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ABSTRACT. This paper attempts to empirically test the effect that
wind power production in Denmark has on volatility of the nord-
pool wholesale electricity prices. The main result is that wind
power tends to significantly reduce intraday volatility but increases
volatility over larger time windows. The negative elasticity for in-
traday volatility is likely due to a larger-in-magnitude price effect
of wind power on peak hours then off-peak hours. I suggest that
this in turn is due to a steeper supply schedule at peak-loads. The
positive elasticities in the wider time windows can be intuitively ex-
plained by the greater variability of the supply when large amounts
of wind power are present. These finding have ramifications for in-
vestment in power generation, balancing as well as transmission
capacity.

1. INTRODUCTION

Wind power is playing an increasingly important role in electricity sys-
tems around the world with countries from Great Britain to China
planning on massive amounts of investment in the coming decade. The
special nature of wind power - negligible marginal costs and an inter-
mittent and variable energy profile - implies that the installation of
large amounts of wind energy has the potential to affect the function-
ing of the electricity system as a whole. Yet the effect that substantial
wind capacity has on market-based electricity systems, where prices
provide the main mechanism for maintaining a balance of supply and
demand is poorly understood in theory, and little researched in prac-
tice.
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Due to the early and heavy investment by Denmark, the Nordic
electricity market is one of the few places with a relatively long his-
tory with significant amounts of wind power. The Nordic system is
also a market-based system with decentralized producers making bids
in the wholesale market on a central exchange. Prices are the main
tool to resolve transmission constraints and balance the system across
regions and countries. These attributes make the Nordic market ideal
for studying the effects of wind power.

In this paper I use an extensive dataset of hourly and daily data
points from the Nordic transmission system operators (TSO), Nord-
pool - the central exchange, as well as other relevant data sources. The
data gives a nuanced view of the effects of wind power on volatility.
When looking at the volatility of prices per hour over the course of a
day, wind power tends to have the effect of reducing volatility. How-
ever, when I aggregate to daily units and look at volatility over weekly
and monthly periods, wind power has the effect of increasing volatility.

Given the availability of quality data, the empirical literature on the
effect of wind power on market prices is relatively scarce. Focus has
been especially focused on the effect of wind power on price levels - all
finding that wind power has the effect of lowering prices.

Many electricity market studies use large scale programming models
to evaluate cause and effect. The Econ Pgyry group [Poyry, 2008| uses
its BID power market model to analyze how large scale wind develop-
ment would affect the operation of the market. The Swedish govern-
ment has a goal of installing 10 TWh of wind generation, and thus the
authors used this as the simulated amount. The model indicated that
the addition of wind would tend to lower prices significantly, but the
effect on volatility was ambiguous. The simulation also stresses that
the effect on the value of water in hydro power plants would be reduced
- a result that, as I will explain, I am skeptical of.

Another simulation study was completed by Holttinen [2004] who
found a reduction of average spot price by 2 Eur/MWH for each 10
TWh/a wind energy added. An interesting distinction that the author
makes is the difference between adding wind power and adding wind
power while simultaneously removing an equivalent amount of thermal-
generated power production. With the latter scenario, the author finds
only a slight decrease in prices. This seems to suggest that the source
of the price decrease in these models is simply increased supply instead
of the low-marginal-cost nature of wind power. In this case, the result
of lower spot prices is banal. Again, I am skeptical of such a result and



believe a data-driven approach will tend to tell a different story.

A more data driven approach was attempted by Enevoldsen et al.
(in danish), but the methodology is overly simplistic and resulting con-
clusions sometimes unconvincing. Their approach is essentially a non-
parametric approach based on binning and averaging observations by
hour, month and wind power. They also observe a lowering of the spot
price at times of high wind power, and note the effect is especially
strong at peak times, though they don’t discuss the implications of
this. They calculate that (wholesale) electricity consumers saved be-
tween 12% and 14% in western Denmark and between 2% and 5% in
eastern Denmark. Yet they note a few "mysteries” in their study. They
use only data for 2004 and 2005 and observe substantially different ef-
fects in those two years, which they can not explain. Furthermore they
try to establish an elasticity graphically by showing the market price as
a function of increasing amounts of wind penetration (by percentage).
Here they note a higher ”elasticity” in eastern Denmark, which again
they find puzzling given the large amounts of wind in west. The first
"mystery” is clearly the result of the methodology. Power prices tend
to exhibit strong autocorrelations across hours, days and even months.
It is not at all surprising that if one does not controll for these effects
that estimates of the effect of wind power will vary significantly from
year to year. Their second "mystery” confuses several issues. As they
note, there is considerably less wind power present in eastern Denmark,
but as my analysis shows, the prices in eastern Denmark are effected
substantially from wind power from western Denmark as well.

