fixed effects, and standard errors used to compute t-statistics (within brackets) are clustered at the firm 
level. ***, **, and * indicate significance at 1%, 5%, and 10%, respectively. 
 
Panel A. Dependent variable is capex, scaled by lagged total assets 

 (1) (2) (3) (4) 
Qi 0.0078*** 0.0073*** 0.0068*** 0.0070*** 
 [21.76] [18.08] [16.97] [17.28] 
Qi × SPIPMC  0.0004** 0.0004** 0.0004*** 
  [2.04] [1.98] [2.05] 
Q-i   0.0022***              
   [4.29]              
Q10NN    0.0015*** 
    [3.88] 
Controls Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
Adjusted R² 0.587 0.588 0.588 0.588 
Observations 77,064 77,064 77,064 76,677 

 
Panel B. Dependent variable is R&D, scaled by lagged total assets 

 (1) (2) (3) (4) 
Qi 0.0102*** 0.0082*** 0.0087*** 0.0083*** 
 [14.72] [11.49] [11.79] [11.52] 
Qi × SPIPMC  0.0020*** 0.0020*** 0.0020*** 
  [4.31] [4.53] [4.30] 
Q-i   -0.0030***              
   [-3.72]              
Q10NN    -0.0005 
    [-0.74] 
Controls yes yes yes yes 
Firm FE yes yes yes yes 
Year FE yes yes yes yes 
Adjusted R² 0.789 0.790 0.790 0.790 
Observations 77,064 77,064 77,064 76,677 

 
  



43 
 

Panel C. Dependent variable is total investment, scaled by lagged total assets 
 (1) (2) (3) (4) 
Qi 0.0228*** 0.0202*** 0.0201*** 0.0201*** 
 [19.57] [15.73] [15.29] [15.61] 
Qi × SPIPMC  0.0022*** 0.0023*** 0.0023*** 
  [4.07] [4.13] [4.06] 
Q-i   0.0001              
   [0.08]              
Q10NN    -0.0003 
    [-0.25] 
Controls yes yes Yes yes 
Firm FE yes yes Yes yes 
Year FE yes yes Yes yes 
Adjusted R² 0.403 0.404 0.405 0.404 
Observations 74,060 74,060 74,060 73,693 
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Table 5. Robustness checks 

The table replicates column 3 of Table 4 with the following alterations. Column 1 uses the logarithmic 
transform of the percentage increase in R2 after augmenting the baseline model with the 10NN rivals’ stock 
returns, as an alternative measure of product-market driven stock price informativeness (SPIPMC). Column 
2 uses the Fama-French five-factor model instead of the one-factor model. Column 3 relies on asymmetric 
betas to account for differential effects of good and bad news about rivals on the focal firm’s stock return. 
Column 4 accounts for managerial private information using earnings surprise (ERC) as a proxy, measured 
as the average of the absolute 3-day abnormal stock returns over the prior year’s four quarterly earnings 
announcements. Column 5 controls for analyst coverage, with #Analyst representing the log of one plus 
the number of analysts following the focal firm in the previous year. Column 6 relies on a placebo test which 
consists in replacing the 10NN rivals with 10 randomly drawn (pseudo) rivals. Variable definitions are 
provided in Appendix A. The corresponding single terms (SPIPMC in all columns, ERC in column 4, and 
#Analyst in column 5), along with the controls and fixed effects from Table 4, are included in the model but 
not reported for brevity. Standard errors, used to compute t-statistics [in brackets], are clustered at the firm 
level. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 
 
Panel A. Dependent variable is capex, scaled by lagged total assets 

 Log(%ΔR2) Five-factor 
model 

Asymmetric 
betas 

Managerial 
information 

Analyst 
coverage 

Placebo 
test 

 (1) (2) (3) (4) (5) (6) 
Qi 0.0072*** 0.0068*** 0.0066*** 0.0073*** 0.0077*** 0.0070*** 
 [19.74] [15.71] [15.45] [12.82] [8.79] [13.12] 
Qi × SPIPMC 0.0003*** 0.0008* 0.0004** 0.0004** 0.0003 0.0001 
 [2.70] [1.82] [2.36] [2.13] [1.40] [0.98] 
Qi × ERC    -0.006   
    [-1.20]   
Qi × #Analyst     -0.001  
     [-1.62]  
Q-i 0.0022*** 0.0022*** 0.0022*** 0.0023*** 0.0021*** 0.0023*** 
 [4.16] [4.28] [4.23] [4.50] [4.23] [4.39] 
Controls Yes Yes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Adjusted R² 0.589 0.588 0.589 0.591 0.595 0.587 
Obs. 77,064 77,064 77,064 76,182 73,882 75,344 