Lower intraday volatility but higher longer-term volatility has im-
plications for investment and system operation. Given that the lower
intraday volatility is due to lower average prices at peak times, this
could have adverse effects on investment in peaking generation. Since
the expected payoff of such generation that is only used at peak times
is now lower, less may be built solely based on signals from the market.
Thus, wind power may have the strange effect of reducing average in-
traday volatility but in the long term this could lead to more instances
of extreme stress and high price spikes when wind is not blowing at
peak times.

The increased volatility at longer time-windows reflects the invest-
ment challenges of installing large amounts of intermittent generation.
Consumption has been relatively flat in Denmark over the course of
the last two decades. Therefor the added wind power has tended to
replace older thermal generation (mostly coal plants). These plants
are mothballed but often still operational and in times of stress, such
as the winter of 2002-2003, they can be activated [von der Fehr et al.,
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2005]. In markets where generation must be built to meet growing
consumption, the need for substantial backup generation is needed.

The increased price volatility caused by wind power also has inter-
esting implications for the hydro-power producers that dominate the
Nordic market. The Econ P yry groups simulation study for Swe-
den [Poyry, 2008] got results that indicated that the value of water
would drop, and thus the profitability of these plants would decrease.
Yet given enough transfer capacity, the increased volatility presents an
opportunity for hydro power producers with reservoirs as they can es-
sentially act as giant batteries.

2. THE NORDIC ELECTRICITY MARKET AND DANISH WIND
POWER

Deregulation of the Nordic electricity system towards a market-based
system began in 1991 in Norway. By 1996 a Norwegian-Swedish power
exchange was established and the joint trading exchange Nord Pool
ASA was formed. Finland joined in 1998, western Denmark in 1999
and eastern Denmark in 2000. In later years, bidding areas have also
been extended to Germany (Kontek area). The Nordpool spot market
operates on a day-ahead basis. Producers and consumers (either large
direct-consumers or electricity retailers) provide bids for every hour of
the following day. From these bids, Nordpool establishes a supply and
a demand curve from which an equilibrium system-price is established.

Transfer capacities in the Nordic region are relatively large, however
transmission congestion is still a common occurrence. For this reason,
several price-areas exist: two in Denmark (east and west), one for Swe-
den and Finland each, and several in Norway the exact number of price
areas has depended on the level of congestion. When congestion occurs
between areas, the price increases in the area receiving power and is
reduced in the area sending power until equilibrium is met with the
available transmission capacity. Thus, while a theoretic system price
always exists, it is common that the different areas have different prices
in practice.

Denmark has a long history of using wind power, but the wide-scale
use of wind-turbines to generate electricity for the grid trace back to
around 1975, when the Arab oil embargo and a subsequent dramatic
increase in fossil-based fuel prices spurred investment in alternative
forms of electricity generation. Denmark has since poured consider-
able resources into both research and development of wind-turbines as

well as providing generous subsidies to build capacity. Wind capacity
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F1GURE 1. Installed Wind Capacity in Denmark
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growth has been especially strong in the last 20 years as figure 1 shows.

As Figure 2 below shows for the Denmark-East price area, the whole-
sale electricity price tends to vary substantially within a day. This daily
price variation tends to follow consumption patterns. At peak-times
the price is set by high marginal-cost generation such as gas, while
generation with lower marginal costs such as wind, hydro and coal are
often sufficient in low-load times. *

3. DATA AND ECONOMETRIC ISSUES

Data was assembled from several sources. Hourly price data from
2000 through 2008 as well as hourly turnover data was obtained from
Nordpool [Foyn, 2009]. Hourly data on consumption in the two Danish
price areas as well as hourly wind production in the Danish price areas
was obtained from the website of the Danish TSO [ene].

One of the advantages with working with this hourly and daily data
set is the size and generally good quality of the data. In the regressions
where the unit of time is days, [ have approximately 2800 observations.
Moreover, the electricity price data that underlies the dependent vari-
able is not an estimate or measurement, but the actual prices set by
Nordpool. Thus unless there are errors in reporting, no measurement

LAs a side note, the daily price variation in the Norwegian price areas tends to be
substantially less than in Denmark due to the dominance of flexible hydro-power in
the system. However Norway does tend to also experience a lot of seasonal variation
due to changes in the reservoir levels.
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FIGURE 2. Average (2000-2008) Electricity Price in
Denmark-East
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error will exist in the dependent variable.