 
Panel B. Dependent variable is R&D, scaled by lagged total assets 

 Log(%ΔR2) Five-factor 
model 

Asymmetric 
betas 

Managerial 
information 

Analyst 
coverage 

Placebo 
test 

 (1) (2) (3) (4) (5) (6) 
Qi 0.0109*** 0.0091*** 0.0080*** 0.0091*** 0.0126*** 0.0109*** 
 [14.90] [10.09] [10.10] [8.82] [8.05] [11.26] 
Qi × SPIPMC 0.0015*** 0.0031** 0.0019*** 0.0021*** 0.0012** 0.000 
 [4.97] [2.48] [4.82] [4.94] [2.22] [0.12] 
Qi × ERC    -0.0072   
    [-0.68]   
Qi × #Analyst     -0.0023***  
     [-4.11]  
Q-i -0.0031*** -0.0030*** -0.0030*** -0.0026*** -0.0023*** -0.0028*** 
 [-3.85] [-3.60] [-3.78] [-3.28] [-2.97] [-3.38] 
Controls yes yes yes yes yes Yes 
Firm FE yes yes yes yes yes Yes 
Year FE yes yes yes yes yes Yes 
Adjusted R² 0.791 0.790 0.790 0.7930 0.7910 0.789 
Obs. 77,064 77,064 77,064 76,182 73,882 75,344 
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Panel C. Dependent variable is total investment, scaled by lagged total assets 
 Log(%ΔR2) Five-factor 

model 
Asymmetric 

betas 
Managerial 
information 

Analyst 
coverage 

Placebo 
test 

 (1) (2) (3) (4) (5) (6) 
Qi 0.0224*** 0.0201*** 0.0191*** 0.0216*** 0.0236*** 0.0227*** 
 [18.80] [13.55] [14.18] [12.12] [9.84] [14.22] 
Qi × SPIPMC 0.0017*** 0.0041** 0.0022*** 0.0024*** 0.0016** 0.0000 
 [4.27] [2.30] [4.57] [4.25] [2.13] [0.01] 
Qi × ERC    -0.0220   
    [-1.39]   
Qi × Analyst     -0.0027***  
     [-2.96]  
Q-i -0.0001 0.0001 0.0000 0.0008 0.0001 0.0002 
 [-0.06] [0.06] [0.02] [0.54] [0.08] [0.17] 
Controls yes yes yes yes yes Yes 
Firm FE yes yes yes yes yes Yes 
Year FE yes yes yes yes yes Yes 
Adjusted R² 0.405 0.405 0.405 0.3950 0.3950 0.404 
Obs. 74,060 74,060 74,060 71,003 71,003 72,401 

  



46 
 

Table 6. Controlling for the residual component of SPI 
 
This table examines whether the product market competition-driven component of stock price 
informativeness influences investment-to-Q sensitivities, while accounting for the residual firm-specific 
component. The dependent variable in columns 1-2, 3-4, and 5-6 is the capex ratio, R&D ratio, and total 
investment ratio, respectively. In column 1, SPITOT represents total stock price informativeness, calculated 
as in Equation (2). SPIRES quantifies residual stock price informativeness after augmenting the baseline 
model with the stock returns of the 10NN rivals, calculated as in Equation (4). SPIPMC measures the 
contribution of the 10NN rivals’ stock returns to the focal firm’s stock price informativeness, calculated as 
the difference between SPITOT and SPIRES. Variable definitions are in Appendix A. All models control for the 
single term of the considered information variable, along with firm size and cash flow, and include firm and 
year fixed effects (coefficients omitted for brevity). In columns 2, 4, and 6, the model also includes the 
average values of firm size and cash flow for all firms in the TNIC industry (10NN cluster) as additional 
controls. Standard errors, used to compute t-statistics [in brackets], are clustered at the firm level. ***, **, 
and * denote significance at the 1%, 5%, and 10% levels, respectively. 
 

 Capex R&D Total investment 
 (1) (2) (3) (4) (5) (6) 
Qi 0.0065*** 0.0060*** 0.0069*** 0.0074*** 0.0183*** 0.0184*** 
 [14.61] [13.36] [8.71] [9.11] [13.46] [13.19] 
Qi × SPITOT 0.0004***  0.0015***  0.0017***  
 [3.17]  [5.10]  [4.44]  
Qi × SPIRES  0.0009***  0.0016***  0.0017** 
  [3.25]  [3.65]  [2.30] 
Qi × SPIPMC  0.0001  0.0015***  0.0018*** 
  [0.61]  [3.13]  [3.10] 
Q-i  0.0019***  -0.0034***  -0.0009 
  [3.64]  [-4.07]  [-0.60] 
Controls yes yes yes yes yes yes 
Firm FE yes yes yes yes yes yes 
Year FE yes yes yes yes yes yes 
Adjusted R² 0.5870 0.5890 0.7900 0.7900 0.4040 0.4040 
Observations 77,064 77,064 77,064 77,064 74,060 74,060 
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Table 7. Cross-sectional determinants of managerial learning  
 