The large number of observations also makes the econometrics sim-
pler as I can rely on the asymptotic properties of the estimators to
obtain unbiased estimators and correct standard errors. In particular,
robust (white) standard errors will converge to the correct standard
errors asymptotically. As I will show, some serial correlation will still
be present in the residuals, even after accounting for the dynamics in
the regression model. Happily, white standard errors are also asymp-
totically consistent to serial correlation [Hamilton, 1994].

Figure 3 shows a plot of the log system price. The ”spiky” nature
of electricity price series is immediately apparent. Many of the high
peaks happen at winter time, when electricity usage is highest in the
Nordic countries. Though a consistent yearly pattern is not obviously
present. A closer look would however reveal a clear weekly pattern that
reflects the load pattern. Fell [2008] deleted weekend observations in
order to minimize the effects of this weekly seasonality. I decided to
try to keep all the data and instead deal with the seasonality in the
regression model.

DATA SOURCE: NORDPOOL

I will not be using the price data directly, but instead am concerned

with measures of the price volatility. One of the primary measures will
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FiGUuRrE 3. Log Nordpool System Price
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be the standard deviation of intra-day prices which can be written as
3.1.

24

1 D)2
(3.1) Vy = 24;(1% P)

The log daily price volatility as represented by 3.1 is plotted for the
nordpool system price and the Denmark east area price for 2001 in fig-
ure 4. Not surprisingly the daily standard deviation displays the same
spikiness as the price level series - but there appears to be a relatively
quick reversion to the mean and no obvious persistence. The Denmark
East local area price seems to exhibit, on average, higher daily volatil-
ity than the system price. This makes sense when considering that the
Nordpool market as a whole has large amounts of hydro power that has
a smoothing effect on prices. Denmark, on the other hand, has none
of its own hydro production.

A plot of the exponentially smoothed full series (figure 5) seems to
show somewhat higher volatility in the later few years - especially for
the Denmark east period. Significant linear and quadratic time trend
in the regressions in the next section lends support to the existence of
an upward trend in the volatility in the period studied.

I use autocorrelation (ACF) and partial autocorrelation functions
(PACF) of the price series to help identify appropriate ARMA spec-
ification. The ACF and PACF of the system price are displayed in
respectively figure 6 and 7. The ACF displays dissipating autocorrela-

tions with a clear weekly pattern. The autocorrelations do not die-out
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FIGURE 4. Log Volatility (st.dev) of Prices
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FIGURE 5. Smoothed Log Volatility (st.dev) of Prices
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quickly exponentially however, thus a simple AR(1) model would prob-
ably not be sufficient. The PACF suggests however that an AR(2) or
AR(3) model may be more appropriate along with a weekly moving
average (MA) term.

The seasonality of the series can also be seen in the periodiogram,
or the sample spectral density function, as in figure 8 where 3 years
of data is used. The high densities in the very low frequencies indi-
cates the presence of a rough yearly cycle [Enders, 2009]. The jumps in
the higher frequencies relate to the weekly cycle (% ~ .14 % ~ .29, etc.)
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FIGURE 6. Autocorrelation Function of System Price Volatility
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FIGURE 7. Partial Autocorrelation Function of System
Price Volatility
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The exogenous variable to be used in the models is the amount of
wind power produced in Denmark east and Denmark west. Figure 9
shows one year of the exponentially smoothed log wind power series.
Not surprisingly the series does not seem to display any obvious persis-
tence or trend. Moreover, the ACF and PACF suggest that an AR(1)
representation may adequately describe the autocorrelation structure
of the data 10.

I will also run regressions using aggregated daily prices and then
calculating volatility on a weekly and monthly basis. These volatility

measures are again represented as standard deviations, calculated as
9



F1GURE 8. Periodogram of System Price
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FIGURE 9. Exponentially Smoothed Wind Power in Denmark
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in 3.2. Monthly volatility is calculated similarly.

e .
(3.2) V=D _(Pa—P)

d=1

Clearly, the number of observations is reduced by a factor of 7 for
weekly volatility and a factor of approximately 30 for the monthly

volatility thus I am left with 415 and 96 observations respectively. On
10



FIGURE 10. ACF and PACF of Wind Production Series
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the plus side, the weekly seasonality that had to be modeled when us-
ing the daily volatility measures now disappears.

In order for the ARMAX regressions in the next section to be valid,
two key assumptions must be met. First, both the dependent series
and the exogenous series need to be stationary. As mentioned, a visual
inspection tends to suggest that all the series are stationary. 1 for-
mally test the hypothesis with an augmented Dicky-Fuller test Hamil-
ton [1994]. Ignoring the seasonal components for the moment, the
daily System Price series can be adequately modeled as a distributed
lag model with five lagged terms (ie an AR(5) model). Thus I run a
Dicky-Fuller test with five lags. The null hypothesis of at least one
unit root is rejected at the 1% significance level. I run similar tests for
the Denmark East and West area price data as well as the wind power
series with respectively 6, 6 and 1 lags. All reject the null of at least
one unit root at the 1% significance level. The series of weekly and
monthly volatility are also shown to be stationary.

The other necessary assumption is that the wind power is exogenous.
One of the advantages with having wind production as the regressor
of interest is that it is a passive form of generation. That is to say,
wind-energy is produced when there is wind and since the marginal
cost of production is near zero, the producer has little incentive to hold
back production due to price signals. The wind power series used is
almost certainly exogenous to prices.

Two possible exceptions to this assumption should at least be men-

tioned. First, the system operator may order some wind off-line due to
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balancing concerns which might also be reflected in price. The second
possible concern is the exercise of market power. A large producer with
a range of generation technologies including substantial wind power
may have an incentive to reduce wind power in order to benefit from
higher overall prices. The former is likely a minor factor - Nordpool
runs separate balancing markets and frequency regulation. Prices in
the Denmark area do occasionally drop to zero, an effective price floor
in the nordpool market ? but this is a relatively rare occurrence and is
unlikely to affect the estimation. Despite a high market concentration
of generation in Denmark, most studies of danish and Nordic market
power have failed to detect evidence of consistent market power (see
for example Amundsen and Bergman [2006] and Hjalmarsson [2000]).

Some of the regressions involve price and quantity variables of elec-
tricity - simultaneity thus becomes a potential issue. Unfortunately,
finding instruments for the quantity variables (consumption/turnover)
can be tricky. Weather variables that affect consumption (for instance
temperature) are also likely to be correlated with supply from hydro-
and wind- generation in the system. Thus they are not likely to be ap-
propriate instruments. However, electricity demand is generally known
as being very inelastic in the short run. Indeed in the regressions in-
volving daily data, wind power appeared to be largely independent of
load variables, however this does not hold in the weekly and monthly
regressions. Luckily, independence of wind from demand side factors is
not a necessary condition to get valid inference as long as wind power
is exogenous.

4. RESULTS

4.1. System Price Volatility. To establish the effect of wind power
on the intraday price volatility I use a single equation transfer function
(alternatively ARMAX) where the standard deviation of daily electric-
ity prices are modeled as an ARMA process along with the exogenous
wind power term.

Below is a table showing the results for the system price series. I
present the coefficient of interest - wind power - for 5 specifications
in table 1. In general, the various models tend to give a consistent
estimate of an elasticity of around -.03 for the contemporaneous effect
of wind power, a result which is significant at the 1% level for most of
the models. The standard errors used are robust to heteroskedasticity,

2Some other markets in Europe utilize a ”"negative” price - essentially paying
some producers not to produce
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but not necessarily to misspecification of the ARMA process [sta, 2007]

TABLE 1. ARMAX model results: Effect of Wind
Power on System Price Volatility

Model
ai a2 as aq Qs
ln(wind) -.032 -.026 -.014¢ -.035 -.032

In(wind);—; | .063 .034 .046 n/a n/a
AIC 3325 3789 3662 3391 3378

BIC 3384 3837 3751 3427 3357

Coefficients significant at 1% level unless otherwise noted:
@ gignificant at 5% level, ¢ not significantly different from zero

A summary of the specifications is presented in table 2. Generally,
the specifications represent a trade-off between goodness-of-fit and par-
simony. Dealing effectively with seasonality, which has a strong pres-
ence in power market data, was of special relevance. Including extra
exogenous variables, while sacrificing parsimony, may also give a fuller
picture of the causes of volatility. I use wald tests and information
criterion to get the best fit for each specification.

TABLE 2. Model Specifications

Model | Specification

a AR(4) SAR(3), D.O.W. fixed effects

as AR(3) SAR(2) SD(1)

as ARMA (2,2) SAR(2), D.O.W fixed effects

a4 ARMA(2,1), SARIMA(0,1,1), D.O.W. In_wind AR(1) residuals, quadratic time

as as + In(load)

Both models a; and as are distributed lag models - that is to say they
rely entirely on autoregressive terms to model the dependent variable.