This table replicates column 3 of Table 4 across various subsamples. The dependent variable in columns 
1-2, 3-4, and 5-6 is the capex ratio, R&D ratio, and total investment ratio, respectively. For brevity we only 
report the coefficient estimate of the interaction term of interest, Q × SPIPMC. Panel A compares firms with 
low versus high financial constraints. We use three measures of financial constraints: the KZ index, the WW 
index, and the SA index. Firms are classified as having low (high) financial constraints if they rank in the 
bottom (top) tercile of the sample for a given year. Panel B differentiates between 10NN rival firms operating 
in high- and low-quality information environments. The subsamples are constructed using a three-variable 
index capturing key aspects of the 10NN rivals’ informational environment: (i) cluster size, (ii) analyst 
coverage, and (iii) stock liquidity. For each variable, we assign tercile-based scores for observations in the 
first, second, and third terciles, respectively. These scores are then summed across the three variables to 
create an information environment index. Each year, focal firms are classified into high- or low-quality 
information environments based on whether their information environment index falls into the top or 
bottom tercile of the distribution, respectively. Panel C compares focal firms operating in high- and low-
competition environments, relying on two proxies, respectively the average similarity score of the focal firm 
with its 10NN rivals, and the focal firm’s product market fluidity score. High and low subsamples are 
respectively based on the terciles of the distribution. Panel D differentiates between firms operating in high- 
and low-R&D-intensive product market spaces, using terciles of the average R&D ratios of firms within the 
10NN cluster for each year. Panel E compares industry leaders and followers using two measures. The first 
classifies focal firms with both sales and ROA above (below) the median values for their SIC3 industry as 
industry leaders (followers). The second identifies leaders (followers) as firms in the top (bottom) tercile of 
market share within their 10NN cluster for each year. In each panel-specification, the last row reports z-
statistics for a test of the difference in the coefficients of Q × SPIPMC between the corresponding two sub-
samples. Standard errors, used to compute t-statistics [in brackets], are clustered at the firm level. ***, **, 
and * denote significance at the 1%, 5%, and 10% levels, respectively. 
 
Panel A. Financial constraints 

 Capex R&D Total investment 
 Low High Low High Low High 
 (1) (2) (3) (4) (5) (6) 
KZ index       

Qi × SPIPMC 0.0004** -0.0002 0.0029*** -0.0002 0.0003 0.0007 
 [2.21] [-0.44] [6.75] [-0.25] [0.25] [0.43] 

z-stat  1.23 3.41 -0.20 
WW index       

Qi × SPIPMC 0.0002 0.0003 0.0040*** 0.0005 0.0015 0.0004 
 [0.56] [1.18] [10.86] [0.85] [1.41] [0.26] 

z-stat -0.23 5.04 0.59 
SA index       

Qi × SPIPMC 0.0004 0.0001 0.0042*** 0.0001 0.0012 0.0002 
 [1.06] [0.60] [14.24] [0.17] [1.44] [0.16] 

z-stat 0.73 6.23 0.67 
 
Panel B. Information environment quality 

 Capex R&D Total investment 
 High Low High Low High Low 
 (1) (2) (3) (4) (5) (6) 

Qi × SPIPMC 0.0015** -0.0001 0.0044*** 0.0007 0.0008 -0.0009 
 [2.41] [-0.48] [2.95] [0.94] [0.39] [-0.56] 

z-stat 2.44 2.22 0.65 
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Panel C. Product market competition 
 Capex R&D Total investment 
 High Low High Low High Low 
 (1) (2) (3) (4) (5) (6) 
Average similarity score 

Qi × SPIPMC 0.0002 0.0004 0.0027*** 0.0013** 0.0016 0.0004 
 [0.71] [1.17] [5.07] [2.06] [1.35] [0.33] 

z-stat -0.45 1.70 0.71 
Product market fluidity 

Qi × SPIPMC 0.0001 0.0012** 0.0022*** 0.0004 0.0012 0.0008 
 [0.56] [2.31] [4.09] [0.87] [1.10] [0.64] 

z-stat      -2.00 2.54         0.24  
 
Panel D. R&D-intensive cluster 

 Capex R&D Total investment 
 High Low High Low High Low 
 (1) (2) (3) (4) (5) (6) 

Qi × SPIPMC 0.0005*** -0.0003 0.0021*** 0.0000 0.0012 -0.0015 
 [2.58] [-0.29] [3.70] [-0.57] [1.20] [-0.68] 

z-stat 0.76 3.70 1.12 
 
Panel E. Focal firms’ leadership status 

 Capex R&D Total investment 
 Yes No Yes No Yes No 
 (1) (2) (3) (4) (5) (6) 
Industry leaders by profitability and sales 