Day of week (D.O.W) fixed-effects were also significant and improved fit
13



in model a;. In addition to a contemporaneous term for wind, a lagged
term is also added to account for the autocorrelation in that series. The
model can be written as in equation 4.1, where v; and w; represent the
natural log of volatility (daily standard deviation) and the natural log
of total daily wind power in Denmark. To try to account for potential
non-linearities for the wind power, I included a squared term, but this
turned out to be insignificant and thus I dropped it from the regression.

3 3
bt = Z ViVe—i + Z VirVi—i7 + Gowr + Prwi—1 + €(4.1)

i=1 i=1

Model ay drops the D.O.W. fixed effects and seasonally (weekly) dif-
ferences all the terms. That is, the left hand becomes v; —v;_7, and cor-
respondingly on the right hands side. Seasonal differencing produces a
smaller (but still significant) estimated coefficient for wind power. The
AIC and BIC (corrected for differencing) indicate a somewhat worse
fit. Model a3 uses a more parsimonious ARMA specification with two
seasonal autoregressive terms. Here the estimate on the contempora-
neous wind power term becomes insignificant while the lagged term
remains positive and significant.

The estimate on the lagged wind power term should not be given any
economic interpretation. That is, the estimate of .063 in model a4, for
instance, does not imply that an increase in wind power in one day will
lead to increased price volatility in the next day. Instead the signifi-
cant coefficient is most likely the result of the autoregressive character
of the wind power series. Therefor, I also choose to use the residuals
of an AR(1) regression on wind power as the exogenous variable in
specifications a4 and as, in effect filtering out the autoregession in the
series. When this is done, the lagged wind term is no longer significant
and the contemporaneous term is always estimated to be significant.

What models a; through as have in common is that they generally
fail to sufficiently account for the structural seasonality in the data. For
instance, the autocorrelation function of the residuals from model az
is presented in figure 11. Notice the significant autocorrelation on the
7th lag, as well as the 21st and 28th - indicating that weekly seasonal-
ity remains in the data despite the inclusion of seasonal autoregressive
and D.O.W. fixed effects. One possibility is that these relatively parsi-
monious models do not include enough structure to adequately model
the power market data thus also making the seasonal factors ineffective.

14



FIGURE 11. Autocorrelation Function of Model as Residuals
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As suggested in the data section, it seems likely that the data has
some yearly seasonality as well. For several of the models, I also added
monthly fixed effects to try to account for this. However, these fixed
effects turned out to be both individually and collectively insignificant.
Other methods are also available to deal with seasonality of smaller
frequencies, such as spectral (fourier) decomposition [Weron, 2006],
though in general this seasonality doesn’t seem likely to play a large
role in the estimations of interest here.

Models a4 and a5 are estimated by a two-step procedure. First,
I regress log price volatility on a quadratic time trend and D.O.W.
fixed effects. I then use the residuals of this regression to estimate a
SARIMA (seasonal ARIMA) model. In both models an ARMA(2,1)
dynamic was paired with a weekly differencing of the data as well as a
SMA(1) term. a5 also includes a term for the log volatility (standard
deviation) of load in the nordpool market. Model a5 can be represented
by equation 4.2.

(4.2)
pY = D+ agt+agt’ +ef
Azel = mAze | + Are_y + dAze) + Agly + Bier—i + Bier—1 + Brer—7 + &
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Here D represents an array of D.O.W. fixed effects. e}’ represents
the estimated residuals of an AR(1) regression on wind power. [ rep-
resents the log volatility of load in nordpool. This appears to increase
the fit of the model slightly though figures 12 and 13 indicate that the
autocorrelation function of the residuals appear to be almost identical.
The autocorrelation functions and the partial autocorrelation functions
from the latter two models do not indicate any obvious seasonality ei-
ther. While some of the autocorrelations are shown as significant, this
can be expected to happen by pure chance when many autocorrelations
present [Enders, 2009]. A Portmanteau Q-test of the residuals however
rejects the null hypothesis of white noise. Considering the relatively
structured nature of power market price data, it should not be alto-
gether surprising that a relatively simple ARMAX model with a few
explanatory variables fails to filter out all but an serially uncorrelated
innovation term.

FIGURE 12. Autocorrelation Function of Model-as Residuals
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However, the models do seem to be able to account for a fair amount
of the serial correlation as well as much of weekly seasonal patterns.
More so, the estimates for the effect of wind power tend to be quite ro-
bust to specification. Taken together, the exogeneity of the wind data,
the stationarity of the volatility series, and the robust results across
specification make for a convincing case that wind power in Denmark
has the effect of lowering the daily volatility in the nordpool system
price with a elasticity of between -.03 and -.04.

4.2. Area Price Volatility. As mentioned earlier, the system price

is not always the relevant price. Congestion in the transmission grid
16



FIGURE 13. Autocorrelation Function of Model-as Residuals
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leads to differing prices in the different areas in order to balance supply
and demand. In the presence of these transmission constraints, it is
reasonable to assume that the effect of wind power on volatility will be
magnified. Table 3 shows the results from applying some of the model-
specifications from the previous sub-section to data on Denmark’s two
price areas. The results tend to confirm the intuition of a higher mag-
nitude effect of wind power on the local area prices in Denmark.

In the previous regressions, I used the total amount of daily wind
power as the exogenous variable. That is, the results reflect how volatil-
ity in prices are effected by the total amount of wind. It may also be
instructive to see how volatility in prices is affected by volatility in wind
power. Thus in table 3 I also display results of the regressions where
the daily standard deviation of wind power is used as the exogenous
variable.

I used three different model specifications in this subsection, with
the designations by, by and b3. As in specifications ay and as The en-
dogenous variable in all three of these specifications are De trended
and I remove some of the seasonality by using the residuals of a regres-
sion with a quadratic time-term and day-of-week (DOW) fixed effects.
Similarly for the exogenous wind power term, I use residuals of an au-
toregression to filter out the autoregressive terms of the series. When
total daily wind power from Denmark east and Denmark west price
areas is the exogenous variable, an AR(1) regression was sufficient for
both series. However the daily standard deviation of wind power tended
to have a more persistent autoregressive pattern. An AR(3) and AR(6)

representations served to fit well the standard deviation of wind power
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TABLE 3. ARMAX model results: Effect of Wind
Power on Daily Danish Price Volatility

Model
bl b2 b3
DKE DKW DKE DKW DKE DKW

In(D.E. Wind) |-.032° .014° -.032° -.017¢ -.031® .017¢
In(D.W. Wind) |-.036*> -.10  -.036° -.10 -.035 -.100
Total Wind -.069 -.087 -.070 -.082 -.067 -.081
D.E. Wind Vol. |-.004¢ -.002¢ -.006° -.005° -.0024¢ -.004°
D.W. Wind Vol. | -.038% -.051 -.038" -.04% -.043% -.043%

Total Wind Vol. | -.039 -.045 -.039 -.041 -.041 -.042

Coefficients significant at 1% level unless otherwise noted:
@ significant at 5% level, ® significant at 10% level

¢ not significantly different from zero

in respectively Denmark west and Denmark east.

In table 3 each column represents the results from three distinct
regressions. The first regression, represented by the first two rows, in-
cludes the log of wind power from both Denmark east (In(D.E. Wind))
and Denmark west (In(D.W. Wind)) as the exogenous regressors of in-
terest. The second regression, represented by the third row, has total
wind power as the regressor of interest. The next three rows, where
the daily standard deviation of wind is used as the exogenous regressor,
are otherwise identical.

Notice also that separate regressions are run for both the Denmark
east (DKE) and Denmark west (DKW) price areas as the dependent
variable.

Model b, is a distributed lag model with 4 AR terms and one SAR
term (lag 7) of the dependent variable. Wind power - either in the form
of separate terms from east and west, or total are the only other terms.
In by the data is modeled as ARMA(2,1) with SARIMA(0,1,1) terms.
That is the data is differenced on a weekly basis and also includes a
lag-7 ma term. b3 keeps the ARMA and SARIMA form of by and in

addition adds in terms for log consumption in both Denmark east and
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west.

Once again, I get fairly consistent estimates across specification,
though it is worth noting that in this set of regressions the models were
considerably more similar to each other than in the previous section.
The results indicate that wind power from the Denmark-east area has
largely no role on the volatility in western Denmark but that it has an
elasticitity of -.03 for the volatility in its own price area. Wind power
from Denmark west on the other hand - where the large majority of
wind power is located - has a substantial effect on the daily volatility
in both Denmark east and west with significant elasticities of around
-.035 and -.10.