Qi × SPIPMC 0.0005 0.0003 0.0035*** 0.0013** 0.001 -0.0002 
 [1.44] [1.06] [5.62] [2.17] [1.14] [-0.14] 
z-stat 0.45 2.55 0.72 
Industry leaders by market share 

Qi × SPIPMC 0.0004 0.0005* 0.0038*** 0.0013** 0.0005 0.0011 
 [1.16] [1.66] [8.77] [2.12] [0.39] [0.82] 

z-stat -0.22 3.33 -0.32 
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Table 8. Accounting for potential endogeneity  
 
Panel A shows the effect of S&P 500 additions on stock price informativeness. The dependent variable is 
SPITOT in column 1, SPIPMC in column 2, and SPIRES in column 3.  Addition equals one if at least one of the ten 
nearest rivals of the focal firm is added to the S&P 500 index over the previous three years and zero 
otherwise. Panel B shows the effect of S&P 500 additions to the investment-to-Q sensitivity by replicating 
columns 2 and 3 of Table 4, respectively in columns 1, 3, and 5, and columns 2, 4, and 6. The dependent 
variable in columns 1-2, 3-4, and 5-6 is the capex ratio, R&D ratio, and total investment ratio, respectively. 
Variable definitions are in Appendix A. All models include the controls from the baseline models, along with 
firm and year fixed effects. Standard errors used to compute t-statistics (within brackets) are clustered at 
the firm level. ***, **, and * indicate significance at 1%, 5%, and 10%, respectively. 
 
Panel A. The effect of S&P 500 additions on stock price informativeness 

 SPITOT SPIPMC SPIRES 
 (1) (2) (3) 
Addition -0.0359** -0.0220** -0.0138 
 [-2.54] [-2.38] [-1.63] 
Qi -0.1310*** -0.0598*** -0.0711*** 
 [-26.95] [-18.91] [-28.63] 
Firm size -0.3217*** -0.1398*** -0.1820*** 
 [-23.63] [-16.77] [-23.21] 
Cash flow -0.3266*** -0.2031*** -0.1235*** 
 [-7.38] [-6.39] [-5.54] 
Firm FE Yes Yes Yes 
Year FE Yes Yes Yes 
Adjusted R² 0.638 0.427 0.638 
Observations 76,545 76,545 76,545 

 

Panel B. The effect of S&P 500 additions on investment-to-Q sensitivity 
 Capex R&D Total investment 
 (1) (2) (3) (4) (5) (6) 
Qi 0.0078*** 0.0073*** 0.0107*** 0.0112*** 0.0230*** 0.0229*** 
 [20.80] [19.23] [14.74] [14.36] [18.92] [18.02] 
Qi × Addition 0.0004 0.0004 -0.0040*** -0.0040*** -0.0017 -0.0016 
 [0.71] [0.72] [-4.83] [-4.78] [-1.03] [-0.99] 
Addition -0.0009 -0.0010 0.0074*** 0.0073*** 0.0023 0.0018 
 [-0.73] [-0.84] [4.55] [4.44] [0.67] [0.52] 
Q-i  0.0024***  -0.0040***  0.0006 
  [4.56]  [-4.78]  [0.38] 
Controls Yes Yes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Adjusted R² 0.587 0.588 0.789 0.790 0.403 0.404 
Observations 76,545 76,545 76,545 76,545 73,566 73,566 
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Table 9. The effect of product-market competition induced SPI on innovation outcomes 
 
The table replicates columns 2 and 3 of Table 4 using three different dependent variables capturing 
innovation outcomes over the next three years: patent count in columns 1-2, patent citation in columns 3-
4, and self-fluidity in columns 5-6. Variable definitions are provided in Appendix A. All models include 
controls from the baseline models, along with firm and year fixed effects. Standard errors used to compute 
t-statistics (within brackets) are clustered at the firm level. ***, **, and * indicate significance at 1%, 5%, 
and 10%, respectively. 
 

 Patent count Patent citation Self-fluidity 
 (1) (2) (3) (4) (5) (6) 
Qi -0.0015 -0.0019* -0.0025 -0.0023* -0.0002 -0.0061** 
 [-1.46] [-1.68] [-1.47] [-1.68] [-0.06] [-2.09] 
Qi × SPIPMC 0.0007** 0.0007** 0.0011* 0.0011* 0.0031** 0.0025* 
 [2.13] [2.11] [1.83] [1.77] [2.08] [1.86] 
Q-i  0.0019*  -0.0012  0.0341*** 
  [1.88]  [-0.40]  [6.25] 
Controls Yes Yes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Adjusted R² 0.814 0.814 0.473 0.473 0.531 0.532 
Observations 77,064 77,064 77,064 77,064 76,658 76,658 
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