When the exogenous variable is total amount of wind in both areas,
the estimated elasticities are between -.067 to -.070 and and -.081 and
-.087 for respectively Denmark east and Denmark west. It may at first
seem surprising that this estimated elasticity is lower in magnitude
than of the estimated elasticity of wind power from west Denmark.
This is likely the combined result of the dominant share of wind power
in western Denmark and the outsize effect that wind power has on the
price area it is located in due to transmission constraints.

All the regressions in table 1 and the regressions in the first three
rows of table 3 use the total amount of wind produced in a day. Yet
this may not be the most relevant measure to look at. The main chal-
lenge of integrating large scale wind power in a grid is the variability of
the source. Thus in the bottom half of table 3 the exogenous variable
is the daily volatility (standard deviation) of wind power. The results
indicate no discernible effect of variability of wind in Denmark east on
price variability. On the other hand, daily variability of wind in west
Denmark tends to decrease price volatility in both areas.

4.3. Weekly and Monthly Volatility. So far, I have looked exclu-
sively at a fairly narrow measure of volatility - namely daily volatility.
This section will show that the results from daily volatility do not carry
over to volatility over longer time periods. In fact, while wind power
tends to smooth the intraday (hourly) prices, it tends to increase the
average (daily) price movements over weekly and monthly periods. In
addition, the results suggest that the magnitude of the effect increases
with the time scale used.

Table 4 shows the results from regressions using both measures of
weekly and monthly volatility for prices in Denmark west, east and

the Nordpool System Price. The exogenous variable here is standard
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deviation of total wind power in Denmark.

TABLE 4. ARMAX model results: Effect of Wind
Power on Weekly and Monthly Volatility

Weekly Monthly

C1 C2 C1 C2

Denmark West | .165 .064¢ .198% .047¢
Denmark East | .133 -.013¢ .187 .339¢

System Price |.061 -.049¢ .12 -.10°

Coefficients significant at 1% level unless otherwise noted:
@ significant at 5% level, ® significant at 10% level
¢ not significantly different from zero

Weekly and Monthly Observations: 415, 96

When aggregating the price data over weekly and monthly periods,
many of the difficulties of dealing with seasonalities and other structure
of the power market data disappears and a simple ARMA specifications
seems to be sufficient. An ARMA(1,1) specification provided a good fit
for all regressions on the weekly volatility as well as the regressions on
monthly volatility of Denmark East prices and the Nordpool System
Price. While an AR(1) model provided the best fit for the Denmark
east monthly volatility regressions.

Table 4 shows two specifications: ¢; and ¢y where the only difference
between them is that ¢y includes volatility of consumption as an added
left hand side variable. For Denmark east and west, only volatility of
consumption in their respective areas was significant in the regressions.
For the regressions of the system price, I again used turnover as a proxy
for consumption.

The ACF for the residuals of the ¢; regression for monthly volatility
in Denmark West shows that the the simple ARMA specification ad-
equately deals with the autocorrelation in the data. The residuals for
the weekly regressions give a similar picture.

Considering the c¢; results first, all the regressions show highly sig-
nificant and positive coefficients, with the greatest effect coming in the
Denmark west area where the elasticity is estimated at .165 for the
weekly volatility and .189 for the monthly volatility. This can be in-

terpreted to mean that when volatility (standard deviation) of wind
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FIGURE 14. Autocorrelation Function of ¢; System
Price Regression
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power doubles, then volatility in prices in Denmark west would in-
crease by 16.5% on a weekly basis and 19.8% on a monthly basis. Even
the estimated elasticities on the system price are both statistically and
economically significant.

However, when I add the measures of consumption volatility, all the
coefficients become insignificant. But, I argue that the ¢y coefficients
of interest are likely biased downward due to simultaneity in this case
and that there is good reason to believe that the coefficients of interest
in ¢; can be considered valid.

Recall that in the previous discussion on daily volatility that the
addition of measures of consumption did not significantly change the
coefficients on wind power. In other words, in this case, wind power
and consumption variables are independent. This in turn can be at-
tributed to the low short run elasticity of power markets. What these
regressions demonstrate is that when we stretch the time period from
day to week and month, simultaneity becomes a serious issue and can
bias supply side coefficients like wind power. In other words, con-
sumption does not react to price fluctuations in the short term on the
scale of what is caused by wind power. However, fluctuations in price
over longer periods such as weeks and months caused by wind power
does elicit a significant reaction in consumption. For instance, a large
energy-intensive manufacturer may choose to increase production in
a particularly windy week where electricity prices have been pressed

down. Conversely, that same producer may have contract with the
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electricity provider to cut production and power-production in a wind-
still week where supply is tight. Since I am interested in the effect of
wind power holding all other things equal including consumption, the
correct estimate is from the regression that does not include consump-
tion.

Luckily, the validity of the ¢; regressions does not require the in-
dependence of wind power from other possibly endogenous variables.
Instead, wind power needs only to be exogenous. The reasoning for as-
suming that wind power is exogenous - passive generation and near-zero
marginal costs - do not change when widening the window to weekly
and monthly volatility.

5. DI1scUssiON AND CONCLUSION

The main finding of this paper is that wind power has both a sta-
tistically and economically significant effect on volatility, but that the
sign and magnitude of this volatility is dependent on the time window
studied. Intraday volatility is reduced while volatility of averaged daily
prices are increased.

The mechanism for how wind power production reduces intraday
volatility is likely due to an out sized effect of wind power on peak load
times. In a competitive electricity market, the market price for any pe-
riod is set by the marginal cost of the marginalgeneration technology.
When wind is added to the mix, it can be seen as a stochastic shifting
of the supply schedule to the right. If the supply schedule is steeper at
peak times, then shifts in the supply curve would lead to larger price
decreases during the peak times. This idea is illustrated in figure x,
where a shift of the supply schedule to the right has no effect on the
base-load price, P,, while having a significant effect on the peak-load
price, P,.

In the Nordic system, hydro, nuclear and coal generally make up the
base-load capacity. The marginal costs of these generation technologies
are all relatively low, thus it is likely that the left-end of the supply
schedule is relatively flat. More so, there is less likely to be congestion
during non-peak times, allowing for import of cheaper base-load en-
ergy from neighboring countries. This availability of imported energy,
also likely keeps the left-end of the supply schedule relatively flat in
Denmark. However, during peak load times, Denmark may be more
dependent on its gas-fired generation which has significantly higher
marginal running costs.
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Ficure 15. Figure 3: Effect of Wind Production on
Peak and Base Load Prices
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One important implication of volatility is the effect on distribution of
rents to the different generation technologies. The reduction in intraday
volatility means that generation used to balance supply on a daily basis
- most importantly stand-by natural gas generation will on average be
able to capture less of the rent and will be less profitable. In the
nordpool market, standby and balancing power are compensated in
markets and agreements outside of the normal spot (day-ahead) and
hour-ahead markets. With increased wind power penetration in the
system, use of such compensation schemes may need to be increased
correspondingly.

As mentioned in the introduction, the increased volatility in longer
time windows reflects the challenges of adding large amounts of inter-
mittent wind. In the winter of 2002-03 a combination of very little
rainfall in Norway and Sweden as well as cold and wind-still weather
led to periods of very high electricity prices. Yet, the entire Nordic area
avoided any serious disruption in power supply, thanks in part due to
the activation of mothballed coal plants in Denmark. See Olsen Olsen
et al. [2006], Amundsen and Bergman Amundsen and Bergman [2006]
or Fehr et all von der Fehr et al. [2005] for a more in depth description.
This episode demonstrated the flexibility of the nordpool market even
in the face of quite extreme conditions. But it also shows the impor-
tance of having large amounts of standby power in a electricity system
dominated by hydro and wind generation. This should be a particular
concern for countries that build out wind generation to meet grow-
ing consumption. In this case, significant amounts of backup power
would need to be built, perhaps significantly worsening the economic
feasibility of wind power.

On the other hand, the combination of wind production pressing
down prices and increasing volatility over longer periods in the entire
nordpool system could be a boon for hydro power producers. Assum-
ing sufficient transfer capacity, hydro power stations can shut off (or

in some cases, even pump water up hill) at times of low prices, thus
23



preserving or increasing magazine levels. They can then generate when
the prices increase. In effect, the the hydro producers (in Norway and
Sweden) are able to capture some of the rent created by wind power,
generously subsidized by the people of Denmark. Keep in mind, that
this regression accounts only for the wind power produced in Denmark.
The effect of the growing amounts of wind in Sweden and Finland are
not included, assuming that correlations is quite low between wind in
the different areas (which there is good grounds to believe Nor [2008])
the total effect of wind is even greater and the corresponding balancing
role (and profiteering) of hydro power even greater. As mentioned at
least one of the simulation studies suggests that wind power, by re-
ducing average prices, would reduce profitability of hydro stations. I
believe this argument needs a closer evaluation.
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